Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Modified from: | |
https://github.com/NVlabs/LSGM/blob/main/training_obj_joint.py | |
""" | |
import copy | |
import functools | |
import json | |
import os | |
from pathlib import Path | |
from pdb import set_trace as st | |
from typing import Any | |
import blobfile as bf | |
import imageio | |
import numpy as np | |
import torch as th | |
import torch.distributed as dist | |
import torchvision | |
from PIL import Image | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
from torch.optim import AdamW | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from tqdm import tqdm | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
from guided_diffusion.nn import update_ema | |
from guided_diffusion.resample import LossAwareSampler, UniformSampler | |
# from .train_util import TrainLoop3DRec | |
from guided_diffusion.train_util import (TrainLoop, calc_average_loss, | |
find_ema_checkpoint, | |
find_resume_checkpoint, | |
get_blob_logdir, log_loss_dict, | |
log_rec3d_loss_dict, | |
parse_resume_step_from_filename) | |
from guided_diffusion.gaussian_diffusion import ModelMeanType | |
from dnnlib.util import requires_grad | |
from dnnlib.util import calculate_adaptive_weight | |
from ..train_util_diffusion import TrainLoop3DDiffusion, TrainLoopDiffusionWithRec | |
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD | |
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer | |
# import utils as lsgm_utils | |
class JointDenoiseRecModel(th.nn.Module): | |
def __init__(self, ddpm_model, rec_model, diffusion_input_size) -> None: | |
super().__init__() | |
# del ddpm_model | |
# th.cuda.empty_cache() | |
# self.ddpm_model = th.nn.Identity() | |
self.ddpm_model = ddpm_model | |
self.rec_model = rec_model | |
self._setup_latent_stat(diffusion_input_size) | |
def _setup_latent_stat(self, diffusion_input_size): # for dynamic EMA tracking. | |
latent_size = ( | |
1, | |
self.ddpm_model.in_channels, # type: ignore | |
diffusion_input_size, | |
diffusion_input_size), | |
self.ddpm_model.register_buffer( | |
'ema_latent_std', | |
th.ones(*latent_size).to(dist_util.dev()), persistent=True) | |
self.ddpm_model.register_buffer( | |
'ema_latent_mean', | |
th.zeros(*latent_size).to(dist_util.dev()), persistent=True) | |
# TODO, lint api. | |
def forward( | |
self, | |
*args, | |
model_name='ddpm', | |
**kwargs, | |
): | |
if model_name == 'ddpm': | |
return self.ddpm_model(*args, **kwargs) | |
elif model_name == 'rec': | |
return self.rec_model(*args, **kwargs) | |
else: | |
raise NotImplementedError(model_name) | |
# TODO, merge with train_util_diffusion.py later | |
class SDETrainLoopJoint(TrainLoopDiffusionWithRec): | |
"""A dataclass with some required attribtues; copied from guided_diffusion TrainLoop | |
""" | |
def __init__( | |
self, | |
rec_model, | |
denoise_model, | |
diffusion, # not used | |
sde_diffusion, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
triplane_scaling_divider=1, | |
use_amp=False, | |
diffusion_input_size=224, | |
**kwargs, | |
) -> None: | |
joint_model = JointDenoiseRecModel(denoise_model, rec_model, diffusion_input_size) | |
super().__init__( | |
model=joint_model, | |
diffusion=diffusion, # just for sampling | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
eval_interval=eval_interval, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
use_amp=use_amp, | |
model_name='joint_denoise_rec_model', | |
iterations=iterations, | |
triplane_scaling_divider=triplane_scaling_divider, | |
diffusion_input_size=diffusion_input_size, | |
**kwargs) | |
self.sde_diffusion = sde_diffusion | |
# setup latent scaling factor | |
# ! integrate the init_params_group for rec model | |
def _setup_model(self): | |
super()._setup_model() | |
self.ddp_rec_model = functools.partial(self.model, model_name='rec') | |
self.ddp_ddpm_model = functools.partial(self.model, model_name='ddpm') | |
# self.rec_model = self.ddp_model.module.rec_model | |
# self.ddpm_model = self.ddp_model.module.ddpm_model # compatability | |
self.rec_model = self.ddp_model.rec_model | |
self.ddpm_model = self.ddp_model.ddpm_model # compatability | |
# TODO, required? | |
# for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore | |
# ): # type: ignore | |
# param.requires_grad_( | |
# False | |
# ) # ! disable triplane_decoder grad in each iteration indepenently; | |
def _load_model(self): | |
# TODO, for currently compatability | |
if 'joint' in self.resume_checkpoint: # load joint directly | |
self._load_and_sync_parameters(model=self.model, model_name=self.model_name) | |
else: # from scratch | |
self._load_and_sync_parameters(model=self.rec_model, model_name='rec') | |
self._load_and_sync_parameters(model=self.ddpm_model, | |
