Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import io | |
import os | |
import random | |
import warnings | |
import zipfile | |
from abc import ABC, abstractmethod | |
from contextlib import contextmanager | |
from functools import partial | |
from multiprocessing import cpu_count | |
from multiprocessing.pool import ThreadPool | |
from typing import Iterable, Optional, Tuple | |
import numpy as np | |
import requests | |
import tensorflow.compat.v1 as tf | |
from scipy import linalg | |
from tqdm.auto import tqdm | |
INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb" | |
INCEPTION_V3_PATH = "classify_image_graph_def.pb" | |
FID_POOL_NAME = "pool_3:0" | |
FID_SPATIAL_NAME = "mixed_6/conv:0" | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("ref_batch", help="path to reference batch npz file") | |
parser.add_argument("sample_batch", help="path to sample batch npz file") | |
args = parser.parse_args() | |
config = tf.ConfigProto( | |
allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph | |
) | |
config.gpu_options.allow_growth = True | |
evaluator = Evaluator(tf.Session(config=config)) | |
print("warming up TensorFlow...") | |
# This will cause TF to print a bunch of verbose stuff now rather | |
# than after the next print(), to help prevent confusion. | |
evaluator.warmup() | |
print("computing reference batch activations...") | |
ref_acts = evaluator.read_activations(args.ref_batch) | |
print("computing/reading reference batch statistics...") | |
ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts) | |
print("computing sample batch activations...") | |
sample_acts = evaluator.read_activations(args.sample_batch) | |
print("computing/reading sample batch statistics...") | |
sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts) | |
print("Computing evaluations...") | |
print("Inception Score:", evaluator.compute_inception_score(sample_acts[0])) | |
print("FID:", sample_stats.frechet_distance(ref_stats)) | |
print("sFID:", sample_stats_spatial.frechet_distance(ref_stats_spatial)) | |
prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0]) | |
print("Precision:", prec) | |
print("Recall:", recall) | |
class InvalidFIDException(Exception): | |
pass | |
class FIDStatistics: | |
def __init__(self, mu: np.ndarray, sigma: np.ndarray): | |
self.mu = mu | |
self.sigma = sigma | |
def frechet_distance(self, other, eps=1e-6): | |
""" | |
Compute the Frechet distance between two sets of statistics. | |
""" | |
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132 | |
mu1, sigma1 = self.mu, self.sigma | |
mu2, sigma2 = other.mu, other.sigma | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert ( | |
mu1.shape == mu2.shape | |
), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}" | |
assert ( | |
sigma1.shape == sigma2.shape | |
), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}" | |
diff = mu1 - mu2 | |
# product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ( | |
"fid calculation produces singular product; adding %s to diagonal of cov estimates" | |
% eps | |
) | |
warnings.warn(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError("Imaginary component {}".format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean | |
class Evaluator: | |
def __init__( | |
self, | |
session, | |
batch_size=64, | |
softmax_batch_size=512, | |
): | |
self.sess = session | |
self.batch_size = batch_size | |
self.softmax_batch_size = softmax_batch_size | |
self.manifold_estimator = ManifoldEstimator(session) | |
with self.sess.graph.as_default(): | |
self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3]) | |
self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048]) | |
self.pool_features, self.spatial_features = _create_feature_graph(self.image_input) | |
self.softmax = _create_softmax_graph(self.softmax_input) | |
def warmup(self): | |
self.compute_activations(np.zeros([1, 8, 64, 64, 3])) | |
def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]: | |
with open_npz_array(npz_path, "arr_0") as reader: | |
return self.compute_activations(reader.read_batches(self.batch_size)) | |
def compute_activations(self, batches: Iterable[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Compute image features for downstream evals. | |
