Spaces:
Runtime error
Runtime error
""" | |
Usage: | |
python3 topic_clustering.py --in arena.json --english-only --min-length 32 | |
python3 topic_clustering.py --in clean_conv_20230809_100k.json --english-only --min-length 32 --max-length 1536 | |
""" | |
import argparse | |
import json | |
import pickle | |
import string | |
import time | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers.util import cos_sim | |
from sklearn.cluster import KMeans, AgglomerativeClustering | |
import torch | |
from tqdm import tqdm | |
from fastchat.utils import detect_language | |
def remove_punctuation(input_string): | |
# Make a translator object to remove all punctuation | |
translator = str.maketrans("", "", string.punctuation) | |
# Use the translator object to remove the punctuation | |
no_punct = input_string.translate(translator) | |
return no_punct | |
def read_texts(input_file, min_length, max_length, english_only): | |
visited = set() | |
texts = [] | |
lines = json.load(open(input_file, "r")) | |
for l in tqdm(lines): | |
if "text" in l: | |
line_texts = [l["text"]] | |
elif "conversation_a" in l: | |
line_texts = [ | |
x["content"] for x in l["conversation_a"] if x["role"] == "user" | |
] | |
elif "conversation" in l: | |
line_texts = [ | |
x["content"] for x in l["conversation"] if x["role"] == "user" | |
] | |
for text in line_texts: | |
text = text.strip() | |
# Filter language | |
if english_only: | |
lang = detect_language(text) | |
if lang != "English": | |
continue | |
# Filter short or long prompts | |
if min_length: | |
if len(text) < min_length: | |
continue | |
if max_length: | |
if len(text) > max_length: | |
continue | |
# De-duplication | |
words = sorted([x.lower() for x in remove_punctuation(text).split(" ")]) | |
words = "".join(words) | |
if words in visited: | |
continue | |
visited.add(words) | |
texts.append(text) | |
return np.array(texts) | |
def get_embeddings(texts, model_name, batch_size): | |
model = SentenceTransformer(model_name) | |
embeddings = model.encode( | |
texts, | |
batch_size=batch_size, | |
show_progress_bar=True, | |
device="cuda", | |
convert_to_tensor=True, | |
) | |
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) | |
return embeddings.cpu() | |
def run_k_means(embeddings, num_clusters): | |
np.random.seed(42) | |
clustering_model = KMeans(n_clusters=num_clusters, n_init="auto") | |
clustering_model.fit(embeddings.numpy()) | |
centers = torch.from_numpy(clustering_model.cluster_centers_) | |
labels = torch.from_numpy(clustering_model.labels_) | |
# Sort labels | |
classes, counts = np.unique(labels, return_counts=True) | |
indices = np.argsort(counts)[::-1] | |
classes = [classes[i] for i in indices] | |
new_labels = torch.empty_like(labels) | |
new_centers = torch.empty_like(centers) | |
for i, c in enumerate(classes): | |
new_labels[labels == c] = i | |
new_centers[i] = centers[c] | |
return new_centers, new_labels | |
def run_agg_cluster(embeddings, num_clusters): | |
np.random.seed(42) | |
clustering_model = AgglomerativeClustering(n_clusters=num_clusters) | |
clustering_model.fit(embeddings) | |
labels = torch.from_numpy(clustering_model.labels_) | |
# Sort labels | |
classes, counts = np.unique(labels, return_counts=True) | |
indices = np.argsort(counts)[::-1] | |
classes = [classes[i] for i in indices] | |
new_labels = torch.empty_like(labels) | |
for i, c in enumerate(classes): | |
new_labels[labels == c] = i | |
# Compute centers | |
centers = [] | |
for i in range(len(classes)): | |
centers.append(embeddings[new_labels == i].mean(axis=0, keepdim=True)) | |
centers = torch.cat(centers) | |
return centers, new_labels | |
def run_hdbscan_cluster(embeddings): | |
import hdbscan | |
np.random.seed(42) | |
clusterer = hdbscan.HDBSCAN(min_cluster_size=10) | |
labels = torch.from_numpy(clusterer.fit_predict(embeddings)) | |
# Sort labels | |
classes, counts = np.unique(labels, return_counts=True) | |
indices = np.argsort(counts)[::-1] | |
classes = [classes[i] for i in indices] | |
new_labels = torch.empty_like(labels) | |
