Spaces:
Runtime error
Runtime error
File size: 7,844 Bytes
cf1798b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
"""
Clean chatbot arena battle log.
Usage:
python3 clean_battle_data.py --mode conv_release
"""
import argparse
import datetime
import json
import os
from pytz import timezone
import time
from tqdm import tqdm
from fastchat.serve.monitor.basic_stats import get_log_files, NUM_SERVERS
from fastchat.utils import detect_language
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
IDENTITY_WORDS = [
"vicuna",
"lmsys",
"koala",
"uc berkeley",
"open assistant",
"laion",
"chatglm",
"chatgpt",
"openai",
"anthropic",
"claude",
"bard",
"palm",
"lamda",
"google",
"llama",
"NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.",
"$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.",
]
for i in range(len(IDENTITY_WORDS)):
IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower()
def get_log_files(max_num_files=None):
dates = []
for month in range(4, 12):
for day in range(1, 33):
dates.append(f"2023-{month:02d}-{day:02d}")
filenames = []
for d in dates:
for i in range(NUM_SERVERS):
name = os.path.expanduser(f"~/fastchat_logs/server{i}/{d}-conv.json")
if os.path.exists(name):
filenames.append(name)
max_num_files = max_num_files or len(filenames)
filenames = filenames[-max_num_files:]
return filenames
def remove_html(raw):
if raw.startswith("<h3>"):
return raw[raw.find(": ") + 2 : -len("</h3>\n")]
return raw
def to_openai_format(messages):
roles = ["user", "assistant"]
ret = []
for i, x in enumerate(messages):
ret.append({"role": roles[i % 2], "content": x[1]})
return ret
def replace_model_name(old_name):
return (
old_name.replace("bard", "palm-2")
.replace("claude-v1", "claude-1")
.replace("claude-instant-v1", "claude-instant-1")
.replace("oasst-sft-1-pythia-12b", "oasst-pythia-12b")
)
def clean_battle_data(log_files, exclude_model_names):
data = []
for filename in tqdm(log_files, desc="read files"):
for retry in range(5):
try:
lines = open(filename).readlines()
break
except FileNotFoundError:
time.sleep(2)
for l in lines:
row = json.loads(l)
if row["type"] in VOTES:
data.append(row)
convert_type = {
"leftvote": "model_a",
"rightvote": "model_b",
"tievote": "tie",
"bothbad_vote": "tie (bothbad)",
}
all_models = set()
all_ips = dict()
ct_anony = 0
ct_invalid = 0
ct_leaked_identity = 0
battles = []
for row in data:
if row["models"][0] is None or row["models"][1] is None:
continue
# Resolve model names
models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
if "model_name" in row["states"][0]:
models_hidden = [
row["states"][0]["model_name"],
row["states"][1]["model_name"],
]
if models_hidden[0] is None:
models_hidden = models_public
else:
models_hidden = models_public
if (models_public[0] == "" and models_public[1] != "") or (
models_public[1] == "" and models_public[0] != ""
):
ct_invalid += 1
continue
if models_public[0] == "" or models_public[0] == "Model A":
anony = True
models = models_hidden
ct_anony += 1
else:
anony = False
models = models_public
if not models_public == models_hidden:
ct_invalid += 1
continue
# Detect langauge
state = row["states"][0]
if state["offset"] >= len(state["messages"]):
ct_invalid += 1
continue
lang_code = detect_language(state["messages"][state["offset"]][1])
# Drop conversations if the model names are leaked
leaked_identity = False
messages = ""
for i in range(2):
state = row["states"][i]
for role, msg in state["messages"][state["offset"] :]:
if msg:
messages += msg.lower()
for word in IDENTITY_WORDS:
if word in messages:
leaked_identity = True
break
if leaked_identity:
ct_leaked_identity += 1
continue
# Replace bard with palm
models = [replace_model_name(m) for m in models]
# Exclude certain models
if any(x in exclude_model_names for x in models):
ct_invalid += 1
continue
question_id = row["states"][0]["conv_id"]
conversation_a = to_openai_format(
row["states"][0]["messages"][row["states"][0]["offset"] :]
)
conversation_b = to_openai_format(
row["states"][1]["messages"][row["states"][1]["offset"] :]
)
ip = row["ip"]
if ip not in all_ips:
all_ips[ip] = len(all_ips)
user_id = all_ips[ip]
# Save the results
battles.append(
dict(
question_id=question_id,
model_a=models[0],
model_b=models[1],
winner=convert_type[row["type"]],
judge=f"arena_user_{user_id}",
conversation_a=conversation_a,
conversation_b=conversation_b,
turn=len(conversation_a) // 2,
anony=anony,
language=lang_code,
tstamp=row["tstamp"],
)
)
all_models.update(models_hidden)
battles.sort(key=lambda x: x["tstamp"])
last_updated_tstamp = battles[-1]["tstamp"]
last_updated_datetime = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y-%m-%d %H:%M:%S %Z")
print(
f"#votes: {len(data)}, #invalid votes: {ct_invalid}, "
f"#leaked_identity: {ct_leaked_identity}"
)
print(f"#battles: {len(battles)}, #anony: {ct_anony}")
print(f"#models: {len(all_models)}, {all_models}")
print(f"last-updated: {last_updated_datetime}")
return battles
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--max-num-files", type=int)
parser.add_argument(
"--mode", type=str, choices=["simple", "conv_release"], default="simple"
)
parser.add_argument("--exclude-model-names", type=str, nargs="+")
args = parser.parse_args()
log_files = get_log_files(args.max_num_files)
battles = clean_battle_data(log_files, args.exclude_model_names or [])
last_updated_tstamp = battles[-1]["tstamp"]
cutoff_date = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y%m%d")
if args.mode == "simple":
for x in battles:
for key in [
"conversation_a",
"conversation_b",
"question_id",
]:
del x[key]
print("Samples:")
for i in range(4):
print(battles[i])
output = f"clean_battle_{cutoff_date}.json"
elif args.mode == "conv_release":
new_battles = []
for x in battles:
if not x["anony"]:
continue
for key in []:
del x[key]
new_battles.append(x)
battles = new_battles
output = f"clean_battle_conv_{cutoff_date}.json"
with open(output, "w") as fout:
json.dump(battles, fout, indent=2, ensure_ascii=False)
print(f"Write cleaned data to {output}")
|