Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
"""Network architectures from the paper | |
"Analyzing and Improving the Image Quality of StyleGAN". | |
Matches the original implementation of configs E-F by Karras et al. at | |
https://github.com/NVlabs/stylegan2/blob/master/training/networks_stylegan2.py""" | |
import numpy as np | |
import torch | |
from utils.torch_utils import misc | |
from utils.torch_utils import persistence | |
from utils.torch_utils.ops import conv2d_resample | |
from utils.torch_utils.ops import upfirdn2d | |
from utils.torch_utils.ops import bias_act | |
from utils.torch_utils.ops import fma | |
from pdb import set_trace as st | |
from pdb import set_trace as st | |
#---------------------------------------------------------------------------- | |
def normalize_2nd_moment(x, dim=1, eps=1e-8): | |
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() | |
#---------------------------------------------------------------------------- | |
# @torch.autocast(device_type='cuda') | |
def modulated_conv2d( | |
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width]. | |
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width]. | |
styles, # Modulation coefficients of shape [batch_size, in_channels]. | |
noise=None, # Optional noise tensor to add to the output activations. | |
up=1, # Integer upsampling factor. | |
down=1, # Integer downsampling factor. | |
padding=0, # Padding with respect to the upsampled image. | |
resample_filter=None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter(). | |
demodulate=True, # Apply weight demodulation? | |
flip_weight=True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d). | |
fused_modconv=True, # Perform modulation, convolution, and demodulation as a single fused operation? | |
): | |
batch_size = x.shape[0] | |
out_channels, in_channels, kh, kw = weight.shape | |
misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk] | |
misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW] | |
misc.assert_shape(styles, [batch_size, in_channels]) # [NI] | |
# Pre-normalize inputs to avoid FP16 overflow. | |
if x.dtype == torch.float16 and demodulate: | |
weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm( | |
float('inf'), dim=[1, 2, 3], keepdim=True)) # max_Ikk | |
styles = styles / styles.norm(float('inf'), dim=1, | |
keepdim=True) # max_I | |
# Calculate per-sample weights and demodulation coefficients. | |
w = None | |
dcoefs = None | |
if demodulate or fused_modconv: | |
w = weight.unsqueeze(0) # [NOIkk] | |
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk] | |
if demodulate: | |
dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() # [NO] | |
if demodulate and fused_modconv: | |
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk] | |
# Execute by scaling the activations before and after the convolution. | |
if not fused_modconv: | |
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1) | |
x = conv2d_resample.conv2d_resample(x=x, | |
w=weight.to(x.dtype), | |
f=resample_filter, | |
up=up, | |
down=down, | |
padding=padding, | |
flip_weight=flip_weight) | |
if demodulate and noise is not None: | |
x = fma.fma(x, | |
dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), | |
noise.to(x.dtype)) | |
elif demodulate: | |
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1) | |
elif noise is not None: | |
x = x.add_(noise.to(x.dtype)) | |
return x | |
# Execute as one fused op using grouped convolution. | |
with misc.suppress_tracer_warnings( | |
): # this value will be treated as a constant | |
batch_size = int(batch_size) | |
misc.assert_shape(x, [batch_size, in_channels, None, None]) | |
x = x.reshape(1, -1, *x.shape[2:]) | |
w = w.reshape(-1, in_channels, kh, kw) | |
x = conv2d_resample.conv2d_resample(x=x, | |
w=w.to(x.dtype), | |
f=resample_filter, | |
up=up, | |
down=down, | |
padding=padding, | |
groups=batch_size, | |
flip_weight=flip_weight) | |
x = x.reshape(batch_size, -1, *x.shape[2:]) | |
if noise is not None: | |
x = x.add_(noise) | |
return x | |
