Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,298 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Converting legacy network pickle into the new format."""
from pdb import set_trace as st
import click
import pickle
import re
import copy
import numpy as np
import torch
import dnnlib
from utils.torch_utils import misc
#----------------------------------------------------------------------------
def load_network_pkl(f, device, force_fp16=False):
data = _LegacyUnpickler(f).load()
# Legacy TensorFlow pickle => convert.
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
tf_G, tf_D, tf_Gs = data
G = convert_tf_generator(tf_G)
D = convert_tf_discriminator(tf_D)
G_ema = convert_tf_generator(tf_Gs)
data = dict(G=G, D=D, G_ema=G_ema)
# for k, module in data.items():
# for key in ['G', 'D', 'G_ema']:
# data[key].to(device)
# Add missing fields.
if 'training_set_kwargs' not in data:
data['training_set_kwargs'] = None
if 'augment_pipe' not in data:
data['augment_pipe'] = None
# Validate contents.
assert isinstance(data['G'], torch.nn.Module)
assert isinstance(data['D'], torch.nn.Module)
assert isinstance(data['G_ema'], torch.nn.Module)
assert isinstance(data['training_set_kwargs'], (dict, type(None)))
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
# Force FP16.
if force_fp16:
for key in ['G', 'D', 'G_ema']:
old = data[key]
kwargs = copy.deepcopy(old.init_kwargs)
fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs)
fp16_kwargs.num_fp16_res = 4
fp16_kwargs.conv_clamp = 256
if kwargs != old.init_kwargs:
new = type(old)(**kwargs).eval().requires_grad_(False)
misc.copy_params_and_buffers(old, new, require_all=True)
data[key] = new
return data
def load_network_pkl_E(f, force_fp16=False):
data = _LegacyUnpickler(f).load()
# Legacy TensorFlow pickle => convert.
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
tf_E = data
E = convert_tf_generator(tf_E)
# D = convert_tf_discriminator(tf_D)
# G_ema = convert_tf_generator(tf_Gs)
data = dict(G=E)
# Add missing fields.
if 'training_set_kwargs' not in data:
data['training_set_kwargs'] = None
if 'augment_pipe' not in data:
data['augment_pipe'] = None
# Validate contents.
assert isinstance(data['E'], torch.nn.Module)
assert isinstance(data['training_set_kwargs'], (dict, type(None)))
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
# Force FP16.
if force_fp16:
for key in ['E']:
old = data[key]
kwargs = copy.deepcopy(old.init_kwargs)
fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs)
fp16_kwargs.num_fp16_res = 4
fp16_kwargs.conv_clamp = 256
if kwargs != old.init_kwargs:
new = type(old)(**kwargs).eval().requires_grad_(False)
misc.copy_params_and_buffers(old, new, require_all=True)
data[key] = new
return data
#----------------------------------------------------------------------------
class _TFNetworkStub(dnnlib.EasyDict):
pass
class _LegacyUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == 'dnnlib.tflib.network' and name == 'Network':
return _TFNetworkStub
if 'training' in module:
module = module.replace('training', 'nsr') # map module position from eg3d repo
return super().find_class(module, name)
#----------------------------------------------------------------------------
def _collect_tf_params(tf_net):
# pylint: disable=protected-access
tf_params = dict()
def recurse(prefix, tf_net):
for name, value in tf_net.variables:
tf_params[prefix + name] = value
for name, comp in tf_net.components.items():
recurse(prefix + name + '/', comp)
recurse('', tf_net)
return tf_params
#----------------------------------------------------------------------------
def _populate_module_params(module, *patterns):
for name, tensor in misc.named_params_and_buffers(module):
found = False
value = None
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
match = re.fullmatch(pattern, name)
if match:
found = True
if value_fn is not None:
value = value_fn(*match.groups())
break
try:
assert found
if value is not None:
tensor.copy_(torch.from_numpy(np.array(value)))
except:
print(name, list(tensor.shape))
raise
#----------------------------------------------------------------------------
def convert_tf_generator(tf_G):
if tf_G.version < 4:
raise ValueError('TensorFlow pickle version too low')
# Collect kwargs.
tf_kwargs = tf_G.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default=None, none=None):
known_kwargs.add(tf_name)
val = tf_kwargs.get(tf_name, default)
return val if val is not None else none
# Convert kwargs.
from training import networks_stylegan2
network_class = networks_stylegan2.Generator
kwargs = dnnlib.EasyDict(
z_dim = kwarg('latent_size', 512),
c_dim = kwarg('label_size', 0),
w_dim = kwarg('dlatent_size', 512),
img_resolution = kwarg('resolution', 1024),
img_channels = kwarg('num_channels', 3),
channel_base = kwarg('fmap_base', 16384) * 2,
channel_max = kwarg('fmap_max', 512),
num_fp16_res = kwarg('num_fp16_res', 0),
conv_clamp = kwarg('conv_clamp', None),
architecture = kwarg('architecture', 'skip'),
resample_filter = kwarg('resample_kernel', [1,3,3,1]),
use_noise = kwarg('use_noise', True),
activation = kwarg('nonlinearity', 'lrelu'),
mapping_kwargs = dnnlib.EasyDict(
num_layers = kwarg('mapping_layers', 8),
embed_features = kwarg('label_fmaps', None),
layer_features = kwarg('mapping_fmaps', None),
activation = kwarg('mapping_nonlinearity', 'lrelu'),
lr_multiplier = kwarg('mapping_lrmul', 0.01),
w_avg_beta = kwarg('w_avg_beta', 0.995, none=1),
),
)