model_name='ddpm') | |
def _setup_opt(self): | |
# TODO, two optims groups. | |
self.opt = AdamW([{ | |
'name': 'ddpm', | |
'params': self.ddpm_model.parameters(), | |
}], | |
lr=self.lr, | |
weight_decay=self.weight_decay) | |
# for rec_param_group in self._init_optim_groups(self.rec_model): | |
# self.opt.add_param_group(rec_param_group) | |
print(self.opt) | |
class TrainLoop3DDiffusionLSGMJointnoD(SDETrainLoopJoint): | |
def __init__(self, | |
*, | |
rec_model, | |
denoise_model, | |
sde_diffusion, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
resume_cldm_checkpoint=None, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
triplane_scaling_divider=1, | |
use_amp=False, | |
diffusion_input_size=224, | |
diffusion_ce_anneal=False, | |
**kwargs): | |
super().__init__(rec_model=rec_model, | |
denoise_model=denoise_model, | |
sde_diffusion=sde_diffusion, | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
eval_interval=eval_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
iterations=iterations, | |
triplane_scaling_divider=triplane_scaling_divider, | |
use_amp=use_amp, | |
diffusion_input_size=diffusion_input_size, | |
**kwargs) | |
if sde_diffusion is not None: | |
sde_diffusion.args.batch_size = batch_size | |
self.latent_name = 'latent_normalized_2Ddiffusion' # normalized triplane latent | |
self.render_latent_behaviour = 'decode_after_vae' # directly render using triplane operations | |
self.diffusion_ce_anneal = diffusion_ce_anneal | |
# assert sde_diffusion.args.train_vae | |
def prepare_ddpm(self, eps, mode='p'): | |
log_rec3d_loss_dict({ | |
f'eps_mean': eps.mean(), | |
f'eps_std': eps.std([1,2,3]).mean(0), | |
f'eps_max': eps.max() | |
}) | |
args = self.sde_diffusion.args | |
# sample noise | |
noise = th.randn(size=eps.size(), device=eps.device | |
) # note that this noise value is currently shared! | |
# get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae) | |
if mode == 'p': | |
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \ | |
self.sde_diffusion.iw_quantities(args.iw_sample_p, noise.shape[0]) # TODO, q not used, fall back to original ddpm implementation | |
else: | |
assert mode == 'q' | |
# assert args.iw_sample_q in ['ll_uniform', 'll_iw'] | |
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \ | |
self.sde_diffusion.iw_quantities(args.iw_sample_q, noise.shape[0]) # TODO, q not used, fall back to original ddpm implementation | |
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p, m_t_p) | |
# ! important | |
# eps_t_p = eps_t_p.detach().requires_grad_(True) | |
# logsnr_p = self.sde_diffusion.log_snr(m_t_p, | |
# var_t_p) # for p only | |
logsnr_p = self.sde_diffusion.log_snr(m_t_p, var_t_p) # for p only | |
return { | |
'noise': noise, | |
't_p': t_p, | |
'eps_t_p': eps_t_p, | |
'logsnr_p': logsnr_p, | |
'obj_weight_t_p': obj_weight_t_p, | |
'var_t_p': var_t_p, | |
'm_t_p': m_t_p, | |
'eps': eps, | |
'mode': mode | |
} | |
# merged from noD.py | |
def ce_weight(self): | |
return self.loss_class.opt.ce_lambda | |
def apply_model(self, p_sample_batch, **model_kwargs): | |
args = self.sde_diffusion.args | |
# args = self.sde_diffusion.args | |
noise, eps_t_p, t_p, logsnr_p, obj_weight_t_p, var_t_p, m_t_p = ( | |
p_sample_batch[k] for k in ('noise', 'eps_t_p', 't_p', 'logsnr_p', | |
'obj_weight_t_p', 'var_t_p', 'm_t_p')) | |
pred_eps_p, pred_x0_p = self.ddpm_step(eps_t_p, t_p, logsnr_p, var_t_p, m_t_p, | |
**model_kwargs) | |
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation" | |
with self.ddp_model.no_sync(): # type: ignore | |
if args.loss_type == 'eps': | |
l2_term_p = th.square(pred_eps_p - noise) # ? weights | |
elif args.loss_type == 'x0': | |
# l2_term_p = th.square(pred_eps_p - p_sample_batch['eps']) # ? weights | |
l2_term_p = th.square( | |
pred_x0_p - p_sample_batch['eps'].detach()) # ? weights | |
# if args.loss_weight == 'snr': | |
# obj_weight_t_p = th.sigmoid(th.exp(logsnr_p)) | |
else: | |
raise NotImplementedError(args.loss_type) | |
# p_eps_objective = th.mean(obj_weight_t_p * l2_term_p) | |
p_eps_objective = obj_weight_t_p * l2_term_p | |
if p_sample_batch['mode'] == 'q': | |
ce_weight = self.ce_weight() | |
p_eps_objective = p_eps_objective * ce_weight | |
log_rec3d_loss_dict({ | |
'ce_weight': ce_weight, | |
}) | |
log_rec3d_loss_dict({ | |
f"{p_sample_batch['mode']}_loss": | |
p_eps_objective.mean(), | |
'mixing_logit': | |
self.ddp_ddpm_model(x=None, | |
timesteps=None, | |
get_attr='mixing_logit').detach(), | |
}) | |
return { | |
'pred_eps_p': pred_eps_p, | |
'eps_t_p': eps_t_p, | |
'p_eps_objective': p_eps_objective, | |
'pred_x0_p': pred_x0_p, | |
'logsnr_p': logsnr_p | |
} | |
def ddpm_step(self, eps_t, t, logsnr, var_t, m_t, **model_kwargs): | |