#---------------------------------------------------------------------------- | |
class FullyConnectedLayer(torch.nn.Module): | |
def __init__( | |
self, | |
in_features, # Number of input features. | |
out_features, # Number of output features. | |
bias=True, # Apply additive bias before the activation function? | |
activation='linear', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier=1, # Learning rate multiplier. | |
bias_init=0, # Initial value for the additive bias. | |
): | |
super().__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
self.activation = activation | |
self.weight = torch.nn.Parameter( | |
torch.randn([out_features, in_features]) / lr_multiplier) | |
self.bias = torch.nn.Parameter( | |
torch.full([out_features], | |
np.float32(bias_init))) if bias else None | |
self.weight_gain = lr_multiplier / np.sqrt(in_features) | |
self.bias_gain = lr_multiplier | |
def forward(self, x): | |
w = self.weight.to(x.dtype) * self.weight_gain | |
b = self.bias | |
if b is not None: | |
b = b.to(x.dtype) | |
if self.bias_gain != 1: | |
b = b * self.bias_gain | |
if self.activation == 'linear' and b is not None: | |
x = torch.addmm(b.unsqueeze(0), x, w.t()) | |
else: | |
x = x.matmul(w.t()) | |
x = bias_act.bias_act(x, b, act=self.activation) | |
return x | |
def extra_repr(self): | |
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}' | |
#---------------------------------------------------------------------------- | |
class Conv2dLayer(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
kernel_size, # Width and height of the convolution kernel. | |
bias=True, # Apply additive bias before the activation function? | |
activation='linear', # Activation function: 'relu', 'lrelu', etc. | |
up=1, # Integer upsampling factor. | |
down=1, # Integer downsampling factor. | |
resample_filter=[ | |
1, 3, 3, 1 | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output to +-X, None = disable clamping. | |
channels_last=False, # Expect the input to have memory_format=channels_last? | |
trainable=True, # Update the weights of this layer during training? | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.activation = activation | |
self.up = up | |
self.down = down | |
self.conv_clamp = conv_clamp | |
self.register_buffer('resample_filter', | |
upfirdn2d.setup_filter(resample_filter)) | |
self.padding = kernel_size // 2 | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2)) | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
weight = torch.randn( | |
[out_channels, in_channels, kernel_size, | |
kernel_size]).to(memory_format=memory_format) | |
bias = torch.zeros([out_channels]) if bias else None | |
if trainable: | |
self.weight = torch.nn.Parameter(weight) | |
self.bias = torch.nn.Parameter(bias) if bias is not None else None | |
else: | |
self.register_buffer('weight', weight) | |
if bias is not None: | |
self.register_buffer('bias', bias) | |
else: | |
self.bias = None | |
# @torch.autocast(device_type='cuda') | |
def forward(self, x, gain=1): | |
w = self.weight * self.weight_gain # w dtype is fp32 | |
b = self.bias.to(x.dtype) if self.bias is not None else None | |
flip_weight = (self.up == 1) # slightly faster | |
x = conv2d_resample.conv2d_resample(x=x, | |
w=w.to(x.dtype), | |
f=self.resample_filter, | |
up=self.up, | |
down=self.down, | |
padding=self.padding, | |
flip_weight=flip_weight) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
x = bias_act.bias_act(x, | |
b, | |
act=self.activation, | |
gain=act_gain, | |
clamp=act_clamp) | |
return x | |
def extra_repr(self): | |
return ' '.join([ | |
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, activation={self.activation:s},', | |
f'up={self.up}, down={self.down}' | |
]) | |
#---------------------------------------------------------------------------- | |
class MappingNetwork(torch.nn.Module): | |
def __init__( | |
self, | |
z_dim, # Input latent (Z) dimensionality, 0 = no latent. | |
c_dim, # Conditioning label (C) dimensionality, 0 = no label. | |
w_dim, # Intermediate latent (W) dimensionality. | |
