demo_test / fastchat /train /llama2_flash_attn_monkey_patch.py
yuantao-infini-ai's picture
Upload 136 files
7472549 verified
import warnings
from typing import Optional, Tuple
import torch
from flash_attn import __version__ as flash_attn_version
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import (
flash_attn_func,
flash_attn_varlen_kvpacked_func,
)
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaModel,
rotate_half,
)
def apply_rotary_pos_emb(q, k, cos_sin, position_ids):
gather_indices = position_ids[:, :, None, None] # [bsz, seq_len, 1, 1]
gather_indices = gather_indices.repeat(
1, 1, cos_sin[0].shape[1], cos_sin[0].shape[3]
)
bsz = gather_indices.shape[0]
cos, sin = (
torch.gather(x.transpose(1, 2).repeat(bsz, 1, 1, 1), 1, gather_indices)
for x in cos_sin
)
q, k = ((x * cos) + (rotate_half(x) * sin) for x in (q, k))
return q, k
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
bsz, q_len, _ = hidden_states.size()
kv_heads = getattr(self, "num_key_value_heads", self.num_heads)
q, k, v = (
op(hidden_states).view(bsz, q_len, nh, self.head_dim)
for op, nh in (
(self.q_proj, self.num_heads),
(self.k_proj, kv_heads),
(self.v_proj, kv_heads),
)
)
# shape: (b, s, num_heads, head_dim)
kv_seq_len = k.shape[1]
past_kv_len = 0
if past_key_value is not None:
past_kv_len = past_key_value[0].shape[2]
kv_seq_len += past_kv_len
cos_sin = self.rotary_emb(v, seq_len=kv_seq_len)
q, k = apply_rotary_pos_emb(q, k, cos_sin, position_ids)
if past_key_value is not None:
assert (
flash_attn_version >= "2.1.0"
), "past_key_value support requires flash-attn >= 2.1.0"
# reuse k, v
k = torch.cat([past_key_value[0].transpose(1, 2), k], dim=1)
v = torch.cat([past_key_value[1].transpose(1, 2), v], dim=1)
past_key_value = (k.transpose(1, 2), v.transpose(1, 2)) if use_cache else None
if attention_mask is None:
output = flash_attn_func(q, k, v, 0.0, softmax_scale=None, causal=True).view(
bsz, q_len, -1
)
else:
q, indices, cu_q_lens, max_s = unpad_input(q, attention_mask[:, -q_len:])
# We can skip concat and call unpad twice but seems better to call unpad only once.
kv, _, cu_k_lens, max_k = unpad_input(
torch.stack((k, v), dim=2), attention_mask
)
output_unpad = flash_attn_varlen_kvpacked_func(
q,
kv,
cu_q_lens,
cu_k_lens,
max_s,
max_k,
0.0,
softmax_scale=None,
causal=True,
)
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
output = pad_input(output_unpad, indices, bsz, q_len)
return self.o_proj(output), None, past_key_value
# Disable the transformation of the attention mask in LlamaModel as flash attention
# takes a boolean key_padding_mask. Fills in the past kv length for use in forward.
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
if past_key_values_length > 0 and attention_mask is not None:
attention_mask = torch.cat(
(
torch.full(
(input_shape[0], past_key_values_length),
True,
dtype=attention_mask.dtype,
device=attention_mask.device,
),
attention_mask,
),
dim=-1,
)
if attention_mask is not None and torch.all(attention_mask):
return None # This uses the faster call when training with full samples
return attention_mask
def replace_llama_attn_with_flash_attn():
cuda_major, cuda_minor = torch.cuda.get_device_capability()
if cuda_major < 8:
warnings.warn(
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
)
LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
LlamaAttention.forward = forward
def test():
from fastchat.train.llama_flash_attn_monkey_patch import forward as fastchat_forward
from transformers.models.llama.configuration_llama import LlamaConfig
config = LlamaConfig(
hidden_size=1024,
intermediate_size=128,
num_hidden_layers=1,
num_attention_heads=8,
max_position_embeddings=16,
)
device = torch.device("cuda")
model = LlamaModel(config)
attn = LlamaAttention(config).to(device).half()
bsz, hs, seqlen = 2, config.hidden_size, config.max_position_embeddings
position_ids = torch.arange(seqlen, dtype=torch.long, device=device).view(
-1, seqlen
)
mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device)
for i in range(4):
hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device)
if i:
mask[0, -i:] = False
mask[1, :i] = False
lmask = model._prepare_decoder_attention_mask(mask, hidden.shape[:2], hidden, 0)
ref, _, _ = attn.forward(
hidden, attention_mask=lmask, position_ids=position_ids
)
fast, _, _ = fastchat_forward(
attn, hidden, attention_mask=mask, position_ids=position_ids
)
lmask = _prepare_decoder_attention_mask(
model, mask, hidden.shape[:2], hidden, 0
)
test, _, _ = forward(
attn, hidden, attention_mask=lmask, position_ids=position_ids
)
print(f"Mean(abs(ref)) = {torch.mean(torch.abs(ref))}")
print(f"Mean(abs(ref - fast)) = {torch.mean(torch.abs(ref - fast))}")
print(f"Mean(abs(ref - test)) = {torch.mean(torch.abs(ref - test))}")
print(f"Mean(abs(fast - test)) = {torch.mean(torch.abs(fast - test))}")
print(f"allclose(fast, test) = {torch.allclose(fast, test)}")
with torch.no_grad():
# Also check that past_kv is handled properly
hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device)
part_len = seqlen // 4
assert part_len * 4 == seqlen
mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device)
mask[0, -2:] = False
lmask = _prepare_decoder_attention_mask(
model, mask, hidden.shape[:2], hidden, 0
)
oneshot, _, _ = forward(
attn, hidden, attention_mask=lmask, position_ids=position_ids
)
parts = []
past_kv, past_kv_len = None, 0
for i in range(4):
start = part_len * i
end = start + part_len
hidden_part = hidden[:, start:end, ...]
lmask = _prepare_decoder_attention_mask(
model,
mask[:, start:end],
hidden_part.shape[:2],
hidden_part,
past_kv_len,
)
part, _, past_kv = forward(
attn,
hidden_part.clone(),
attention_mask=lmask,
position_ids=position_ids[:, start:end],
past_key_value=past_kv,
use_cache=True,
)
parts.append(part)
past_kv_len = past_kv[0].shape[2]
print(
f"allclose(oneshot[:, 0], parts[0]) = {torch.allclose(oneshot[:, :part_len], parts[0])}"
)
print(
f"allclose(oneshot, parts) = {torch.allclose(oneshot, torch.cat(parts, dim=1))}"
)
if __name__ == "__main__":
test()