"""helper function for ddpm predictions; returns predicted eps, x0 and logsnr. | |
args notes: | |
eps_t is x_noisy | |
""" | |
args = self.sde_diffusion.args | |
pred_params = self.ddp_ddpm_model(x=eps_t, timesteps=t, **model_kwargs) | |
# logsnr = self.sde_diffusion.log_snr(m_t, var_t) # for p only | |
if args.pred_type in ['eps', 'v']: | |
if args.pred_type == 'v': | |
pred_eps = self.sde_diffusion._predict_eps_from_z_and_v( | |
pred_params, var_t, eps_t, m_t | |
) | |
# pred_x0 = self.sde_diffusion._predict_x0_from_z_and_v( | |
# pred_params, var_t, eps_t, m_t) # ! verified | |
else: | |
pred_eps = pred_params | |
# mixing normal trick | |
mixing_component = self.sde_diffusion.mixing_component( | |
eps_t, var_t, t, enabled=True) # z_t * sigma_t | |
pred_eps = get_mixed_prediction( | |
True, pred_eps, | |
self.ddp_ddpm_model(x=None, | |
timesteps=None, | |
get_attr='mixing_logit'), mixing_component) | |
pred_x0 = self.sde_diffusion._predict_x0_from_eps( eps_t, pred_eps, logsnr) # for VAE loss, denosied latent | |
# eps, pred_params, logsnr) # for VAE loss, denosied latent | |
elif args.pred_type == 'x0': | |
# ! pred_x0_mixed = alpha * pred_x0 + (1-alpha) * z_t * alpha_t | |
pred_x0 = pred_params # how to mix? | |
# mixing normal trick | |
mixing_component = self.sde_diffusion.mixing_component_x0( | |
eps_t, var_t, t, enabled=True) # z_t * alpha_t | |
pred_x0 = get_mixed_prediction( | |
True, pred_x0, | |
self.ddp_ddpm_model(x=None, | |
timesteps=None, | |
get_attr='mixing_logit'), mixing_component) | |
pred_eps = self.sde_diffusion._predict_eps_from_x0( | |
eps_t, pred_x0, logsnr) | |
else: | |
raise NotImplementedError(f'{args.pred_type} not implemented.') | |
log_rec3d_loss_dict({ | |
f'pred_x0_mean': pred_x0.mean(), | |
f'pred_x0_std': pred_x0.std([1,2,3]).mean(0), | |
f'pred_x0_max': pred_x0.max(), | |
}) | |
return pred_eps, pred_x0 | |
def ddpm_loss(self, noise, pred_eps, last_batch): | |
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation" | |
if last_batch or not self.use_ddp: | |
l2_term = th.square(pred_eps - noise) | |
else: | |
with self.ddp_model.no_sync(): # type: ignore | |
l2_term = th.square(pred_eps - noise) # ? weights | |
return l2_term | |
def run_step(self, batch, step='diffusion_step_rec'): | |
if step == 'ce_ddpm_step': | |
self.ce_ddpm_step(batch) | |
elif step == 'p_rendering_step': | |
self.p_rendering_step(batch) | |
elif step == 'eps_step': | |
self.eps_step(batch) | |
# ! both took ddpm step | |
self._update_ema() | |
self._anneal_lr() | |
self.log_step() | |
def _post_run_loop(self): | |
# if self.step % self.eval_interval =r 0 and self.step != 0: | |
# if self.step % self.eval_interval == 0: | |
# if dist_util.get_rank() == 0: | |
# self.eval_ddpm_sample( | |
# self.rec_model, | |
# # self.ddpm_model | |
# ) # ! only support single GPU inference now. | |
# if self.sde_diffusion.args.train_vae: | |
# self.eval_loop(self.ddp_rec_model) | |
if self.step % self.log_interval == 0 and dist_util.get_rank() == 0: | |
out = logger.dumpkvs() | |
# * log to tensorboard | |
for k, v in out.items(): | |
self.writer.add_scalar(f'Loss/{k}', v, | |
self.step + self.resume_step) | |
# if self.step % self.eval_interval == 0 and self.step != 0: | |
if self.step % self.eval_interval == 0: | |
if dist_util.get_rank() == 0: | |
self.eval_ddpm_sample(self.ddp_rec_model) | |
if self.sde_diffusion.args.train_vae: | |
self.eval_loop(self.ddp_rec_model) | |
if self.step % self.save_interval == 0: | |
self.save(self.mp_trainer, self.mp_trainer.model_name) | |
self.step += 1 | |
if self.step > self.iterations: | |
print('reached maximum iterations, exiting') | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save(self.mp_trainer, self.mp_trainer.model_name) | |
exit() | |
def run_loop(self): | |
while (not self.lr_anneal_steps | |
or self.step + self.resume_step < self.lr_anneal_steps): | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
batch = next(self.data) | |
self.run_step(batch, step='ce_ddpm_step') | |
self._post_run_loop() | |
# batch = next(self.data) | |
# self.run_step(batch, step='p_rendering_step') | |
def ce_ddpm_step(self, batch, behaviour='rec', *args, **kwargs): | |
""" | |
add sds grad to all ae predicted x_0 | |
""" | |
args = self.sde_diffusion.args | |
assert args.train_vae | |
requires_grad(self.rec_model, args.train_vae) | |
requires_grad(self.ddpm_model, True) | |
# TODO merge? | |
self.mp_trainer.zero_grad() | |
batch_size = batch['img'].shape[0] | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: | |
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance( | |
v, th.Tensor) else v | |
for k, v in batch.items() | |
} | |
last_batch = (i + self.microbatch) >= batch_size | |
q_vae_recon_loss = th.tensor(0.0).to(dist_util.dev()) | |
