Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
"""Converting legacy network pickle into the new format.""" | |
from pdb import set_trace as st | |
import click | |
import pickle | |
import re | |
import copy | |
import numpy as np | |
import torch | |
import dnnlib | |
from utils.torch_utils import misc | |
#---------------------------------------------------------------------------- | |
def load_network_pkl(f, device, force_fp16=False): | |
data = _LegacyUnpickler(f).load() | |
# Legacy TensorFlow pickle => convert. | |
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data): | |
tf_G, tf_D, tf_Gs = data | |
G = convert_tf_generator(tf_G) | |
D = convert_tf_discriminator(tf_D) | |
G_ema = convert_tf_generator(tf_Gs) | |
data = dict(G=G, D=D, G_ema=G_ema) | |
# for k, module in data.items(): | |
# for key in ['G', 'D', 'G_ema']: | |
# data[key].to(device) | |
# Add missing fields. | |
if 'training_set_kwargs' not in data: | |
data['training_set_kwargs'] = None | |
if 'augment_pipe' not in data: | |
data['augment_pipe'] = None | |
# Validate contents. | |
assert isinstance(data['G'], torch.nn.Module) | |
assert isinstance(data['D'], torch.nn.Module) | |
assert isinstance(data['G_ema'], torch.nn.Module) | |
assert isinstance(data['training_set_kwargs'], (dict, type(None))) | |
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None))) | |
# Force FP16. | |
if force_fp16: | |
for key in ['G', 'D', 'G_ema']: | |
old = data[key] | |
kwargs = copy.deepcopy(old.init_kwargs) | |
fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs) | |
fp16_kwargs.num_fp16_res = 4 | |
fp16_kwargs.conv_clamp = 256 | |
if kwargs != old.init_kwargs: | |
new = type(old)(**kwargs).eval().requires_grad_(False) | |
misc.copy_params_and_buffers(old, new, require_all=True) | |
data[key] = new | |
return data | |
def load_network_pkl_E(f, force_fp16=False): | |
data = _LegacyUnpickler(f).load() | |
# Legacy TensorFlow pickle => convert. | |
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data): | |
tf_E = data | |
E = convert_tf_generator(tf_E) | |
# D = convert_tf_discriminator(tf_D) | |
# G_ema = convert_tf_generator(tf_Gs) | |
data = dict(G=E) | |
# Add missing fields. | |
if 'training_set_kwargs' not in data: | |
data['training_set_kwargs'] = None | |
if 'augment_pipe' not in data: | |
data['augment_pipe'] = None | |
# Validate contents. | |
assert isinstance(data['E'], torch.nn.Module) | |
assert isinstance(data['training_set_kwargs'], (dict, type(None))) | |
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None))) | |
# Force FP16. | |
if force_fp16: | |
for key in ['E']: | |
old = data[key] | |
kwargs = copy.deepcopy(old.init_kwargs) | |
fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs) | |
fp16_kwargs.num_fp16_res = 4 | |
fp16_kwargs.conv_clamp = 256 | |
if kwargs != old.init_kwargs: | |
new = type(old)(**kwargs).eval().requires_grad_(False) | |
misc.copy_params_and_buffers(old, new, require_all=True) | |
data[key] = new | |
return data | |
#---------------------------------------------------------------------------- | |
class _TFNetworkStub(dnnlib.EasyDict): | |
pass | |
class _LegacyUnpickler(pickle.Unpickler): | |
def find_class(self, module, name): | |
if module == 'dnnlib.tflib.network' and name == 'Network': | |
return _TFNetworkStub | |
if 'training' in module: | |
module = module.replace('training', 'nsr') # map module position from eg3d repo | |
return super().find_class(module, name) | |
#---------------------------------------------------------------------------- | |
def _collect_tf_params(tf_net): | |
# pylint: disable=protected-access | |
tf_params = dict() | |
def recurse(prefix, tf_net): | |
for name, value in tf_net.variables: | |
tf_params[prefix + name] = value | |
for name, comp in tf_net.components.items(): | |
recurse(prefix + name + '/', comp) | |
recurse('', tf_net) | |
return tf_params | |
#---------------------------------------------------------------------------- | |
def _populate_module_params(module, *patterns): | |
for name, tensor in misc.named_params_and_buffers(module): | |
found = False | |
value = None | |
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]): | |
match = re.fullmatch(pattern, name) | |
if match: | |
found = True | |
if value_fn is not None: | |
value = value_fn(*match.groups()) | |
break | |
try: | |
assert found | |
if value is not None: | |