:param batches: a iterator over NHWC numpy arrays in [0, 255]. | |
:return: a tuple of numpy arrays of shape [N x X], where X is a feature | |
dimension. The tuple is (pool_3, spatial). | |
""" | |
preds = [] | |
spatial_preds = [] | |
for batch in tqdm(batches): | |
batch = batch.astype(np.float32) | |
pred, spatial_pred = self.sess.run( | |
[self.pool_features, self.spatial_features], {self.image_input: batch} | |
) | |
preds.append(pred.reshape([pred.shape[0], -1])) | |
spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1])) | |
return ( | |
np.concatenate(preds, axis=0), | |
np.concatenate(spatial_preds, axis=0), | |
) | |
def read_statistics( | |
self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray] | |
) -> Tuple[FIDStatistics, FIDStatistics]: | |
obj = np.load(npz_path) | |
if "mu" in list(obj.keys()): | |
return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics( | |
obj["mu_s"], obj["sigma_s"] | |
) | |
return tuple(self.compute_statistics(x) for x in activations) | |
def compute_statistics(self, activations: np.ndarray) -> FIDStatistics: | |
mu = np.mean(activations, axis=0) | |
sigma = np.cov(activations, rowvar=False) | |
return FIDStatistics(mu, sigma) | |
def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float: | |
softmax_out = [] | |
for i in range(0, len(activations), self.softmax_batch_size): | |
acts = activations[i : i + self.softmax_batch_size] | |
softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts})) | |
preds = np.concatenate(softmax_out, axis=0) | |
# https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46 | |
scores = [] | |
for i in range(0, len(preds), split_size): | |
part = preds[i : i + split_size] | |
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) | |
kl = np.mean(np.sum(kl, 1)) | |
scores.append(np.exp(kl)) | |
return float(np.mean(scores)) | |
def compute_prec_recall( | |
self, activations_ref: np.ndarray, activations_sample: np.ndarray | |
) -> Tuple[float, float]: | |
radii_1 = self.manifold_estimator.manifold_radii(activations_ref) | |
radii_2 = self.manifold_estimator.manifold_radii(activations_sample) | |
pr = self.manifold_estimator.evaluate_pr( | |
activations_ref, radii_1, activations_sample, radii_2 | |
) | |
return (float(pr[0][0]), float(pr[1][0])) | |
class ManifoldEstimator: | |
""" | |
A helper for comparing manifolds of feature vectors. | |
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57 | |
""" | |
def __init__( | |
self, | |
session, | |
row_batch_size=10000, | |
col_batch_size=10000, | |
nhood_sizes=(3,), | |
clamp_to_percentile=None, | |
eps=1e-5, | |
): | |
""" | |
Estimate the manifold of given feature vectors. | |
:param session: the TensorFlow session. | |
:param row_batch_size: row batch size to compute pairwise distances | |
(parameter to trade-off between memory usage and performance). | |
:param col_batch_size: column batch size to compute pairwise distances. | |
:param nhood_sizes: number of neighbors used to estimate the manifold. | |
:param clamp_to_percentile: prune hyperspheres that have radius larger than | |
the given percentile. | |
:param eps: small number for numerical stability. | |
""" | |
self.distance_block = DistanceBlock(session) | |
self.row_batch_size = row_batch_size | |
self.col_batch_size = col_batch_size | |
self.nhood_sizes = nhood_sizes | |
self.num_nhoods = len(nhood_sizes) | |
self.clamp_to_percentile = clamp_to_percentile | |
self.eps = eps | |
def warmup(self): | |
feats, radii = ( | |
np.zeros([1, 2048], dtype=np.float32), | |
np.zeros([1, 1], dtype=np.float32), | |
) | |
self.evaluate_pr(feats, radii, feats, radii) | |
def manifold_radii(self, features: np.ndarray) -> np.ndarray: | |
num_images = len(features) | |
# Estimate manifold of features by calculating distances to k-NN of each sample. | |
radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32) | |
distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32) | |
seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32) | |
for begin1 in range(0, num_images, self.row_batch_size): | |
end1 = min(begin1 + self.row_batch_size, num_images) | |