# vision_aided_loss = th.tensor(0.0).to(dist_util.dev()) | |
# denoise_loss = th.tensor(0.0).to(dist_util.dev()) | |
# =================================== ae part =================================== | |
with th.cuda.amp.autocast(dtype=th.float16, | |
enabled=self.mp_trainer.use_amp): | |
# ! part 1: train vae with CE; ddpm fixed | |
# ! TODO, add KL_all_list? vae.decompose | |
with th.set_grad_enabled(args.train_vae): | |
# vae_out = self.ddp_rec_model( | |
# img=micro['img_to_encoder'], | |
# c=micro['c'], | |
# behaviour='encoder_vae', | |
# ) # pred: (B, 3, 64, 64) | |
# TODO, no need to render if not SSD; no need to do ViT decoder if only the latent is needed. update later | |
# if args.train_vae: | |
# if args.add_rendering_loss: | |
# if args.joint_train: | |
# with th.set_grad_enabled(args.train_vae): | |
pred = self.ddp_rec_model( | |
# latent=vae_out, | |
img=micro['img_to_encoder'], | |
c=micro['c'], | |
) | |
# behaviour=self.render_latent_behaviour) | |
# vae reconstruction loss | |
if last_batch or not self.use_ddp: | |
q_vae_recon_loss, loss_dict = self.loss_class( | |
pred, micro, test_mode=False) | |
else: | |
with self.ddp_model.no_sync(): # type: ignore | |
q_vae_recon_loss, loss_dict = self.loss_class( | |
pred, micro, test_mode=False) | |
log_rec3d_loss_dict(loss_dict) | |
# ''' | |
# ! calculate p/q loss; | |
# nelbo_loss = balanced_kl * self.loss_class.opt.ce_balanced_kl + q_vae_recon_loss | |
nelbo_loss = q_vae_recon_loss | |
q_loss = th.mean(nelbo_loss) | |
# st() | |
# all_log_q = [vae_out['log_q_2Ddiffusion']] | |
# eps = vae_out[self.latent_name] | |
# all_log_q = [pred['log_q_2Ddiffusion']] | |
eps = pred[self.latent_name] | |
if not args.train_vae: | |
eps.requires_grad_(True) # single stage diffusion | |
# sample noise | |
noise = th.randn( | |
size=eps.size(), device=eps.device | |
) # note that this noise value is currently shared! | |
# in case we want to train q (vae) with another batch using a different sampling scheme for times t | |
''' | |
assert args.iw_sample_q in ['ll_uniform', 'll_iw'] | |
t_q, var_t_q, m_t_q, obj_weight_t_q, _, g2_t_q = \ | |
self.sde_diffusion.iw_quantities(args.iw_sample_q) | |
eps_t_q = self.sde_diffusion.sample_q(eps, noise, var_t_q, | |
m_t_q) | |
# eps_t = th.cat([eps_t_p, eps_t_q], dim=0) | |
# var_t = th.cat([var_t_p, var_t_q], dim=0) | |
# t = th.cat([t_p, t_q], dim=0) | |
# noise = th.cat([noise, noise], dim=0) | |
# run the diffusion model | |
if not args.train_vae: | |
eps_t_q.requires_grad_(True) # 2*BS, 12, 16, 16 | |
# ! For CE guidance. | |
requires_grad(self.ddpm_model_module, False) | |
pred_eps_q, _, _ = self.ddpm_step(eps_t_q, t_q, m_t_q, var_t_q) | |
l2_term_q = self.ddpm_loss(noise, pred_eps_q, last_batch) | |
# pred_eps = th.cat([pred_eps_p, pred_eps_q], dim=0) # p then q | |
# ÇE: nelbo loss with kl balancing | |
assert args.iw_sample_q in ['ll_uniform', 'll_iw'] | |
# l2_term_p, l2_term_q = th.chunk(l2_term, chunks=2, dim=0) | |
cross_entropy_per_var = obj_weight_t_q * l2_term_q | |
cross_entropy_per_var += self.sde_diffusion.cross_entropy_const( | |
args.sde_time_eps) | |
all_neg_log_p = [cross_entropy_per_var | |
] # since only one vae group | |
kl_all_list, kl_vals_per_group, kl_diag_list = kl_per_group_vada( | |
all_log_q, all_neg_log_p) # return the mean of two terms | |
# nelbo loss with kl balancing | |
balanced_kl, kl_coeffs, kl_vals = kl_balancer(kl_all_list, | |
kl_coeff=1.0, | |
kl_balance=False, | |
alpha_i=None) | |
# st() | |
log_rec3d_loss_dict( | |
dict( | |
balanced_kl=balanced_kl, | |
l2_term_q=l2_term_q, | |
cross_entropy_per_var=cross_entropy_per_var.mean(), | |
all_log_q=all_log_q[0].mean(), | |
)) | |
''' | |
# ! update vae for CE | |
# ! single stage diffusion for rec side 1: bind vae prior and diffusion prior | |
# ! BP for CE and VAE; quit the AMP context. | |
# if args.train_vae: | |
# self.mp_trainer.backward(q_loss) | |
# _ = self.mp_trainer.optimize(self.opt) | |
# retain_graph=different_p_q_objectives( | |
# args.iw_sample_p, | |
# args.iw_sample_q)) | |
log_rec3d_loss_dict( | |
dict(q_vae_recon_loss=q_vae_recon_loss, | |
# all_log_q=all_log_q[0].mean(), | |
)) | |
# ! adding p loss; enable ddpm gradient | |
# self.mp_trainer.zero_grad() | |
# requires_grad(self.rec_model_module, | |
# False) # could be removed since eps_t_p.detach() | |
with th.cuda.amp.autocast(dtype=th.float16, | |
enabled=self.mp_trainer.use_amp): | |
# first get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae) | |
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \ | |
self.sde_diffusion.iw_quantities(args.iw_sample_p) | |
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p, | |
m_t_p) | |
eps_t_p = eps_t_p.detach( | |
) # .requires_grad_(True) # ! update ddpm not rec module | |