num_ws, # Number of intermediate latents to output, None = do not broadcast. | |
num_layers=8, # Number of mapping layers. | |
embed_features=None, # Label embedding dimensionality, None = same as w_dim. | |
layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim. | |
activation='lrelu', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier=0.01, # Learning rate multiplier for the mapping layers. | |
w_avg_beta=0.998, # Decay for tracking the moving average of W during training, None = do not track. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.num_ws = num_ws | |
self.num_layers = num_layers | |
self.w_avg_beta = w_avg_beta | |
if embed_features is None: | |
embed_features = w_dim | |
if c_dim == 0: | |
embed_features = 0 | |
if layer_features is None: | |
layer_features = w_dim | |
features_list = [z_dim + embed_features | |
] + [layer_features] * (num_layers - 1) + [w_dim] | |
if c_dim > 0: | |
self.embed = FullyConnectedLayer(c_dim, embed_features) | |
for idx in range(num_layers): | |
in_features = features_list[idx] | |
out_features = features_list[idx + 1] | |
layer = FullyConnectedLayer(in_features, | |
out_features, | |
activation=activation, | |
lr_multiplier=lr_multiplier) | |
setattr(self, f'fc{idx}', layer) | |
if num_ws is not None and w_avg_beta is not None: | |
self.register_buffer('w_avg', torch.zeros([w_dim])) | |
def forward(self, | |
z, | |
c, | |
truncation_psi=1, | |
truncation_cutoff=None, | |
update_emas=False): | |
# Embed, normalize, and concat inputs. | |
x = None | |
with torch.autograd.profiler.record_function('input'): | |
if self.z_dim > 0: | |
misc.assert_shape(z, [None, self.z_dim]) | |
x = normalize_2nd_moment(z.to(torch.float32)) | |
if self.c_dim > 0: | |
misc.assert_shape(c, [None, self.c_dim]) | |
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) | |
x = torch.cat([x, y], dim=1) if x is not None else y | |
# Main layers. | |
for idx in range(self.num_layers): | |
layer = getattr(self, f'fc{idx}') | |
x = layer(x) | |
# Update moving average of W. | |
if update_emas and self.w_avg_beta is not None: | |
with torch.autograd.profiler.record_function('update_w_avg'): | |
self.w_avg.copy_(x.detach().mean(dim=0).lerp( | |
self.w_avg, self.w_avg_beta)) | |
# Broadcast. | |
if self.num_ws is not None: | |
with torch.autograd.profiler.record_function('broadcast'): | |
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) | |
# Apply truncation. | |
if truncation_psi != 1: | |
with torch.autograd.profiler.record_function('truncate'): | |
assert self.w_avg_beta is not None | |
if self.num_ws is None or truncation_cutoff is None: | |
x = self.w_avg.lerp(x, truncation_psi) | |
else: | |
x[:, :truncation_cutoff] = self.w_avg.lerp( | |
x[:, :truncation_cutoff], truncation_psi) | |
return x | |
def extra_repr(self): | |
return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}' | |
#---------------------------------------------------------------------------- | |
class SynthesisLayer(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this layer. | |
kernel_size=3, # Convolution kernel size. | |
up=1, # Integer upsampling factor. | |
use_noise=True, # Enable noise input? | |
activation='lrelu', # Activation function: 'relu', 'lrelu', etc. | |
resample_filter=[ | |
1, 3, 3, 1 | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
channels_last=False, # Use channels_last format for the weights? | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.w_dim = w_dim | |
self.resolution = resolution | |
self.up = up | |
self.use_noise = use_noise | |
self.activation = activation | |
self.conv_clamp = conv_clamp | |
self.register_buffer('resample_filter', | |
upfirdn2d.setup_filter(resample_filter)) | |
self.padding = kernel_size // 2 | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
self.weight = torch.nn.Parameter( | |
torch.randn([out_channels, in_channels, kernel_size, | |
kernel_size]).to(memory_format=memory_format)) | |
if use_noise: | |
self.register_buffer('noise_const', | |
torch.randn([resolution, resolution])) | |
