File size: 7,844 Bytes
cf1798b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""
Clean chatbot arena battle log.

Usage:
python3 clean_battle_data.py --mode conv_release
"""
import argparse
import datetime
import json
import os
from pytz import timezone
import time

from tqdm import tqdm

from fastchat.serve.monitor.basic_stats import get_log_files, NUM_SERVERS
from fastchat.utils import detect_language


VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
IDENTITY_WORDS = [
    "vicuna",
    "lmsys",
    "koala",
    "uc berkeley",
    "open assistant",
    "laion",
    "chatglm",
    "chatgpt",
    "openai",
    "anthropic",
    "claude",
    "bard",
    "palm",
    "lamda",
    "google",
    "llama",
    "NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.",
    "$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.",
]

for i in range(len(IDENTITY_WORDS)):
    IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower()


def get_log_files(max_num_files=None):
    dates = []
    for month in range(4, 12):
        for day in range(1, 33):
            dates.append(f"2023-{month:02d}-{day:02d}")

    filenames = []
    for d in dates:
        for i in range(NUM_SERVERS):
            name = os.path.expanduser(f"~/fastchat_logs/server{i}/{d}-conv.json")
            if os.path.exists(name):
                filenames.append(name)
    max_num_files = max_num_files or len(filenames)
    filenames = filenames[-max_num_files:]
    return filenames


def remove_html(raw):
    if raw.startswith("<h3>"):
        return raw[raw.find(": ") + 2 : -len("</h3>\n")]
    return raw


def to_openai_format(messages):
    roles = ["user", "assistant"]
    ret = []
    for i, x in enumerate(messages):
        ret.append({"role": roles[i % 2], "content": x[1]})
    return ret


def replace_model_name(old_name):
    return (
        old_name.replace("bard", "palm-2")
        .replace("claude-v1", "claude-1")
        .replace("claude-instant-v1", "claude-instant-1")
        .replace("oasst-sft-1-pythia-12b", "oasst-pythia-12b")
    )


def clean_battle_data(log_files, exclude_model_names):
    data = []
    for filename in tqdm(log_files, desc="read files"):
        for retry in range(5):
            try:
                lines = open(filename).readlines()
                break
            except FileNotFoundError:
                time.sleep(2)

        for l in lines:
            row = json.loads(l)
            if row["type"] in VOTES:
                data.append(row)

    convert_type = {
        "leftvote": "model_a",
        "rightvote": "model_b",
        "tievote": "tie",
        "bothbad_vote": "tie (bothbad)",
    }

    all_models = set()
    all_ips = dict()
    ct_anony = 0
    ct_invalid = 0
    ct_leaked_identity = 0
    battles = []
    for row in data:
        if row["models"][0] is None or row["models"][1] is None:
            continue

        # Resolve model names
        models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
        if "model_name" in row["states"][0]:
            models_hidden = [
                row["states"][0]["model_name"],
                row["states"][1]["model_name"],
            ]
            if models_hidden[0] is None:
                models_hidden = models_public
        else:
            models_hidden = models_public

        if (models_public[0] == "" and models_public[1] != "") or (
            models_public[1] == "" and models_public[0] != ""
        ):
            ct_invalid += 1
            continue

        if models_public[0] == "" or models_public[0] == "Model A":
            anony = True
            models = models_hidden
            ct_anony += 1
        else:
            anony = False
            models = models_public
            if not models_public == models_hidden:
                ct_invalid += 1
                continue

        # Detect langauge
        state = row["states"][0]
        if state["offset"] >= len(state["messages"]):
            ct_invalid += 1
            continue
        lang_code = detect_language(state["messages"][state["offset"]][1])

        # Drop conversations if the model names are leaked
        leaked_identity = False
        messages = ""
        for i in range(2):
            state = row["states"][i]
            for role, msg in state["messages"][state["offset"] :]:
                if msg:
                    messages += msg.lower()
        for word in IDENTITY_WORDS:
            if word in messages:
                leaked_identity = True
                break

        if leaked_identity:
            ct_leaked_identity += 1
            continue

        # Replace bard with palm
        models = [replace_model_name(m) for m in models]

        # Exclude certain models
        if any(x in exclude_model_names for x in models):
            ct_invalid += 1
            continue

        question_id = row["states"][0]["conv_id"]
        conversation_a = to_openai_format(
            row["states"][0]["messages"][row["states"][0]["offset"] :]
        )
        conversation_b = to_openai_format(
            row["states"][1]["messages"][row["states"][1]["offset"] :]
        )

        ip = row["ip"]
        if ip not in all_ips:
            all_ips[ip] = len(all_ips)
        user_id = all_ips[ip]

        # Save the results
        battles.append(
            dict(
                question_id=question_id,
                model_a=models[0],
                model_b=models[1],
                winner=convert_type[row["type"]],
                judge=f"arena_user_{user_id}",
                conversation_a=conversation_a,
                conversation_b=conversation_b,
                turn=len(conversation_a) // 2,
                anony=anony,
                language=lang_code,
                tstamp=row["tstamp"],
            )
        )

        all_models.update(models_hidden)
    battles.sort(key=lambda x: x["tstamp"])
    last_updated_tstamp = battles[-1]["tstamp"]

    last_updated_datetime = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y-%m-%d %H:%M:%S %Z")

    print(
        f"#votes: {len(data)}, #invalid votes: {ct_invalid}, "
        f"#leaked_identity: {ct_leaked_identity}"
    )
    print(f"#battles: {len(battles)}, #anony: {ct_anony}")
    print(f"#models: {len(all_models)}, {all_models}")
    print(f"last-updated: {last_updated_datetime}")

    return battles


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--max-num-files", type=int)
    parser.add_argument(
        "--mode", type=str, choices=["simple", "conv_release"], default="simple"
    )
    parser.add_argument("--exclude-model-names", type=str, nargs="+")
    args = parser.parse_args()

    log_files = get_log_files(args.max_num_files)
    battles = clean_battle_data(log_files, args.exclude_model_names or [])
    last_updated_tstamp = battles[-1]["tstamp"]
    cutoff_date = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y%m%d")

    if args.mode == "simple":
        for x in battles:
            for key in [
                "conversation_a",
                "conversation_b",
                "question_id",
            ]:
                del x[key]
        print("Samples:")
        for i in range(4):
            print(battles[i])
        output = f"clean_battle_{cutoff_date}.json"
    elif args.mode == "conv_release":
        new_battles = []
        for x in battles:
            if not x["anony"]:
                continue
            for key in []:
                del x[key]
            new_battles.append(x)
        battles = new_battles
        output = f"clean_battle_conv_{cutoff_date}.json"

    with open(output, "w") as fout:
        json.dump(battles, fout, indent=2, ensure_ascii=False)
    print(f"Write cleaned data to {output}")