pred_eps_p, _, = self.ddpm_step(eps_t_p, t_p, m_t_p, var_t_p) | |
l2_term_p = self.ddpm_loss(noise, pred_eps_p, last_batch) | |
p_loss = th.mean(obj_weight_t_p * l2_term_p) | |
# ! update ddpm | |
self.mp_trainer.backward(p_loss + | |
q_loss) # just backward for p_loss | |
_ = self.mp_trainer.optimize(self.opt) | |
# requires_grad(self.rec_model_module, True) | |
log_rec3d_loss_dict( | |
dict( | |
p_loss=p_loss, | |
mixing_logit=self.ddp_ddpm_model( | |
x=None, timesteps=None, | |
get_attr='mixing_logit').detach(), | |
)) | |
# TODO, merge visualization with original AE | |
# =================================== denoised AE log part =================================== | |
# ! todo, wrap in a single function | |
if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
with th.no_grad(): | |
if not args.train_vae: | |
vae_out.pop('posterior') # for calculating kl loss | |
vae_out_for_pred = { | |
k: | |
v[0:1].to(dist_util.dev()) if isinstance( | |
v, th.Tensor) else v | |
for k, v in vae_out.items() | |
} | |
pred = self.ddp_rec_model( | |
latent=vae_out_for_pred, | |
c=micro['c'][0:1], | |
behaviour=self.render_latent_behaviour) | |
assert isinstance(pred, dict) | |
assert pred is not None | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
gt_depth.min()) | |
if 'image_depth' in pred: | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / ( | |
pred_depth.max() - pred_depth.min()) | |
else: | |
pred_depth = th.zeros_like(gt_depth) | |
pred_img = pred['image_raw'] | |
gt_img = micro['img'] | |
if 'image_sr' in pred: | |
if pred['image_sr'].shape[-1] == 512: | |
pred_img = th.cat( | |
[self.pool_512(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_512(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_512(pred_depth) | |
gt_depth = self.pool_512(gt_depth) | |
elif pred['image_sr'].shape[-1] == 256: | |
pred_img = th.cat( | |
[self.pool_256(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_256(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_256(pred_depth) | |
gt_depth = self.pool_256(gt_depth) | |
else: | |
pred_img = th.cat( | |
[self.pool_128(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_128(micro['img']), micro['img_sr']], | |
dim=-1) | |
gt_depth = self.pool_128(gt_depth) | |
pred_depth = self.pool_128(pred_depth) | |
else: | |
gt_img = self.pool_64(gt_img) | |
gt_depth = self.pool_64(gt_depth) | |
gt_vis = th.cat( | |
[ | |
gt_img, | |
# micro['img'], | |
gt_depth.repeat_interleave(3, dim=1) | |
], | |
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1] | |
pred_vis = th.cat([ | |
pred_img[0:1], pred_depth[0:1].repeat_interleave(3, | |
dim=1) | |
], | |
dim=-1) # B, 3, H, W | |
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
1, 2, 0).cpu() # ! pred in range[-1, 1] | |
# vis_grid = torchvision.utils.make_grid(vis) # HWC | |
vis = vis.numpy() * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
Image.fromarray(vis).save( | |
# f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}_{behaviour}.jpg' | |
f'{logger.get_dir()}/{self.step+self.resume_step}_{behaviour}.jpg' | |
) | |
print( | |
'log denoised vis to: ', | |
f'{logger.get_dir()}/{self.step+self.resume_step}_{behaviour}.jpg' | |
) | |
th.cuda.empty_cache() | |
def eps_step(self, batch, behaviour='rec', *args, **kwargs): | |
""" | |
add sds grad to all ae predicted x_0 | |
""" | |
args = self.sde_diffusion.args | |
requires_grad(self.ddpm_model_module, True) | |
requires_grad(self.rec_model_module, False) | |
# TODO? | |
# if args.train_vae: | |
# for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore | |
# ): # type: ignore | |
# param.requires_grad_( | |
# False | |
# ) # ! disable triplane_decoder grad in each iteration indepenently; | |
self.mp_trainer.zero_grad() | |
# assert args.train_vae | |
batch_size = batch['img'].shape[0] | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: | |
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance( | |
v, th.Tensor) else v | |
for k, v in batch.items() | |
} | |
last_batch = (i + self.microbatch) >= batch_size | |
# =================================== ae part =================================== | |
with th.cuda.amp.autocast(dtype=th.float16, | |
enabled=self.mp_trainer.use_amp): | |
# and args.train_vae): | |
# ! part 1: train vae with CE; ddpm fixed | |
# ! TODO, add KL_all_list? vae.decompose | |
with th.set_grad_enabled(args.train_vae): | |
vae_out = self.ddp_rec_model( | |
img=micro['img_to_encoder'], | |
c=micro['c'], | |
behaviour='encoder_vae', | |
) # pred: (B, 3, 64, 64) | |
eps = vae_out[self.latent_name] | |
# sample noise | |
noise = th.randn( | |
size=eps.size(), device=eps.device | |
) # note that this noise value is currently shared! | |
