Spaces:
Configuration error
Configuration error
import gradio as gr | |
import torch | |
from diffusers import DDIMScheduler, StableDiffusionPipeline | |
stable_model_list = [ | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/stable-diffusion-2-1", | |
"sd-dreambooth-library/disco-diffusion-style", | |
"prompthero/openjourney-v2", | |
"andite/anything-v4.0", | |
"Lykon/DreamShaper", | |
"nitrosocke/Nitro-Diffusion", | |
"dreamlike-art/dreamlike-diffusion-1.0", | |
] | |
stable_prompt_list = ["a photo of a man.", "a photo of a girl."] | |
stable_negative_prompt_list = ["bad, ugly", "deformed"] | |
def stable_diffusion_text2img( | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: int, | |
num_inference_step: int, | |
height: int, | |
width: int, | |
): | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_path, safety_checker=None, torch_dtype=torch.float16 | |
).to("cuda") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
images = pipe( | |
prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
).images | |
return images[0] | |
def stable_diffusion_text2img_app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
text2image_model_path = gr.Dropdown( | |
choices=stable_model_list, | |
value=stable_model_list[0], | |
label="Text-Image Model Id", | |
) | |
text2image_prompt = gr.Textbox( | |
lines=1, value=stable_prompt_list[0], label="Prompt" | |
) | |
text2image_negative_prompt = gr.Textbox( | |
lines=1, | |
value=stable_negative_prompt_list[0], | |
label="Negative Prompt", | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
text2image_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
text2image_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
text2image_height = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
step=32, | |
value=512, | |
label="Image Height", | |
) | |
text2image_width = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
step=32, | |
value=768, | |
label="Image Width", | |
) | |
text2image_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Image(label="Output") | |
gr.Examples( | |
examples=[ | |
[ | |
stable_model_list[0], | |
stable_prompt_list[0], | |
stable_negative_prompt_list[0], | |
7.5, | |
50, | |
512, | |
768, | |
] | |
], | |
inputs=[ | |
text2image_model_path, | |
text2image_prompt, | |
text2image_negative_prompt, | |
text2image_guidance_scale, | |
text2image_num_inference_step, | |
text2image_height, | |
text2image_width, | |
], | |
outputs=[output_image], | |
cache_examples=False, | |
fn=stable_diffusion_text2img, | |
label="Text2Image Example", | |
) | |
text2image_predict.click( | |
fn=stable_diffusion_text2img, | |
inputs=[ | |
text2image_model_path, | |
text2image_prompt, | |
text2image_negative_prompt, | |
text2image_guidance_scale, | |
text2image_num_inference_step, | |
text2image_height, | |
text2image_width, | |
], | |
outputs=output_image, | |
) | |