tensor.copy_(torch.from_numpy(np.array(value))) | |
except: | |
print(name, list(tensor.shape)) | |
raise | |
#---------------------------------------------------------------------------- | |
def convert_tf_generator(tf_G): | |
if tf_G.version < 4: | |
raise ValueError('TensorFlow pickle version too low') | |
# Collect kwargs. | |
tf_kwargs = tf_G.static_kwargs | |
known_kwargs = set() | |
def kwarg(tf_name, default=None, none=None): | |
known_kwargs.add(tf_name) | |
val = tf_kwargs.get(tf_name, default) | |
return val if val is not None else none | |
# Convert kwargs. | |
from training import networks_stylegan2 | |
network_class = networks_stylegan2.Generator | |
kwargs = dnnlib.EasyDict( | |
z_dim = kwarg('latent_size', 512), | |
c_dim = kwarg('label_size', 0), | |
w_dim = kwarg('dlatent_size', 512), | |
img_resolution = kwarg('resolution', 1024), | |
img_channels = kwarg('num_channels', 3), | |
channel_base = kwarg('fmap_base', 16384) * 2, | |
channel_max = kwarg('fmap_max', 512), | |
num_fp16_res = kwarg('num_fp16_res', 0), | |
conv_clamp = kwarg('conv_clamp', None), | |
architecture = kwarg('architecture', 'skip'), | |
resample_filter = kwarg('resample_kernel', [1,3,3,1]), | |
use_noise = kwarg('use_noise', True), | |
activation = kwarg('nonlinearity', 'lrelu'), | |
mapping_kwargs = dnnlib.EasyDict( | |
num_layers = kwarg('mapping_layers', 8), | |
embed_features = kwarg('label_fmaps', None), | |
layer_features = kwarg('mapping_fmaps', None), | |
activation = kwarg('mapping_nonlinearity', 'lrelu'), | |
lr_multiplier = kwarg('mapping_lrmul', 0.01), | |
w_avg_beta = kwarg('w_avg_beta', 0.995, none=1), | |
), | |
) | |
# Check for unknown kwargs. | |
kwarg('truncation_psi') | |
kwarg('truncation_cutoff') | |
kwarg('style_mixing_prob') | |
kwarg('structure') | |
kwarg('conditioning') | |
kwarg('fused_modconv') | |
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) | |
if len(unknown_kwargs) > 0: | |
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) | |
# Collect params. | |
tf_params = _collect_tf_params(tf_G) | |
for name, value in list(tf_params.items()): | |
match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name) | |
if match: | |
r = kwargs.img_resolution // (2 ** int(match.group(1))) | |
tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value | |
kwargs.synthesis.kwargs.architecture = 'orig' | |
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') | |
# Convert params. | |
G = network_class(**kwargs).eval().requires_grad_(False) | |
# pylint: disable=unnecessary-lambda | |
# pylint: disable=f-string-without-interpolation | |
_populate_module_params(G, | |
r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'], | |
r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(), | |
r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'], | |
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(), | |
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'], | |
r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0], | |
r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1), | |
r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'], | |
r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0], | |
r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'], | |
r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(), | |
r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1, | |
r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1), | |
r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'], | |
r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0], | |
r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'], | |
r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(), | |
r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1, | |
r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1), | |
r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'], | |
r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0], | |
r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'], | |
r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(), | |
r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1, | |
r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1), | |
r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'], | |
r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(), | |
r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1, | |
r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1), | |
