File size: 7,637 Bytes
7472549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Adapted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

from collections import defaultdict
import copy
import os
from dataclasses import dataclass, field
import random
import json
import logging
import pathlib
from typing import Dict, Optional, Sequence, List

import torch
import torch.distributed as dist


from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType

import transformers
from torch.utils.data import Dataset
from transformers import Trainer, AddedToken, BitsAndBytesConfig, deepspeed

from fastchat.train.train_flant5 import (
    smart_tokenizer_and_embedding_resize,
    make_supervised_data_module,
)

from fastchat.train.train_lora import get_peft_state_maybe_zero_3

from fastchat.model.model_adapter import get_conversation_template

default_conversation = get_conversation_template("t5")

# TODO: import and use code from ../data/dataset.py

IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"


@dataclass
class LoraArguments:
    lora_r: int = 8
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_target_modules: List[str] = field(default_factory=lambda: ["q", "v"])
    lora_weight_path: str = ""
    lora_bias: str = "none"
    q_lora: bool = False


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")


@dataclass
class DataArguments:
    data_path: str = field(
        default=None, metadata={"help": "Path to the training data."}
    )
    lazy_preprocess: bool = False
    num_data: int = -1
    preprocessed_path: str = field(
        default=None, metadata={"help": "Path to the preprocessed training data."}
    )


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=2048,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )


def safe_save_model_for_hf_trainer(
    trainer: transformers.Trainer, output_dir: str, state_dict: dict
):
    """Collects the state dict and dump to disk."""

    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


def train():
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments, LoraArguments)
    )
    (
        model_args,
        data_args,
        training_args,
        lora_args,
    ) = parser.parse_args_into_dataclasses()

    device_map = None
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    ddp = world_size != 1
    if lora_args.q_lora:
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
        if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
            logging.warning(
                "FSDP and ZeRO3 are both currently incompatible with QLoRA."
            )

    compute_dtype = (
        torch.float16
        if training_args.fp16
        else (torch.bfloat16 if training_args.bf16 else torch.float32)
    )

    model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        device_map=device_map,
        quantization_config=BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=compute_dtype,
        )
        if lora_args.q_lora
        else None,
    )

    lora_config = LoraConfig(
        r=lora_args.lora_r,
        lora_alpha=lora_args.lora_alpha,
        target_modules=lora_args.lora_target_modules,
        lora_dropout=lora_args.lora_dropout,
        bias=lora_args.lora_bias,
        task_type=TaskType.SEQ_2_SEQ_LM,
    )

    if lora_args.q_lora:
        model = prepare_model_for_kbit_training(
            model, use_gradient_checkpointing=training_args.gradient_checkpointing
        )
        if not ddp and torch.cuda.device_count() > 1:
            # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
            model.is_parallelizable = True
            model.model_parallel = True

    model = get_peft_model(model, lora_config)
    if training_args.deepspeed is not None and training_args.local_rank == 0:
        model.print_trainable_parameters()

    if training_args.gradient_checkpointing:
        model.enable_input_require_grads()

    # Dacheng: Note we can only use T5Tokenizer, otherwise it will prepend
    # a space before special tokens.
    tokenizer = transformers.T5Tokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=False,
    )

    smart_tokenizer_and_embedding_resize(
        special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
        other_tokens=["<", "{", "\n", "}", "`", " ", "\\", "^", "\t"],
        tokenizer=tokenizer,
        model=model,
    )

    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)

    trainer = Trainer(
        model=model, tokenizer=tokenizer, args=training_args, **data_module
    )

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()
    # check if zero3 mode enabled
    if deepspeed.is_deepspeed_zero3_enabled():
        # use deepspeed engine internal function to gather state dict
        # state_dict_zero3 contains whole parameters of base and lora adapters
        # we will not extract lora parameters since peft save_pretrained will do that
        # https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/peft_model.py#L125
        # https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/utils/save_and_load.py#L19
        state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
        if training_args.local_rank == 0:
            state_dict = state_dict_zero3
    else:
        # in other mode we use original code from fastchat team, to make sure our change is minimum
        state_dict = get_peft_state_maybe_zero_3(
            model.named_parameters(), lora_args.lora_bias
        )

    if training_args.local_rank == 0:
        safe_save_model_for_hf_trainer(
            trainer=trainer, output_dir=training_args.output_dir, state_dict=state_dict
        )


if __name__ == "__main__":
    train()