Spaces:
Configuration error
Configuration error
import gradio as gr | |
import torch | |
from diffusers import DDIMScheduler, StableDiffusionImg2ImgPipeline | |
from PIL import Image | |
stable_model_list = [ | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/stable-diffusion-2-1", | |
] | |
stable_prompt_list = ["a photo of a man.", "a photo of a girl."] | |
stable_negative_prompt_list = ["bad, ugly", "deformed"] | |
data_list = [ | |
"data/test.png", | |
] | |
def stable_diffusion_img2img( | |
image_path: str, | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: int, | |
num_inference_step: int, | |
): | |
image = Image.open(image_path) | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model_path, safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe.to("cuda") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
output = pipe( | |
prompt=prompt, | |
image=image, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
).images | |
return output[0] | |
def stable_diffusion_img2img_app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
image2image2_image_file = gr.Image( | |
type="filepath", label="Image" | |
) | |
image2image_model_path = gr.Dropdown( | |
choices=stable_model_list, | |
value=stable_model_list[0], | |
label="Image-Image Model Id", | |
) | |
image2image_prompt = gr.Textbox( | |
lines=1, value=stable_prompt_list[0], label="Prompt" | |
) | |
image2image_negative_prompt = gr.Textbox( | |
lines=1, | |
value=stable_negative_prompt_list[0], | |
label="Negative Prompt", | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
image2image_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
image2image_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
image2image_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Image(label="Output") | |
gr.Examples( | |
fn=stable_diffusion_img2img, | |
examples=[ | |
[ | |
data_list[0], | |
stable_model_list[0], | |
stable_prompt_list[0], | |
stable_negative_prompt_list[0], | |
7.5, | |
50, | |
], | |
], | |
inputs=[ | |
image2image2_image_file, | |
image2image_model_path, | |
image2image_prompt, | |
image2image_negative_prompt, | |
image2image_guidance_scale, | |
image2image_num_inference_step, | |
], | |
outputs=[output_image], | |
cache_examples=False, | |
label="Image-Image Generator", | |
) | |
image2image_predict.click( | |
fn=stable_diffusion_img2img, | |
inputs=[ | |
image2image2_image_file, | |
image2image_model_path, | |
image2image_prompt, | |
image2image_negative_prompt, | |
image2image_guidance_scale, | |
image2image_num_inference_step, | |
], | |
outputs=[output_image], | |
) | |