yuan2023's picture
Duplicate from ArtGAN/Stable-Diffusion-ControlNet-WebUI
01800de
import gradio as gr
import torch
from diffusers import DDIMScheduler, StableDiffusionPipeline
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"sd-dreambooth-library/disco-diffusion-style",
"prompthero/openjourney-v2",
"andite/anything-v4.0",
"Lykon/DreamShaper",
"nitrosocke/Nitro-Diffusion",
"dreamlike-art/dreamlike-diffusion-1.0",
]
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
stable_negative_prompt_list = ["bad, ugly", "deformed"]
def stable_diffusion_text2img(
model_path: str,
prompt: str,
negative_prompt: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
):
pipe = StableDiffusionPipeline.from_pretrained(
model_path, safety_checker=None, torch_dtype=torch.float16
).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
images = pipe(
prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
).images
return images[0]
def stable_diffusion_text2img_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Text-Image Model Id",
)
text2image_prompt = gr.Textbox(
lines=1, value=stable_prompt_list[0], label="Prompt"
)
text2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label="Negative Prompt",
)
with gr.Accordion("Advanced Options", open=False):
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Height",
)
text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=768,
label="Image Width",
)
text2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Image(label="Output")
gr.Examples(
examples=[
[
stable_model_list[0],
stable_prompt_list[0],
stable_negative_prompt_list[0],
7.5,
50,
512,
768,
]
],
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
],
outputs=[output_image],
cache_examples=False,
fn=stable_diffusion_text2img,
label="Text2Image Example",
)
text2image_predict.click(
fn=stable_diffusion_text2img,
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
],
outputs=output_image,
)