row_batch = features[begin1:end1] | |
for begin2 in range(0, num_images, self.col_batch_size): | |
end2 = min(begin2 + self.col_batch_size, num_images) | |
col_batch = features[begin2:end2] | |
# Compute distances between batches. | |
distance_batch[ | |
0 : end1 - begin1, begin2:end2 | |
] = self.distance_block.pairwise_distances(row_batch, col_batch) | |
# Find the k-nearest neighbor from the current batch. | |
radii[begin1:end1, :] = np.concatenate( | |
[ | |
x[:, self.nhood_sizes] | |
for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1) | |
], | |
axis=0, | |
) | |
if self.clamp_to_percentile is not None: | |
max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0) | |
radii[radii > max_distances] = 0 | |
return radii | |
def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray): | |
""" | |
Evaluate if new feature vectors are at the manifold. | |
""" | |
num_eval_images = eval_features.shape[0] | |
num_ref_images = radii.shape[0] | |
distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32) | |
batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32) | |
max_realism_score = np.zeros([num_eval_images], dtype=np.float32) | |
nearest_indices = np.zeros([num_eval_images], dtype=np.int32) | |
for begin1 in range(0, num_eval_images, self.row_batch_size): | |
end1 = min(begin1 + self.row_batch_size, num_eval_images) | |
feature_batch = eval_features[begin1:end1] | |
for begin2 in range(0, num_ref_images, self.col_batch_size): | |
end2 = min(begin2 + self.col_batch_size, num_ref_images) | |
ref_batch = features[begin2:end2] | |
distance_batch[ | |
0 : end1 - begin1, begin2:end2 | |
] = self.distance_block.pairwise_distances(feature_batch, ref_batch) | |
# From the minibatch of new feature vectors, determine if they are in the estimated manifold. | |
# If a feature vector is inside a hypersphere of some reference sample, then | |
# the new sample lies at the estimated manifold. | |
# The radii of the hyperspheres are determined from distances of neighborhood size k. | |
samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii | |
batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32) | |
max_realism_score[begin1:end1] = np.max( | |
radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1 | |
) | |
nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1) | |
return { | |
"fraction": float(np.mean(batch_predictions)), | |
"batch_predictions": batch_predictions, | |
"max_realisim_score": max_realism_score, | |
"nearest_indices": nearest_indices, | |
} | |
def evaluate_pr( | |
self, | |
features_1: np.ndarray, | |
radii_1: np.ndarray, | |
features_2: np.ndarray, | |
radii_2: np.ndarray, | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Evaluate precision and recall efficiently. | |
:param features_1: [N1 x D] feature vectors for reference batch. | |
:param radii_1: [N1 x K1] radii for reference vectors. | |
:param features_2: [N2 x D] feature vectors for the other batch. | |
:param radii_2: [N x K2] radii for other vectors. | |
:return: a tuple of arrays for (precision, recall): | |
- precision: an np.ndarray of length K1 | |
- recall: an np.ndarray of length K2 | |
""" | |
features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool) | |
features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool) | |
for begin_1 in range(0, len(features_1), self.row_batch_size): | |
end_1 = begin_1 + self.row_batch_size | |
batch_1 = features_1[begin_1:end_1] | |
for begin_2 in range(0, len(features_2), self.col_batch_size): | |
end_2 = begin_2 + self.col_batch_size | |
batch_2 = features_2[begin_2:end_2] | |
batch_1_in, batch_2_in = self.distance_block.less_thans( | |
batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2] | |
) | |
features_1_status[begin_1:end_1] |= batch_1_in | |
features_2_status[begin_2:end_2] |= batch_2_in | |
return ( | |
np.mean(features_2_status.astype(np.float64), axis=0), | |
np.mean(features_1_status.astype(np.float64), axis=0), | |
) | |
class DistanceBlock: | |
""" | |
Calculate pairwise distances between vectors. | |
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34 | |
""" | |
def __init__(self, session): | |
self.session = session | |