# get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae) | |
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \ | |
self.sde_diffusion.iw_quantities(args.iw_sample_p) | |
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p, | |
m_t_p) | |
logsnr_p = self.sde_diffusion.log_snr(m_t_p, | |
var_t_p) # for p only | |
pred_eps_p, pred_x0_p, logsnr_p = self.ddpm_step( | |
eps_t_p, t_p, m_t_p, var_t_p) | |
# ! batchify for mixing_component | |
# mixing normal trick | |
mixing_component = self.sde_diffusion.mixing_component( | |
eps_t_p, var_t_p, t_p, | |
enabled=True) # TODO, which should I use? | |
pred_eps_p = get_mixed_prediction( | |
True, pred_eps_p, | |
self.ddp_ddpm_model(x=None, | |
timesteps=None, | |
get_attr='mixing_logit'), | |
mixing_component) | |
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation" | |
if last_batch or not self.use_ddp: | |
l2_term_p = th.square(pred_eps_p - noise) | |
else: | |
with self.ddp_ddpm_model.no_sync(): # type: ignore | |
l2_term_p = th.square(pred_eps_p - noise) # ? weights | |
p_eps_objective = th.mean( | |
obj_weight_t_p * | |
l2_term_p) * self.loss_class.opt.p_eps_lambda | |
log_rec3d_loss_dict( | |
dict(mixing_logit=self.ddp_ddpm_model( | |
x=None, timesteps=None, | |
get_attr='mixing_logit').detach(), )) | |
# ===================================================================== | |
# ! single stage diffusion for rec side 2: generative feature | |
# if args.p_rendering_loss: | |
# target = micro | |
# pred = self.ddp_rec_model( | |
# # latent=vae_out, | |
# latent={ | |
# **vae_out, self.latent_name: pred_x0_p, | |
# 'latent_name': self.latent_name | |
# }, | |
# c=micro['c'], | |
# behaviour=self.render_latent_behaviour) | |
# # vae reconstruction loss | |
# if last_batch or not self.use_ddp: | |
# p_vae_recon_loss, _ = self.loss_class(pred, | |
# target, | |
# test_mode=False) | |
# else: | |
# with self.ddp_model.no_sync(): # type: ignore | |
# p_vae_recon_loss, _ = self.loss_class( | |
# pred, target, test_mode=False) | |
# log_rec3d_loss_dict( | |
# dict(p_vae_recon_loss=p_vae_recon_loss, )) | |
# p_loss = p_eps_objective + p_vae_recon_loss | |
# else: | |
p_loss = p_eps_objective | |
log_rec3d_loss_dict( | |
dict(p_loss=p_loss, p_eps_objective=p_eps_objective)) | |
# ! to arrange: update vae params | |
self.mp_trainer.backward(p_loss) | |
# update ddpm accordingly | |
_ = self.mp_trainer.optimize( | |
self.opt) # TODO, update two groups of parameters | |
# TODO, merge visualization with original AE | |
# ! todo, merge required | |
# =================================== denoised AE log part =================================== | |
if dist_util.get_rank( | |
) == 0 and self.step % 500 == 0 and behaviour != 'diff': | |
with th.no_grad(): | |
vae_out.pop('posterior') # for calculating kl loss | |
vae_out_for_pred = { | |
k: | |
v[0:1].to(dist_util.dev()) | |
if isinstance(v, th.Tensor) else v | |
for k, v in vae_out.items() | |
} | |
pred = self.ddp_rec_model( | |
latent=vae_out_for_pred, | |
c=micro['c'][0:1], | |
behaviour=self.render_latent_behaviour) | |
assert isinstance(pred, dict) | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
gt_depth.min()) | |
if 'image_depth' in pred: | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / ( | |
pred_depth.max() - pred_depth.min()) | |
else: | |
pred_depth = th.zeros_like(gt_depth) | |
pred_img = pred['image_raw'] | |
gt_img = micro['img'] | |
if 'image_sr' in pred: | |
if pred['image_sr'].shape[-1] == 512: | |
pred_img = th.cat( | |
[self.pool_512(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_512(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_512(pred_depth) | |
gt_depth = self.pool_512(gt_depth) | |
elif pred['image_sr'].shape[-1] == 256: | |
pred_img = th.cat( | |
[self.pool_256(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_256(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_256(pred_depth) | |
gt_depth = self.pool_256(gt_depth) | |
else: | |
pred_img = th.cat( | |
[self.pool_128(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_128(micro['img']), micro['img_sr']], | |
dim=-1) | |
gt_depth = self.pool_128(gt_depth) | |
pred_depth = self.pool_128(pred_depth) | |
else: | |
gt_img = self.pool_64(gt_img) | |
gt_depth = self.pool_64(gt_depth) | |
gt_vis = th.cat( | |
[ | |
gt_img, micro['img'], micro['img'], | |
gt_depth.repeat_interleave(3, dim=1) | |
], | |
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1] | |
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L | |
noised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=eps_t_p[0:1] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically | |
behaviour=self.render_latent_behaviour) | |
pred_x0 = self.sde_diffusion._predict_x0_from_eps( | |
eps_t_p, pred_eps_p, | |
logsnr_p) # for VAE loss, denosied latent | |