# Check for unknown kwargs.
kwarg('truncation_psi')
kwarg('truncation_cutoff')
kwarg('style_mixing_prob')
kwarg('structure')
kwarg('conditioning')
kwarg('fused_modconv')
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
if len(unknown_kwargs) > 0:
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
# Collect params.
tf_params = _collect_tf_params(tf_G)
for name, value in list(tf_params.items()):
match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value
kwargs.synthesis.kwargs.architecture = 'orig'
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
# Convert params.
G = network_class(**kwargs).eval().requires_grad_(False)
# pylint: disable=unnecessary-lambda
# pylint: disable=f-string-without-interpolation
_populate_module_params(G,
r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'],
r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(),
r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'],
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(),
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'],
r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0],
r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1),
r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'],
r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0],
r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'],
r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(),
r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1,
r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'],
r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0],
r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'],
r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(),
r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1,
r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1),
r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'],
r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0],
r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'],
r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(),
r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1,
r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1),
r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'],
r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(),
r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1,
r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
r'.*\.resample_filter', None,
r'.*\.act_filter', None,
)
return G
#----------------------------------------------------------------------------
def convert_tf_discriminator(tf_D):
if tf_D.version < 4:
raise ValueError('TensorFlow pickle version too low')
# Collect kwargs.
tf_kwargs = tf_D.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default=None):
known_kwargs.add(tf_name)
return tf_kwargs.get(tf_name, default)
# Convert kwargs.
kwargs = dnnlib.EasyDict(
c_dim = kwarg('label_size', 0),
img_resolution = kwarg('resolution', 1024),
img_channels = kwarg('num_channels', 3),
architecture = kwarg('architecture', 'resnet'),
channel_base = kwarg('fmap_base', 16384) * 2,
channel_max = kwarg('fmap_max', 512),
num_fp16_res = kwarg('num_fp16_res', 0),
conv_clamp = kwarg('conv_clamp', None),
cmap_dim = kwarg('mapping_fmaps', None),
block_kwargs = dnnlib.EasyDict(
activation = kwarg('nonlinearity', 'lrelu'),
resample_filter = kwarg('resample_kernel', [1,3,3,1]),
freeze_layers = kwarg('freeze_layers', 0),
),
mapping_kwargs = dnnlib.EasyDict(
num_layers = kwarg('mapping_layers', 0),
embed_features = kwarg('mapping_fmaps', None),
layer_features = kwarg('mapping_fmaps', None),
activation = kwarg('nonlinearity', 'lrelu'),
lr_multiplier = kwarg('mapping_lrmul', 0.1),
),
epilogue_kwargs = dnnlib.EasyDict(
mbstd_group_size = kwarg('mbstd_group_size', None),
mbstd_num_channels = kwarg('mbstd_num_features', 1),
activation = kwarg('nonlinearity', 'lrelu'),
),
)
# Check for unknown kwargs.
kwarg('structure')
kwarg('conditioning')
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
if len(unknown_kwargs) > 0:
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
# Collect params.
tf_params = _collect_tf_params(tf_D)
for name, value in list(tf_params.items()):
match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value
kwargs.architecture = 'orig'
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
# Convert params.
from training import networks_stylegan2
D = networks_stylegan2.Discriminator(**kwargs).eval().requires_grad_(False)
# pylint: disable=unnecessary-lambda
# pylint: disable=f-string-without-interpolation
_populate_module_params(D,
r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1),
r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'],
r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1),
r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'],
r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1),
r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(),
r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'],
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(),
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'],
r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1),
r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'],
r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(),
r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'],
r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(),
r'b4\.out\.bias', lambda: tf_params[f'Output/bias'],
r'.*\.resample_filter', None,
)
return D
#----------------------------------------------------------------------------
@click.command()
@click.option('--source', help='Input pickle', required=True, metavar='PATH')
@click.option('--dest', help='Output pickle', required=True, metavar='PATH')
@click.option('--force-fp16', help='Force the networks to use FP16', type=bool, default=False, metavar='BOOL', show_default=True)
def convert_network_pickle(source, dest, force_fp16):
"""Convert legacy network pickle into the native PyTorch format.
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA.
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks.
Example:
\b
python legacy.py \\
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\
--dest=stylegan2-cat-config-f.pkl
"""
print(f'Loading "{source}"...')
with dnnlib.util.open_url(source) as f:
data = load_network_pkl(f, force_fp16=force_fp16)
print(f'Saving "{dest}"...')
with open(dest, 'wb') as f:
pickle.dump(data, f)
print('Done.')
#----------------------------------------------------------------------------
if __name__ == "__main__":
convert_network_pickle() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------
|