# Initialize TF graph to calculate pairwise distances. | |
with session.graph.as_default(): | |
self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None]) | |
self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None]) | |
distance_block_16 = _batch_pairwise_distances( | |
tf.cast(self._features_batch1, tf.float16), | |
tf.cast(self._features_batch2, tf.float16), | |
) | |
self.distance_block = tf.cond( | |
tf.reduce_all(tf.math.is_finite(distance_block_16)), | |
lambda: tf.cast(distance_block_16, tf.float32), | |
lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2), | |
) | |
# Extra logic for less thans. | |
self._radii1 = tf.placeholder(tf.float32, shape=[None, None]) | |
self._radii2 = tf.placeholder(tf.float32, shape=[None, None]) | |
dist32 = tf.cast(self.distance_block, tf.float32)[..., None] | |
self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1) | |
self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0) | |
def pairwise_distances(self, U, V): | |
""" | |
Evaluate pairwise distances between two batches of feature vectors. | |
""" | |
return self.session.run( | |
self.distance_block, | |
feed_dict={self._features_batch1: U, self._features_batch2: V}, | |
) | |
def less_thans(self, batch_1, radii_1, batch_2, radii_2): | |
return self.session.run( | |
[self._batch_1_in, self._batch_2_in], | |
feed_dict={ | |
self._features_batch1: batch_1, | |
self._features_batch2: batch_2, | |
self._radii1: radii_1, | |
self._radii2: radii_2, | |
}, | |
) | |
def _batch_pairwise_distances(U, V): | |
""" | |
Compute pairwise distances between two batches of feature vectors. | |
""" | |
with tf.variable_scope("pairwise_dist_block"): | |
# Squared norms of each row in U and V. | |
norm_u = tf.reduce_sum(tf.square(U), 1) | |
norm_v = tf.reduce_sum(tf.square(V), 1) | |
# norm_u as a column and norm_v as a row vectors. | |
norm_u = tf.reshape(norm_u, [-1, 1]) | |
norm_v = tf.reshape(norm_v, [1, -1]) | |
# Pairwise squared Euclidean distances. | |
D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0) | |
return D | |
class NpzArrayReader(ABC): | |
def read_batch(self, batch_size: int) -> Optional[np.ndarray]: | |
pass | |
def remaining(self) -> int: | |
pass | |
def read_batches(self, batch_size: int) -> Iterable[np.ndarray]: | |
def gen_fn(): | |
while True: | |
batch = self.read_batch(batch_size) | |
if batch is None: | |
break | |
yield batch | |
rem = self.remaining() | |
num_batches = rem // batch_size + int(rem % batch_size != 0) | |
return BatchIterator(gen_fn, num_batches) | |
class BatchIterator: | |
def __init__(self, gen_fn, length): | |
self.gen_fn = gen_fn | |
self.length = length | |
def __len__(self): | |
return self.length | |
def __iter__(self): | |
return self.gen_fn() | |
class StreamingNpzArrayReader(NpzArrayReader): | |
def __init__(self, arr_f, shape, dtype): | |
self.arr_f = arr_f | |
self.shape = shape | |
self.dtype = dtype | |
self.idx = 0 | |
def read_batch(self, batch_size: int) -> Optional[np.ndarray]: | |
if self.idx >= self.shape[0]: | |
return None | |
bs = min(batch_size, self.shape[0] - self.idx) | |
self.idx += bs | |
if self.dtype.itemsize == 0: | |
return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype) | |
read_count = bs * np.prod(self.shape[1:]) | |
read_size = int(read_count * self.dtype.itemsize) | |
data = _read_bytes(self.arr_f, read_size, "array data") | |
return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]]) | |
def remaining(self) -> int: | |
return max(0, self.shape[0] - self.idx) | |
class MemoryNpzArrayReader(NpzArrayReader): | |
def __init__(self, arr): | |
self.arr = arr | |
self.idx = 0 | |
def load(cls, path: str, arr_name: str): | |
with open(path, "rb") as f: | |
arr = np.load(f)[arr_name] | |
return cls(arr) | |
def read_batch(self, batch_size: int) -> Optional[np.ndarray]: | |
if self.idx >= self.arr.shape[0]: | |
return None | |
res = self.arr[self.idx : self.idx + batch_size] | |
self.idx += batch_size | |
return res | |
def remaining(self) -> int: | |
return max(0, self.arr.shape[0] - self.idx) | |
def open_npz_array(path: str, arr_name: str) -> NpzArrayReader: | |
with _open_npy_file(path, arr_name) as arr_f: | |
