NIRVANALAN
init
11e6f7b
raw
history blame
12.9 kB
# https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
# https://github.com/JingyunLiang/SwinIR/blob/main/models/network_swinir.py#L812
import copy
import math
from collections import namedtuple
from contextlib import contextmanager, nullcontext
from functools import partial, wraps
from pathlib import Path
from random import random
from einops import rearrange, repeat, reduce, pack, unpack
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from torch import einsum, nn
from beartype.typing import List, Union
from beartype import beartype
from tqdm.auto import tqdm
from pdb import set_trace as st
# helper functions, from:
# https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
def exists(val):
return val is not None
def identity(t, *args, **kwargs):
return t
def divisible_by(numer, denom):
return (numer % denom) == 0
def first(arr, d=None):
if len(arr) == 0:
return d
return arr[0]
def maybe(fn):
@wraps(fn)
def inner(x):
if not exists(x):
return x
return fn(x)
return inner
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
def compact(input_dict):
return {key: value for key, value in input_dict.items() if exists(value)}
def maybe_transform_dict_key(input_dict, key, fn):
if key not in input_dict:
return input_dict
copied_dict = input_dict.copy()
copied_dict[key] = fn(copied_dict[key])
return copied_dict
def cast_uint8_images_to_float(images):
if not images.dtype == torch.uint8:
return images
return images / 255
def module_device(module):
return next(module.parameters()).device
def zero_init_(m):
nn.init.zeros_(m.weight)
if exists(m.bias):
nn.init.zeros_(m.bias)
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def pad_tuple_to_length(t, length, fillvalue=None):
remain_length = length - len(t)
if remain_length <= 0:
return t
return (*t, *((fillvalue, ) * remain_length))
# helper classes
class Identity(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
# tensor helpers
def log(t, eps: float = 1e-12):
return torch.log(t.clamp(min=eps))
def l2norm(t):
return F.normalize(t, dim=-1)
def right_pad_dims_to(x, t):
padding_dims = x.ndim - t.ndim
if padding_dims <= 0:
return t
return t.view(*t.shape, *((1, ) * padding_dims))
def masked_mean(t, *, dim, mask=None):
if not exists(mask):
return t.mean(dim=dim)
denom = mask.sum(dim=dim, keepdim=True)
mask = rearrange(mask, 'b n -> b n 1')
masked_t = t.masked_fill(~mask, 0.)
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
def resize_image_to(image,
target_image_size,
clamp_range=None,
mode='nearest'):
orig_image_size = image.shape[-1]
if orig_image_size == target_image_size:
return image
out = F.interpolate(image, target_image_size, mode=mode)
if exists(clamp_range):
out = out.clamp(*clamp_range)
return out
def calc_all_frame_dims(downsample_factors: List[int], frames):
if not exists(frames):
return (tuple(), ) * len(downsample_factors)
all_frame_dims = []
for divisor in downsample_factors:
assert divisible_by(frames, divisor)
all_frame_dims.append((frames // divisor, ))
return all_frame_dims
def safe_get_tuple_index(tup, index, default=None):
if len(tup) <= index:
return default
return tup[index]
# image normalization functions
# ddpms expect images to be in the range of -1 to 1
def normalize_neg_one_to_one(img):
return img * 2 - 1
def unnormalize_zero_to_one(normed_img):
return (normed_img + 1) * 0.5
# def Upsample(dim, dim_out=None):
# dim_out = default(dim_out, dim)
# return nn.Sequential(nn.Upsample(scale_factor=2, mode='nearest'),
# nn.Conv2d(dim, dim_out, 3, padding=1))
class PixelShuffleUpsample(nn.Module):
"""
code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
"""
def __init__(self, dim, dim_out=None):
super().__init__()
dim_out = default(dim_out, dim)
conv = nn.Conv2d(dim, dim_out * 4, 1)
self.net = nn.Sequential(conv, nn.SiLU(), nn.PixelShuffle(2))
self.init_conv_(conv)
def init_conv_(self, conv):
o, i, h, w = conv.weight.shape
conv_weight = torch.empty(o // 4, i, h, w)
nn.init.kaiming_uniform_(conv_weight)
conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...')