# pred_xstart_3D | |
denoised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=pred_x0[0:1] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically? | |
behaviour=self.render_latent_behaviour) | |
pred_vis = th.cat([ | |
pred_img[0:1], noised_ae_pred['image_raw'][0:1], | |
denoised_ae_pred['image_raw'][0:1], | |
pred_depth[0:1].repeat_interleave(3, dim=1) | |
], | |
dim=-1) # B, 3, H, W | |
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
1, 2, 0).cpu() # ! pred in range[-1, 1] | |
# vis_grid = torchvision.utils.make_grid(vis) # HWC | |
vis = vis.numpy() * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
Image.fromarray(vis).save( | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg' | |
) | |
print( | |
'log denoised vis to: ', | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg' | |
) | |
del vis, pred_vis, pred_x0, pred_eps_p, micro, vae_out | |
th.cuda.empty_cache() | |
def p_rendering_step(self, batch, behaviour='rec', *args, **kwargs): | |
""" | |
add sds grad to all ae predicted x_0 | |
""" | |
args = self.sde_diffusion.args | |
requires_grad(self.ddpm_model, True) | |
requires_grad(self.rec_model, args.train_vae) | |
# TODO? | |
# if args.train_vae: | |
# for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore | |
# ): # type: ignore | |
# param.requires_grad_( | |
# False | |
# ) # ! disable triplane_decoder grad in each iteration indepenently; | |
self.mp_trainer.zero_grad() | |
assert args.train_vae | |
batch_size = batch['img'].shape[0] | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: | |
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance( | |
v, th.Tensor) else v | |
for k, v in batch.items() | |
} | |
last_batch = (i + self.microbatch) >= batch_size | |
# =================================== ae part =================================== | |
with th.cuda.amp.autocast(dtype=th.float16, | |
enabled=self.mp_trainer.use_amp): | |
# and args.train_vae): | |
# ! part 1: train vae with CE; ddpm fixed | |
# ! TODO, add KL_all_list? vae.decompose | |
with th.set_grad_enabled(args.train_vae): | |
vae_out = self.ddp_rec_model( | |
img=micro['img_to_encoder'], | |
c=micro['c'], | |
behaviour='encoder_vae', | |
) # pred: (B, 3, 64, 64) | |
eps = vae_out[self.latent_name] | |
# sample noise | |
noise = th.randn( | |
size=eps.size(), device=eps.device | |
) # note that this noise value is currently shared! | |
# get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae) | |
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \ | |
self.sde_diffusion.iw_quantities(args.iw_sample_p) | |
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p, | |
m_t_p) | |
logsnr_p = self.sde_diffusion.log_snr(m_t_p, | |
var_t_p) # for p only | |
# pred_eps_p, pred_x0_p, logsnr_p = self.ddpm_step( | |
pred_eps_p, pred_x0_p = self.ddpm_step(eps_t_p, t_p, logsnr_p, | |
var_t_p) | |
# eps_t_p, t_p, m_t_p, var_t_p) | |
# ! batchify for mixing_component | |
# mixing normal trick | |
# mixing_component = self.sde_diffusion.mixing_component( | |
# eps_t_p, var_t_p, t_p, | |
# enabled=True) # TODO, which should I use? | |
# pred_eps_p = get_mixed_prediction( | |
# True, pred_eps_p, | |
# self.ddp_ddpm_model(x=None, | |
# timesteps=None, | |
# get_attr='mixing_logit'), | |
# mixing_component) | |
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation" | |
if last_batch or not self.use_ddp: | |
l2_term_p = th.square(pred_eps_p - noise) | |
else: | |
with self.ddp_model.no_sync(): # type: ignore | |
l2_term_p = th.square(pred_eps_p - noise) # ? weights | |
p_eps_objective = th.mean(obj_weight_t_p * l2_term_p) | |
# st() | |
log_rec3d_loss_dict( | |
dict(mixing_logit=self.ddp_ddpm_model( | |
x=None, timesteps=None, | |
get_attr='mixing_logit').detach(), )) | |
# ===================================================================== | |
# ! single stage diffusion for rec side 2: generative feature | |
if args.p_rendering_loss: | |
target = micro | |
pred = self.ddp_rec_model( # re-render | |
latent={ | |
**vae_out, self.latent_name: pred_x0_p, | |
'latent_name': self.latent_name | |
}, | |
c=micro['c'], | |
behaviour=self.render_latent_behaviour) | |
# vae reconstruction loss | |
if last_batch or not self.use_ddp: | |
pred[self.latent_name] = vae_out[self.latent_name] | |
pred[ | |
'latent_name'] = self.latent_name # just for stats | |
p_vae_recon_loss, rec_loss_dict = self.loss_class( | |
pred, target, test_mode=False) | |
else: | |
with self.ddp_model.no_sync(): # type: ignore | |
p_vae_recon_loss, rec_loss_dict = self.loss_class( | |
pred, target, test_mode=False) | |
log_rec3d_loss_dict( | |
dict(p_vae_recon_loss=p_vae_recon_loss, )) | |
for key in rec_loss_dict.keys(): | |
if 'latent' in key: | |
log_rec3d_loss_dict({key: rec_loss_dict[key]}) | |