r'.*\.resample_filter', None, | |
r'.*\.act_filter', None, | |
) | |
return G | |
#---------------------------------------------------------------------------- | |
def convert_tf_discriminator(tf_D): | |
if tf_D.version < 4: | |
raise ValueError('TensorFlow pickle version too low') | |
# Collect kwargs. | |
tf_kwargs = tf_D.static_kwargs | |
known_kwargs = set() | |
def kwarg(tf_name, default=None): | |
known_kwargs.add(tf_name) | |
return tf_kwargs.get(tf_name, default) | |
# Convert kwargs. | |
kwargs = dnnlib.EasyDict( | |
c_dim = kwarg('label_size', 0), | |
img_resolution = kwarg('resolution', 1024), | |
img_channels = kwarg('num_channels', 3), | |
architecture = kwarg('architecture', 'resnet'), | |
channel_base = kwarg('fmap_base', 16384) * 2, | |
channel_max = kwarg('fmap_max', 512), | |
num_fp16_res = kwarg('num_fp16_res', 0), | |
conv_clamp = kwarg('conv_clamp', None), | |
cmap_dim = kwarg('mapping_fmaps', None), | |
block_kwargs = dnnlib.EasyDict( | |
activation = kwarg('nonlinearity', 'lrelu'), | |
resample_filter = kwarg('resample_kernel', [1,3,3,1]), | |
freeze_layers = kwarg('freeze_layers', 0), | |
), | |
mapping_kwargs = dnnlib.EasyDict( | |
num_layers = kwarg('mapping_layers', 0), | |
embed_features = kwarg('mapping_fmaps', None), | |
layer_features = kwarg('mapping_fmaps', None), | |
activation = kwarg('nonlinearity', 'lrelu'), | |
lr_multiplier = kwarg('mapping_lrmul', 0.1), | |
), | |
epilogue_kwargs = dnnlib.EasyDict( | |
mbstd_group_size = kwarg('mbstd_group_size', None), | |
mbstd_num_channels = kwarg('mbstd_num_features', 1), | |
activation = kwarg('nonlinearity', 'lrelu'), | |
), | |
) | |
# Check for unknown kwargs. | |
kwarg('structure') | |
kwarg('conditioning') | |
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) | |
if len(unknown_kwargs) > 0: | |
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) | |
# Collect params. | |
tf_params = _collect_tf_params(tf_D) | |
for name, value in list(tf_params.items()): | |
match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name) | |
if match: | |
r = kwargs.img_resolution // (2 ** int(match.group(1))) | |
tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value | |
kwargs.architecture = 'orig' | |
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') | |
# Convert params. | |
from training import networks_stylegan2 | |
D = networks_stylegan2.Discriminator(**kwargs).eval().requires_grad_(False) | |
# pylint: disable=unnecessary-lambda | |
# pylint: disable=f-string-without-interpolation | |
_populate_module_params(D, | |
r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1), | |
r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'], | |
r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1), | |
r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'], | |
r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1), | |
r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(), | |
r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'], | |
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(), | |
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'], | |
r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1), | |
r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'], | |
r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(), | |
r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'], | |
r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(), | |
r'b4\.out\.bias', lambda: tf_params[f'Output/bias'], | |
r'.*\.resample_filter', None, | |
) | |
return D | |
#---------------------------------------------------------------------------- | |
def convert_network_pickle(source, dest, force_fp16): | |
"""Convert legacy network pickle into the native PyTorch format. | |
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA. | |
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks. | |
Example: | |
\b | |
python legacy.py \\ | |
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\ | |
--dest=stylegan2-cat-config-f.pkl | |
""" | |
print(f'Loading "{source}"...') | |
with dnnlib.util.open_url(source) as f: | |
data = load_network_pkl(f, force_fp16=force_fp16) | |
print(f'Saving "{dest}"...') | |
with open(dest, 'wb') as f: | |
pickle.dump(data, f) | |
print('Done.') | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
convert_network_pickle() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |