NIRVANALAN
init
11e6f7b
raw
history blame
12.1 kB
from typing import Dict, Iterator, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torchvision
from einops import rearrange
from matplotlib import colormaps
from matplotlib import pyplot as plt
from ....util import default, instantiate_from_config
from ..lpips.loss.lpips import LPIPS
from ..lpips.model.model import weights_init
from ..lpips.vqperceptual import hinge_d_loss, vanilla_d_loss
class GeneralLPIPSWithDiscriminator(nn.Module):
def __init__(
self,
disc_start: int,
logvar_init: float = 0.0,
disc_num_layers: int = 3,
disc_in_channels: int = 3,
disc_factor: float = 1.0,
disc_weight: float = 1.0,
perceptual_weight: float = 1.0,
disc_loss: str = "hinge",
scale_input_to_tgt_size: bool = False,
dims: int = 2,
learn_logvar: bool = False,
regularization_weights: Union[None, Dict[str, float]] = None,
additional_log_keys: Optional[List[str]] = None,
discriminator_config: Optional[Dict] = None,
):
super().__init__()
self.dims = dims
if self.dims > 2:
print(
f"running with dims={dims}. This means that for perceptual loss "
f"calculation, the LPIPS loss will be applied to each frame "
f"independently."
)
self.scale_input_to_tgt_size = scale_input_to_tgt_size
assert disc_loss in ["hinge", "vanilla"]
self.perceptual_loss = LPIPS().eval()
self.perceptual_weight = perceptual_weight
# output log variance
self.logvar = nn.Parameter(
torch.full((), logvar_init), requires_grad=learn_logvar
)
self.learn_logvar = learn_logvar
discriminator_config = default(
discriminator_config,
{
"target": "sgm.modules.autoencoding.lpips.model.model.NLayerDiscriminator",
"params": {
"input_nc": disc_in_channels,
"n_layers": disc_num_layers,
"use_actnorm": False,
},
},
)
self.discriminator = instantiate_from_config(discriminator_config).apply(
weights_init
)
self.discriminator_iter_start = disc_start
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight
self.regularization_weights = default(regularization_weights, {})
self.forward_keys = [
"optimizer_idx",
"global_step",
"last_layer",
"split",
"regularization_log",
]
self.additional_log_keys = set(default(additional_log_keys, []))
self.additional_log_keys.update(set(self.regularization_weights.keys()))
def get_trainable_parameters(self) -> Iterator[nn.Parameter]:
return self.discriminator.parameters()
def get_trainable_autoencoder_parameters(self) -> Iterator[nn.Parameter]:
if self.learn_logvar:
yield self.logvar
yield from ()
@torch.no_grad()
def log_images(
self, inputs: torch.Tensor, reconstructions: torch.Tensor
) -> Dict[str, torch.Tensor]:
# calc logits of real/fake
logits_real = self.discriminator(inputs.contiguous().detach())
if len(logits_real.shape) < 4:
# Non patch-discriminator
return dict()
logits_fake = self.discriminator(reconstructions.contiguous().detach())
# -> (b, 1, h, w)
# parameters for colormapping
high = max(logits_fake.abs().max(), logits_real.abs().max()).item()
cmap = colormaps["PiYG"] # diverging colormap
def to_colormap(logits: torch.Tensor) -> torch.Tensor:
"""(b, 1, ...) -> (b, 3, ...)"""
logits = (logits + high) / (2 * high)
logits_np = cmap(logits.cpu().numpy())[..., :3] # truncate alpha channel
# -> (b, 1, ..., 3)
logits = torch.from_numpy(logits_np).to(logits.device)
return rearrange(logits, "b 1 ... c -> b c ...")
logits_real = torch.nn.functional.interpolate(
logits_real,
size=inputs.shape[-2:],
mode="nearest",
antialias=False,
)
logits_fake = torch.nn.functional.interpolate(
logits_fake,
size=reconstructions.shape[-2:],
mode="nearest",
antialias=False,
)
# alpha value of logits for overlay
alpha_real = torch.abs(logits_real) / high
alpha_fake = torch.abs(logits_fake) / high
# -> (b, 1, h, w) in range [0, 0.5]
# alpha value of lines don't really matter, since the values are the same
# for both images and logits anyway
grid_alpha_real = torchvision.utils.make_grid(alpha_real, nrow=4)
grid_alpha_fake = torchvision.utils.make_grid(alpha_fake, nrow=4)
grid_alpha = 0.8 * torch.cat((grid_alpha_real, grid_alpha_fake), dim=1)
# -> (1, h, w)
# blend logits and images together
# prepare logits for plotting
logits_real = to_colormap(logits_real)
logits_fake = to_colormap(logits_fake)
# resize logits
# -> (b, 3, h, w)
# make some grids
# add all logits to one plot
logits_real = torchvision.utils.make_grid(logits_real, nrow=4)
logits_fake = torchvision.utils.make_grid(logits_fake, nrow=4)
# I just love how torchvision calls the number of columns `nrow`
grid_logits = torch.cat((logits_real, logits_fake), dim=1)
# -> (3, h, w)
grid_images_real = torchvision.utils.make_grid(0.5 * inputs + 0.5, nrow=4)
grid_images_fake = torchvision.utils.make_grid(
0.5 * reconstructions + 0.5, nrow=4
)
grid_images = torch.cat((grid_images_real, grid_images_fake), dim=1)
# -> (3, h, w) in range [0, 1]
grid_blend = grid_alpha * grid_logits + (1 - grid_alpha) * grid_images
# Create labeled colorbar
dpi = 100
height = 128 / dpi
width = grid_logits.shape[2] / dpi
fig, ax = plt.subplots(figsize=(width, height), dpi=dpi)
img = ax.imshow(np.array([[-high, high]]), cmap=cmap)
plt.colorbar(
img,
cax=ax,
orientation="horizontal",
fraction=0.9,
aspect=width / height,
pad=0.0,
)
img.set_visible(False)
fig.tight_layout()
fig.canvas.draw()
# manually convert figure to numpy
cbar_np = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
cbar_np = cbar_np.reshape(fig.canvas.get_width_height()[::-1] + (3,))
cbar = torch.from_numpy(cbar_np.copy()).to(grid_logits.dtype) / 255.0
cbar = rearrange(cbar, "h w c -> c h w").to(grid_logits.device)
# Add colorbar to plot
annotated_grid = torch.cat((grid_logits, cbar), dim=1)
blended_grid = torch.cat((grid_blend, cbar), dim=1)
return {
"vis_logits": 2 * annotated_grid[None, ...] - 1,
"vis_logits_blended": 2 * blended_grid[None, ...] - 1,
}
def calculate_adaptive_weight(
self, nll_loss: torch.Tensor, g_loss: torch.Tensor, last_layer: torch.Tensor
) -> torch.Tensor:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
d_weight = d_weight * self.discriminator_weight
return d_weight
def forward(
self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
*, # added because I changed the order here
regularization_log: Dict[str, torch.Tensor],
optimizer_idx: int,
global_step: int,
last_layer: torch.Tensor,
split: str = "train",
weights: Union[None, float, torch.Tensor] = None,
) -> Tuple[torch.Tensor, dict]:
if self.scale_input_to_tgt_size:
inputs = torch.nn.functional.interpolate(
inputs, reconstructions.shape[2:], mode="bicubic", antialias=True
)
if self.dims > 2:
inputs, reconstructions = map(
lambda x: rearrange(x, "b c t h w -> (b t) c h w"),
(inputs, reconstructions),
)
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
if self.perceptual_weight > 0:
p_loss = self.perceptual_loss(
inputs.contiguous(), reconstructions.contiguous()
)
rec_loss = rec_loss + self.perceptual_weight * p_loss
nll_loss, weighted_nll_loss = self.get_nll_loss(rec_loss, weights)
# now the GAN part
if optimizer_idx == 0:
# generator update
if global_step >= self.discriminator_iter_start or not self.training:
logits_fake = self.discriminator(reconstructions.contiguous())
g_loss = -torch.mean(logits_fake)
if self.training:
d_weight = self.calculate_adaptive_weight(
nll_loss, g_loss, last_layer=last_layer
)
else:
d_weight = torch.tensor(1.0)
else:
d_weight = torch.tensor(0.0)
g_loss = torch.tensor(0.0, requires_grad=True)
loss = weighted_nll_loss + d_weight * self.disc_factor * g_loss
log = dict()
for k in regularization_log:
if k in self.regularization_weights:
loss = loss + self.regularization_weights[k] * regularization_log[k]
if k in self.additional_log_keys:
log[f"{split}/{k}"] = regularization_log[k].detach().float().mean()
log.update(
{
f"{split}/loss/total": loss.clone().detach().mean(),
f"{split}/loss/nll": nll_loss.detach().mean(),
f"{split}/loss/rec": rec_loss.detach().mean(),
f"{split}/loss/g": g_loss.detach().mean(),
f"{split}/scalars/logvar": self.logvar.detach(),
f"{split}/scalars/d_weight": d_weight.detach(),
}
)
return loss, log
elif optimizer_idx == 1:
# second pass for discriminator update
logits_real = self.discriminator(inputs.contiguous().detach())
logits_fake = self.discriminator(reconstructions.contiguous().detach())
if global_step >= self.discriminator_iter_start or not self.training:
d_loss = self.disc_factor * self.disc_loss(logits_real, logits_fake)
else:
d_loss = torch.tensor(0.0, requires_grad=True)
log = {
f"{split}/loss/disc": d_loss.clone().detach().mean(),
f"{split}/logits/real": logits_real.detach().mean(),
f"{split}/logits/fake": logits_fake.detach().mean(),
}
return d_loss, log
else:
raise NotImplementedError(f"Unknown optimizer_idx {optimizer_idx}")
def get_nll_loss(
self,
rec_loss: torch.Tensor,
weights: Optional[Union[float, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
weighted_nll_loss = nll_loss
if weights is not None:
weighted_nll_loss = weights * nll_loss
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
return nll_loss, weighted_nll_loss