self.noise_strength = torch.nn.Parameter(torch.zeros([])) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
# def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1): | |
def forward(self, x, w, noise_mode='const', fused_modconv=True, gain=1): | |
assert noise_mode in ['random', 'const', 'none'] | |
in_resolution = self.resolution // self.up | |
misc.assert_shape( | |
x, [None, self.in_channels, in_resolution, in_resolution]) | |
styles = self.affine(w) | |
noise = None | |
if self.use_noise and noise_mode == 'random': | |
noise = torch.randn( | |
[x.shape[0], 1, self.resolution, self.resolution], | |
device=x.device) * self.noise_strength | |
if self.use_noise and noise_mode == 'const': | |
noise = self.noise_const * self.noise_strength | |
flip_weight = (self.up == 1) # slightly faster | |
x = modulated_conv2d(x=x, | |
weight=self.weight, | |
styles=styles, | |
noise=noise, | |
up=self.up, | |
padding=self.padding, | |
resample_filter=self.resample_filter, | |
flip_weight=flip_weight, | |
fused_modconv=fused_modconv) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
x = bias_act.bias_act(x, | |
self.bias.to(x.dtype), | |
act=self.activation, | |
gain=act_gain, | |
clamp=act_clamp) | |
return x | |
def extra_repr(self): | |
return ' '.join([ | |
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d},', | |
f'resolution={self.resolution:d}, up={self.up}, activation={self.activation:s}' | |
]) | |
#---------------------------------------------------------------------------- | |
class ToRGBLayer(torch.nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
w_dim, | |
kernel_size=1, | |
conv_clamp=None, | |
channels_last=False): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.w_dim = w_dim | |
self.conv_clamp = conv_clamp | |
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
self.weight = torch.nn.Parameter( | |
torch.randn([out_channels, in_channels, kernel_size, | |
kernel_size]).to(memory_format=memory_format)) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2)) | |
def forward(self, x, w, fused_modconv=True): | |
styles = self.affine(w) * self.weight_gain | |
x = modulated_conv2d(x=x, | |
weight=self.weight, | |
styles=styles, | |
demodulate=False, | |
fused_modconv=fused_modconv) | |
x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp) | |
return x | |
def extra_repr(self): | |
return f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d}' | |
#---------------------------------------------------------------------------- | |
class SynthesisBlock(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels, 0 = first block. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this block. | |
img_channels, # Number of output color channels. | |
is_last, # Is this the last block? | |
architecture='skip', # Architecture: 'orig', 'skip', 'resnet'. | |
resample_filter=[ | |
1, 3, 3, 1 | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
use_fp16=False, # Use FP16 for this block? | |
fp16_channels_last=False, # Use channels-last memory format with FP16? | |
fused_modconv_default=True, # Default value of fused_modconv. 'inference_only' = True for inference, False for training. | |
**layer_kwargs, # Arguments for SynthesisLayer. | |
): | |
assert architecture in ['orig', 'skip', 'resnet'] | |
super().__init__() | |
self.in_channels = in_channels | |
self.w_dim = w_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.is_last = is_last | |
self.architecture = architecture | |
self.use_fp16 = use_fp16 | |
self.channels_last = (use_fp16 and fp16_channels_last) | |
self.fused_modconv_default = fused_modconv_default | |
self.register_buffer('resample_filter', | |
upfirdn2d.setup_filter(resample_filter)) | |
self.num_conv = 0 | |
self.num_torgb = 0 | |
if in_channels == 0: | |
self.const = torch.nn.Parameter( | |
torch.randn([out_channels, resolution, resolution])) | |
if in_channels != 0: | |
self.conv0 = SynthesisLayer(in_channels, | |
out_channels, | |
w_dim=w_dim, | |
resolution=resolution, | |
up=2, | |
resample_filter=resample_filter, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