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def forward(self, x):
return self.net(x)
class ResidualBlock(nn.Module):
def __init__(self,
dim_in,
dim_out,
dim_inter=None,
use_norm=True,
norm_layer=nn.BatchNorm2d,
bias=False):
super().__init__()
if dim_inter is None:
dim_inter = dim_out
if use_norm:
self.conv = nn.Sequential(
norm_layer(dim_in),
nn.ReLU(True),
nn.Conv2d(dim_in,
dim_inter,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
norm_layer(dim_inter),
nn.ReLU(True),
nn.Conv2d(dim_inter,
dim_out,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
)
else:
self.conv = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(dim_in, dim_inter, 3, 1, 1),
nn.ReLU(True),
nn.Conv2d(dim_inter, dim_out, 3, 1, 1),
)
self.short_cut = None
if dim_in != dim_out:
self.short_cut = nn.Conv2d(dim_in, dim_out, 1, 1)
def forward(self, feats):
feats_out = self.conv(feats)
if self.short_cut is not None:
feats_out = self.short_cut(feats) + feats_out
else:
feats_out = feats_out + feats
return feats_out
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. '
'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
class PixelUnshuffleUpsample(nn.Module):
def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
super().__init__()
self.conv_after_body = nn.Conv2d(output_dim, output_dim, 3, 1, 1)
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(output_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.upsample = Upsample(sr_ratio, num_feat) # 4 time SR
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
def forward(self, x, input_skip_connection=True, *args, **kwargs):
# x = self.conv_first(x)
if input_skip_connection:
x = self.conv_after_body(x) + x
else:
x = self.conv_after_body(x)
x = self.conv_before_upsample(x)
x = self.conv_last(self.upsample(x))
return x
class Conv3x3TriplaneTransformation(nn.Module):
# used in the final layer before triplane
def __init__(self, input_dim, output_dim) -> None:
super().__init__()
self.conv_after_unpachify = nn.Sequential(
nn.Conv2d(input_dim, output_dim, 3, 1, 1),
nn.LeakyReLU(inplace=True)
)
self.conv_before_rendering = nn.Sequential(
nn.Conv2d(output_dim, output_dim, 3, 1, 1),
nn.LeakyReLU(inplace=True))
def forward(self, unpachified_latent):
latent = self.conv_after_unpachify(unpachified_latent) # no residual connections here
latent = self.conv_before_rendering(latent) + latent
return latent
# https://github.com/JingyunLiang/SwinIR/blob/6545850fbf8df298df73d81f3e8cba638787c8bd/models/network_swinir.py#L750
class NearestConvSR(nn.Module):
"""
code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
"""
def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
super().__init__()
self.upscale = sr_ratio
self.conv_after_body = nn.Conv2d(output_dim, output_dim, 3, 1, 1)
self.conv_before_upsample = nn.Sequential(nn.Conv2d(output_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
if self.upscale == 4:
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x, *args, **kwargs):
# x = self.conv_first(x)
x = self.conv_after_body(x) + x
x = self.conv_before_upsample(x)
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
if self.upscale == 4:
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
x = self.conv_last(self.lrelu(self.conv_hr(x)))
return x
# https://github.com/yumingj/C2-Matching/blob/fa171ca6707c6f16a5d04194ce866ea70bb21d2b/mmsr/models/archs/ref_restoration_arch.py#L65
class NearestConvSR_Residual(NearestConvSR):
# learn residual + normalize
def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
super().__init__(output_dim, num_feat, num_out_ch, sr_ratio, *args, **kwargs)
# self.mean = torch.Tensor((0.485, 0.456, 0.406)).view(1,3,1,1) # imagenet mean
self.act = nn.Tanh()
def forward(self, x, base_x, *args, **kwargs):
# base_x: low-resolution 3D rendering, for residual addition
# self.mean = self.mean.type_as(x)
# x = super().forward(x).clamp(-1,1)
x = super().forward(x)
x = self.act(x) # residual normalize to [-1,1]
scale = x.shape[-1] // base_x.shape[-1] # 2 or 4
x = x + F.interpolate(base_x, None, scale, 'bilinear', False) # add residual; [-1,1] range
# return x + 2 * self.mean
return x
class UpsampleOneStep(nn.Sequential):
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
Used in lightweight SR to save parameters.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
self.num_feat = num_feat
self.input_resolution = input_resolution
m = []
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
m.append(nn.PixelShuffle(scale))
super(UpsampleOneStep, self).__init__(*m)
def flops(self):
H, W = self.input_resolution
flops = H * W * self.num_feat * 3 * 9
return flops
# class PixelShuffledDirect(nn.Module):