p_loss = p_eps_objective + p_vae_recon_loss | |
else: | |
p_loss = p_eps_objective | |
log_rec3d_loss_dict( | |
dict(p_loss=p_loss, p_eps_objective=p_eps_objective)) | |
# ! to arrange: update vae params | |
self.mp_trainer.backward(p_loss) | |
# update ddpm accordingly | |
_ = self.mp_trainer.optimize( | |
self.opt) # TODO, update two groups of parameters | |
# TODO, merge visualization with original AE | |
# ! todo, merge required | |
# =================================== denoised AE log part =================================== | |
if dist_util.get_rank( | |
) == 0 and self.step % 500 == 0 and behaviour != 'diff': | |
with th.no_grad(): | |
vae_out.pop('posterior') # for calculating kl loss | |
vae_out_for_pred = { | |
k: | |
v[0:1].to(dist_util.dev()) | |
if isinstance(v, th.Tensor) else v | |
for k, v in vae_out.items() | |
} | |
pred = self.ddp_rec_model( | |
latent=vae_out_for_pred, | |
c=micro['c'][0:1], | |
behaviour=self.render_latent_behaviour) | |
assert isinstance(pred, dict) | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
gt_depth.min()) | |
if 'image_depth' in pred: | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / ( | |
pred_depth.max() - pred_depth.min()) | |
else: | |
pred_depth = th.zeros_like(gt_depth) | |
pred_img = pred['image_raw'] | |
gt_img = micro['img'] | |
if 'image_sr' in pred: | |
if pred['image_sr'].shape[-1] == 512: | |
pred_img = th.cat( | |
[self.pool_512(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_512(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_512(pred_depth) | |
gt_depth = self.pool_512(gt_depth) | |
elif pred['image_sr'].shape[-1] == 256: | |
pred_img = th.cat( | |
[self.pool_256(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_256(micro['img']), micro['img_sr']], | |
dim=-1) | |
pred_depth = self.pool_256(pred_depth) | |
gt_depth = self.pool_256(gt_depth) | |
else: | |
pred_img = th.cat( | |
[self.pool_128(pred_img), pred['image_sr']], | |
dim=-1) | |
gt_img = th.cat( | |
[self.pool_128(micro['img']), micro['img_sr']], | |
dim=-1) | |
gt_depth = self.pool_128(gt_depth) | |
pred_depth = self.pool_128(pred_depth) | |
else: | |
gt_img = self.pool_64(gt_img) | |
gt_depth = self.pool_64(gt_depth) | |
gt_vis = th.cat( | |
[ | |
gt_img, micro['img'], micro['img'], | |
gt_depth.repeat_interleave(3, dim=1) | |
], | |
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1] | |
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L | |
noised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=eps_t_p[0:1] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically | |
behaviour=self.render_latent_behaviour) | |
pred_x0 = self.sde_diffusion._predict_x0_from_eps( | |
eps_t_p, pred_eps_p, | |
logsnr_p) # for VAE loss, denosied latent | |
# pred_xstart_3D | |
denoised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=pred_x0[0:1] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically? | |
behaviour=self.render_latent_behaviour) | |
pred_vis = th.cat([ | |
pred_img[0:1], noised_ae_pred['image_raw'][0:1], | |
denoised_ae_pred['image_raw'][0:1], | |
pred_depth[0:1].repeat_interleave(3, dim=1) | |
], | |
dim=-1) # B, 3, H, W | |
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
1, 2, 0).cpu() # ! pred in range[-1, 1] | |
# vis_grid = torchvision.utils.make_grid(vis) # HWC | |
vis = vis.numpy() * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
Image.fromarray(vis).save( | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg' | |
) | |
print( | |
'log denoised vis to: ', | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg' | |
) | |
del vis, pred_vis, pred_x0, pred_eps_p, micro, vae_out | |
th.cuda.empty_cache() | |
class TrainLoop3DDiffusionLSGMJointnoD_ponly(TrainLoop3DDiffusionLSGMJointnoD): | |
def __init__(self, | |
*, | |
rec_model, | |
denoise_model, | |
sde_diffusion, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
triplane_scaling_divider=1, | |
use_amp=False, | |
diffusion_input_size=224, | |
**kwargs): | |
super().__init__(rec_model=rec_model, | |
denoise_model=denoise_model, | |
sde_diffusion=sde_diffusion, | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
eval_interval=eval_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
iterations=iterations, | |
triplane_scaling_divider=triplane_scaling_divider, | |
use_amp=use_amp, | |
diffusion_input_size=diffusion_input_size, | |
**kwargs) | |
def run_loop(self): | |
while (not self.lr_anneal_steps | |
or self.step + self.resume_step < self.lr_anneal_steps): | |
self._post_run_loop() | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
# batch = next(self.data) | |
# self.run_step(batch, step='ce_ddpm_step') | |
batch = next(self.data) | |
self.run_step(batch, step='p_rendering_step') | |
# self.run_step(batch, step='eps_step') | |