**layer_kwargs) | |
self.num_conv += 1 | |
self.conv1 = SynthesisLayer(out_channels, | |
out_channels, | |
w_dim=w_dim, | |
resolution=resolution, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
**layer_kwargs) | |
self.num_conv += 1 | |
if is_last or architecture == 'skip': | |
self.torgb = ToRGBLayer(out_channels, | |
img_channels, | |
w_dim=w_dim, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last) | |
self.num_torgb += 1 | |
if in_channels != 0 and architecture == 'resnet': | |
self.skip = Conv2dLayer(in_channels, | |
out_channels, | |
kernel_size=1, | |
bias=False, | |
up=2, | |
resample_filter=resample_filter, | |
channels_last=self.channels_last) | |
def forward(self, | |
x, | |
img, | |
ws, | |
force_fp32=False, | |
fused_modconv=None, | |
update_emas=False, | |
**layer_kwargs): | |
_ = update_emas # unused | |
misc.assert_shape(ws, | |
[None, self.num_conv + self.num_torgb, self.w_dim]) | |
w_iter = iter(ws.unbind(dim=1)) | |
if ws.device.type != 'cuda': | |
force_fp32 = True | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
if fused_modconv is None: | |
fused_modconv = self.fused_modconv_default | |
if fused_modconv == 'inference_only': | |
fused_modconv = (not self.training) | |
# Input. | |
if self.in_channels == 0: | |
x = self.const.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) | |
else: | |
misc.assert_shape(x, [ | |
None, self.in_channels, self.resolution // 2, | |
self.resolution // 2 | |
]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if self.in_channels == 0: | |
x = self.conv1(x, | |
next(w_iter), | |
fused_modconv=fused_modconv, | |
**layer_kwargs) | |
elif self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x, | |
next(w_iter), | |
fused_modconv=fused_modconv, | |
**layer_kwargs) | |
x = self.conv1(x, | |
next(w_iter), | |
fused_modconv=fused_modconv, | |
gain=np.sqrt(0.5), | |
**layer_kwargs) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x, | |
next(w_iter), | |
fused_modconv=fused_modconv, | |
**layer_kwargs) | |
x = self.conv1(x, | |
next(w_iter), | |
fused_modconv=fused_modconv, | |
**layer_kwargs) | |
# ToRGB. | |
if img is not None: | |
misc.assert_shape(img, [ | |
None, self.img_channels, self.resolution // 2, | |
self.resolution // 2 | |
]) | |
img = upfirdn2d.upsample2d(img, self.resample_filter) | |
if self.is_last or self.architecture == 'skip': | |
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, | |
memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
# assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
def extra_repr(self): | |
return f'resolution={self.resolution:d}, architecture={self.architecture:s}' | |
#---------------------------------------------------------------------------- | |
class SynthesisNetwork(torch.nn.Module): | |
def __init__( | |
self, | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output image resolution. | |
img_channels, # Number of color channels. | |
channel_base=32768, # Overall multiplier for the number of channels. | |
channel_max=512, # Maximum number of channels in any layer. | |
num_fp16_res=4, # Use FP16 for the N highest resolutions. | |
**block_kwargs, # Arguments for SynthesisBlock. | |
): | |
assert img_resolution >= 4 and img_resolution & (img_resolution - | |
1) == 0 | |
super().__init__() | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.num_fp16_res = num_fp16_res | |
self.block_resolutions = [ | |
2**i for i in range(2, self.img_resolution_log2 + 1) | |
] | |
channels_dict = { | |
res: min(channel_base // res, channel_max) | |
for res in self.block_resolutions | |
} | |
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res), | |
8) | |
self.num_ws = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res // 2] if res > 4 else 0 | |
out_channels = channels_dict[res] | |
use_fp16 = (res >= fp16_resolution) | |
is_last = (res == self.img_resolution) | |
block = SynthesisBlock(in_channels, | |
out_channels, | |
w_dim=w_dim, | |
resolution=res, | |
img_channels=img_channels, | |
is_last=is_last, | |