version = np.lib.format.read_magic(arr_f) | |
if version == (1, 0): | |
header = np.lib.format.read_array_header_1_0(arr_f) | |
elif version == (2, 0): | |
header = np.lib.format.read_array_header_2_0(arr_f) | |
else: | |
yield MemoryNpzArrayReader.load(path, arr_name) | |
return | |
shape, fortran, dtype = header | |
if fortran or dtype.hasobject: | |
yield MemoryNpzArrayReader.load(path, arr_name) | |
else: | |
yield StreamingNpzArrayReader(arr_f, shape, dtype) | |
def _read_bytes(fp, size, error_template="ran out of data"): | |
""" | |
Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886 | |
Read from file-like object until size bytes are read. | |
Raises ValueError if not EOF is encountered before size bytes are read. | |
Non-blocking objects only supported if they derive from io objects. | |
Required as e.g. ZipExtFile in python 2.6 can return less data than | |
requested. | |
""" | |
data = bytes() | |
while True: | |
# io files (default in python3) return None or raise on | |
# would-block, python2 file will truncate, probably nothing can be | |
# done about that. note that regular files can't be non-blocking | |
try: | |
r = fp.read(size - len(data)) | |
data += r | |
if len(r) == 0 or len(data) == size: | |
break | |
except io.BlockingIOError: | |
pass | |
if len(data) != size: | |
msg = "EOF: reading %s, expected %d bytes got %d" | |
raise ValueError(msg % (error_template, size, len(data))) | |
else: | |
return data | |
def _open_npy_file(path: str, arr_name: str): | |
with open(path, "rb") as f: | |
with zipfile.ZipFile(f, "r") as zip_f: | |
if f"{arr_name}.npy" not in zip_f.namelist(): | |
raise ValueError(f"missing {arr_name} in npz file") | |
with zip_f.open(f"{arr_name}.npy", "r") as arr_f: | |
yield arr_f | |
def _download_inception_model(): | |
if os.path.exists(INCEPTION_V3_PATH): | |
return | |
print("downloading InceptionV3 model...") | |
with requests.get(INCEPTION_V3_URL, stream=True) as r: | |
r.raise_for_status() | |
tmp_path = INCEPTION_V3_PATH + ".tmp" | |
with open(tmp_path, "wb") as f: | |
for chunk in tqdm(r.iter_content(chunk_size=8192)): | |
f.write(chunk) | |
os.rename(tmp_path, INCEPTION_V3_PATH) | |
def _create_feature_graph(input_batch): | |
_download_inception_model() | |
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" | |
with open(INCEPTION_V3_PATH, "rb") as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
pool3, spatial = tf.import_graph_def( | |
graph_def, | |
input_map={f"ExpandDims:0": input_batch}, | |
return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME], | |
name=prefix, | |
) | |
_update_shapes(pool3) | |
spatial = spatial[..., :7] | |
return pool3, spatial | |
def _create_softmax_graph(input_batch): | |
_download_inception_model() | |
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" | |
with open(INCEPTION_V3_PATH, "rb") as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
(matmul,) = tf.import_graph_def( | |
graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix | |
) | |
w = matmul.inputs[1] | |
logits = tf.matmul(input_batch, w) | |
return tf.nn.softmax(logits) | |
def _update_shapes(pool3): | |
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63 | |
ops = pool3.graph.get_operations() | |
for op in ops: | |
for o in op.outputs: | |
shape = o.get_shape() | |
if shape._dims is not None: # pylint: disable=protected-access | |
# shape = [s.value for s in shape] TF 1.x | |
shape = [s for s in shape] # TF 2.x | |
new_shape = [] | |
for j, s in enumerate(shape): | |
if s == 1 and j == 0: | |
new_shape.append(None) | |
else: | |
new_shape.append(s) | |
o.__dict__["_shape_val"] = tf.TensorShape(new_shape) | |
return pool3 | |
def _numpy_partition(arr, kth, **kwargs): | |
num_workers = min(cpu_count(), len(arr)) | |
chunk_size = len(arr) // num_workers | |
extra = len(arr) % num_workers | |
start_idx = 0 | |
batches = [] | |
for i in range(num_workers): | |
size = chunk_size + (1 if i < extra else 0) | |
batches.append(arr[start_idx : start_idx + size]) | |
start_idx += size | |
with ThreadPool(num_workers) as pool: | |
return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches)) | |
if __name__ == "__main__": | |
main() | |