use_fp16=use_fp16, | |
**block_kwargs) | |
self.num_ws += block.num_conv | |
if is_last: | |
self.num_ws += block.num_torgb | |
setattr(self, f'b{res}', block) | |
def forward(self, ws, **block_kwargs): | |
block_ws = [] | |
with torch.autograd.profiler.record_function('split_ws'): | |
misc.assert_shape(ws, [None, self.num_ws, self.w_dim]) | |
ws = ws.to(torch.float32) | |
w_idx = 0 | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
block_ws.append( | |
ws.narrow(1, w_idx, block.num_conv + | |
block.num_torgb)) # dim start length | |
w_idx += block.num_conv | |
# print(f'synthesisNetwork : b{res}, device={block.conv1.weight.device}') | |
x = img = None | |
for res, cur_ws in zip(self.block_resolutions, block_ws): | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, cur_ws, **block_kwargs) | |
return img | |
def extra_repr(self): | |
return ' '.join([ | |
f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},', | |
f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},', | |
f'num_fp16_res={self.num_fp16_res:d}' | |
]) | |
#---------------------------------------------------------------------------- | |
class Generator(torch.nn.Module): | |
def __init__( | |
self, | |
z_dim, # Input latent (Z) dimensionality. | |
c_dim, # Conditioning label (C) dimensionality. | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output resolution. | |
img_channels, # Number of output color channels. | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
**synthesis_kwargs, # Arguments for SynthesisNetwork. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_channels = img_channels | |
self.synthesis = SynthesisNetwork(w_dim=w_dim, | |
img_resolution=img_resolution, | |
img_channels=img_channels, | |
**synthesis_kwargs) | |
self.num_ws = self.synthesis.num_ws | |
self.mapping = MappingNetwork(z_dim=z_dim, | |
c_dim=c_dim, | |
w_dim=w_dim, | |
num_ws=self.num_ws, | |
**mapping_kwargs) | |
def forward(self, | |
z, | |
c, | |
truncation_psi=1, | |
truncation_cutoff=None, | |
update_emas=False, | |
**synthesis_kwargs): | |
ws = self.mapping(z, | |
c, | |
truncation_psi=truncation_psi, | |
truncation_cutoff=truncation_cutoff, | |
update_emas=update_emas) | |
img = self.synthesis(ws, update_emas=update_emas, **synthesis_kwargs) | |
return img | |
#---------------------------------------------------------------------------- | |
class DiscriminatorBlock(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels, 0 = first block. | |
tmp_channels, # Number of intermediate channels. | |
out_channels, # Number of output channels. | |
resolution, # Resolution of this block. | |
img_channels, # Number of input color channels. | |
first_layer_idx, # Index of the first layer. | |
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
activation='lrelu', # Activation function: 'relu', 'lrelu', etc. | |
resample_filter=[ | |
1, 3, 3, 1 | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
use_fp16=False, # Use FP16 for this block? | |
fp16_channels_last=False, # Use channels-last memory format with FP16? | |
freeze_layers=0, # Freeze-D: Number of layers to freeze. | |
): | |
assert in_channels in [0, tmp_channels] | |
assert architecture in ['orig', 'skip', 'resnet'] | |
super().__init__() | |
self.in_channels = in_channels | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.first_layer_idx = first_layer_idx | |
self.architecture = architecture | |
self.use_fp16 = use_fp16 | |
self.channels_last = (use_fp16 and fp16_channels_last) | |
self.register_buffer('resample_filter', | |
upfirdn2d.setup_filter(resample_filter)) | |
self.num_layers = 0 | |
def trainable_gen(): | |
while True: | |
layer_idx = self.first_layer_idx + self.num_layers | |
trainable = (layer_idx >= freeze_layers) | |
self.num_layers += 1 | |
yield trainable | |
trainable_iter = trainable_gen() | |
if in_channels == 0 or architecture == 'skip': | |
self.fromrgb = Conv2dLayer(img_channels, | |
tmp_channels, | |
kernel_size=1, | |
activation=activation, | |
trainable=next(trainable_iter), | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last) | |
self.conv0 = Conv2dLayer(tmp_channels, | |
tmp_channels, | |
kernel_size=3, | |
activation=activation, | |
trainable=next(trainable_iter), | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last) | |
self.conv1 = Conv2dLayer(tmp_channels, | |
out_channels, | |
kernel_size=3, | |
activation=activation, | |
down=2, | |
trainable=next(trainable_iter), | |
resample_filter=resample_filter, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last) | |
if architecture == 'resnet': | |
self.skip = Conv2dLayer(tmp_channels, | |
out_channels, | |
kernel_size=1, | |
bias=False, | |
down=2, | |
trainable=next(trainable_iter), | |
resample_filter=resample_filter, | |
channels_last=self.channels_last) | |
def forward(self, x, img, force_fp32=False): | |
if (x if x is not None else img).device.type != 'cuda': | |
force_fp32 = True | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
# dtype = img.dtype | |
# dtype = x.dtype | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
# Input. | |
if x is not None: | |
misc.assert_shape( | |
x, [None, self.in_channels, self.resolution, self.resolution]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# FromRGB. | |
if self.in_channels == 0 or self.architecture == 'skip': | |
misc.assert_shape( | |
img, | |
[None, self.img_channels, self.resolution, self.resolution]) | |
img = img.to(dtype=dtype, memory_format=memory_format) | |
y = self.fromrgb(img) | |
x = x + y if x is not None else y | |
img = upfirdn2d.downsample2d( | |
img, | |
self.resample_filter) if self.architecture == 'skip' else None | |
# Main layers. | |
if self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x) | |
x = self.conv1(x, gain=np.sqrt(0.5)) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x) | |
x = self.conv1(x) | |
assert x.dtype == dtype | |
return x, img | |
def extra_repr(self): | |
return f'resolution={self.resolution:d}, architecture={self.architecture:s}' | |
#---------------------------------------------------------------------------- | |
class MinibatchStdLayer(torch.nn.Module): | |
def __init__(self, group_size, num_channels=1): | |
super().__init__() | |
self.group_size = group_size | |
self.num_channels = num_channels | |
def forward(self, x): | |
N, C, H, W = x.shape | |
with misc.suppress_tracer_warnings( | |
): # as_tensor results are registered as constants | |
G = torch.min( | |
torch.as_tensor(self.group_size), | |
torch.as_tensor(N)) if self.group_size is not None else N | |
F = self.num_channels | |
c = C // F | |
y = x.reshape( | |
G, -1, F, c, H, W | |
) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c. | |
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group. | |
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group. | |
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group. | |
y = y.mean(dim=[2, 3, | |
4]) # [nF] Take average over channels and pixels. | |
y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions. | |
y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels. | |
x = torch.cat([x, y], | |
dim=1) # [NCHW] Append to input as new channels. | |
return x | |
def extra_repr(self): | |
return f'group_size={self.group_size}, num_channels={self.num_channels:d}' | |
#---------------------------------------------------------------------------- | |
class DiscriminatorEpilogue(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels. | |
cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label. | |
resolution, # Resolution of this block. | |
img_channels, # Number of input color channels. | |
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch. | |
mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable. | |
activation='lrelu', # Activation function: 'relu', 'lrelu', etc. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
): | |
assert architecture in ['orig', 'skip', 'resnet'] | |
super().__init__() | |
self.in_channels = in_channels | |
self.cmap_dim = cmap_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.architecture = architecture | |
if architecture == 'skip': | |
self.fromrgb = Conv2dLayer(img_channels, | |
in_channels, | |
kernel_size=1, | |
activation=activation) | |
self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size, | |
num_channels=mbstd_num_channels | |
) if mbstd_num_channels > 0 else None | |
self.conv = Conv2dLayer(in_channels + mbstd_num_channels, | |
in_channels, | |
kernel_size=3, | |
activation=activation, | |
conv_clamp=conv_clamp) | |
self.fc = FullyConnectedLayer(in_channels * (resolution**2), | |
in_channels, | |
activation=activation) | |
self.out = FullyConnectedLayer(in_channels, | |
1 if cmap_dim == 0 else cmap_dim) | |
def forward(self, x, img, cmap, force_fp32=False): | |
misc.assert_shape( | |
x, [None, self.in_channels, self.resolution, self.resolution | |
]) # [NCHW] | |
_ = force_fp32 # unused | |
# dtype = torch.float32 | |
dtype = x.dtype | |
memory_format = torch.contiguous_format | |
# FromRGB. | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
if self.architecture == 'skip': | |
misc.assert_shape( | |
img, | |
[None, self.img_channels, self.resolution, self.resolution]) | |
img = img.to(dtype=dtype, memory_format=memory_format) | |
x = x + self.fromrgb(img) | |
# Main layers. | |
if self.mbstd is not None: | |
x = self.mbstd(x) | |
x = self.conv(x) | |
x = self.fc(x.flatten(1)) | |
x = self.out(x) | |
# Conditioning. | |
if self.cmap_dim > 0: | |
misc.assert_shape(cmap, [None, self.cmap_dim]) | |
x = (x * cmap).sum(dim=1, | |
keepdim=True) * (1 / np.sqrt(self.cmap_dim)) | |
assert x.dtype == dtype | |
return x | |
def extra_repr(self): | |
return f'resolution={self.resolution:d}, architecture={self.architecture:s}' | |
#---------------------------------------------------------------------------- | |
class Discriminator(torch.nn.Module): | |
def __init__( | |
self, | |
c_dim, # Conditioning label (C) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
channel_base=32768, # Overall multiplier for the number of channels. | |
channel_max=512, # Maximum number of channels in any layer. | |
num_fp16_res=4, # Use FP16 for the N highest resolutions. | |
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default. | |
block_kwargs={}, # Arguments for DiscriminatorBlock. | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue. | |
): | |
super().__init__() | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [ | |
2**i for i in range(self.img_resolution_log2, 2, -1) | |
] | |
channels_dict = { | |
res: min(channel_base // res, channel_max) | |
for res in self.block_resolutions + [4] | |
} | |
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res), | |
8) | |
if cmap_dim is None: | |
cmap_dim = channels_dict[4] | |
if c_dim == 0: | |
cmap_dim = 0 | |
common_kwargs = dict(img_channels=img_channels, | |
architecture=architecture, | |
conv_clamp=conv_clamp) | |
cur_layer_idx = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res] if res < img_resolution else 0 | |
tmp_channels = channels_dict[res] | |
out_channels = channels_dict[res // 2] | |
use_fp16 = (res >= fp16_resolution) | |
block = DiscriminatorBlock(in_channels, | |
tmp_channels, | |
out_channels, | |
resolution=res, | |
first_layer_idx=cur_layer_idx, | |
use_fp16=use_fp16, | |
**block_kwargs, | |
**common_kwargs) | |
setattr(self, f'b{res}', block) | |
cur_layer_idx += block.num_layers | |
if c_dim > 0: | |
self.mapping = MappingNetwork(z_dim=0, | |
c_dim=c_dim, | |
w_dim=cmap_dim, | |
num_ws=None, | |
w_avg_beta=None, | |
**mapping_kwargs) | |
self.b4 = DiscriminatorEpilogue(channels_dict[4], | |
cmap_dim=cmap_dim, | |
resolution=4, | |
**epilogue_kwargs, | |
**common_kwargs) | |
def forward(self, img, c, update_emas=False, **block_kwargs): | |
_ = update_emas # unused | |
x = None | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, **block_kwargs) | |
cmap = None | |
if self.c_dim > 0: | |
cmap = self.mapping(None, c) | |
x = self.b4(x, img, cmap) | |
return x | |
def extra_repr(self): | |
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}' | |
#---------------------------------------------------------------------------- | |