for i, c in enumerate(classes): | |
new_labels[labels == c] = i | |
# Compute centers | |
centers = [] | |
for i in range(len(classes)): | |
centers.append(embeddings[new_labels == i].mean(axis=0, keepdim=True)) | |
centers = torch.cat(centers) | |
return centers, new_labels | |
def get_topk_indices(centers, labels, embeddings, topk): | |
indices = [] | |
arange = torch.arange(len(labels)) | |
counts = torch.unique(labels, return_counts=True)[1] | |
topk = min(topk, counts.min().item()) | |
for i in range(len(centers)): | |
tmp_indices = labels == i | |
tmp_arange = arange[tmp_indices] | |
tmp_embeddings = embeddings[tmp_indices] | |
scores = cos_sim(centers[i].unsqueeze(0), tmp_embeddings)[0] | |
sorted_indices = torch.flip(torch.argsort(scores), dims=[0]) | |
indices.append(tmp_arange[sorted_indices[:topk]].unsqueeze(0)) | |
return torch.cat(indices) | |
def print_topk(texts, labels, topk_indices, show_cut_off): | |
ret = "" | |
for k in range(len(topk_indices)): | |
num_samples = torch.sum(labels == k).item() | |
ret += "=" * 20 + f" cluster {k}, #samples: {num_samples} " + "=" * 20 + "\n" | |
for idx in topk_indices[k]: | |
ret += "PROMPT: " + texts[idx][:show_cut_off] + "\n" | |
ret += "=" * 40 + "\n\n" | |
return ret | |
def get_cluster_info(texts, labels, topk_indices): | |
np.random.seed(42) | |
cluster_info = [] | |
for k in range(len(topk_indices)): | |
num_samples = torch.sum(labels == k).item() | |
topk_prompts = [] | |
for idx in topk_indices[k]: | |
topk_prompts.append(texts[idx]) | |
random_prompts = [] | |
for idx in range(len(topk_indices)): | |
random_prompts.append(np.random.choice(texts)) | |
cluster_info.append((num_samples, topk_prompts, random_prompts)) | |
return cluster_info | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--input-file", type=str, required=True) | |
parser.add_argument("--model", type=str, default="all-mpnet-base-v2") | |
# default="all-MiniLM-L12-v2") | |
# default="multi-qa-distilbert-cos-v1") | |
parser.add_argument("--batch-size", type=int, default=256) | |
parser.add_argument("--min-length", type=int) | |
parser.add_argument("--max-length", type=int) | |
parser.add_argument("--english-only", action="store_true") | |
parser.add_argument("--num-clusters", type=int, default=20) | |
parser.add_argument( | |
"--cluster-alg", | |
type=str, | |
choices=["kmeans", "aggcls", "HDBSCAN"], | |
default="kmeans", | |
) | |
parser.add_argument("--show-top-k", type=int, default=200) | |
parser.add_argument("--show-cut-off", type=int, default=512) | |
args = parser.parse_args() | |
num_clusters = args.num_clusters | |
show_top_k = args.show_top_k | |
show_cut_off = args.show_cut_off | |
texts = read_texts( | |
args.input_file, args.min_length, args.max_length, args.english_only | |
) | |
print(f"#text: {len(texts)}") | |
embeddings = get_embeddings(texts, args.model, args.batch_size) | |
if args.cluster_alg == "kmeans": | |
centers, labels = run_k_means(embeddings, num_clusters) | |
elif args.cluster_alg == "aggcls": | |
centers, labels = run_agg_cluster(embeddings, num_clusters) | |
elif args.cluster_alg == "HDBSCAN": | |
centers, labels = run_hdbscan_cluster(embeddings) | |
else: | |
raise ValueError(f"Invalid clustering algorithm: {args.cluster_alg}") | |
topk_indices = get_topk_indices(centers, labels, embeddings, args.show_top_k) | |
topk_str = print_topk(texts, labels, topk_indices, args.show_cut_off) | |
num_clusters = len(centers) | |
# Dump results | |
filename_prefix = f"results_c{num_clusters}_{args.cluster_alg}" | |
print(topk_str) | |
with open(filename_prefix + "_topk.txt", "w") as fout: | |
fout.write(topk_str) | |
with open(filename_prefix + "_all.txt", "w") as fout: | |
for i in range(len(centers)): | |
tmp_indices = labels == i | |
tmp_embeddings = embeddings[tmp_indices] | |
tmp_texts = texts[tmp_indices] | |
scores = cos_sim(centers[i].unsqueeze(0), tmp_embeddings)[0] | |
sorted_indices = torch.flip(torch.argsort(scores), dims=[0]) | |
for text, score in zip(tmp_texts[sorted_indices], scores[sorted_indices]): | |
obj = {"cluster": i, "text": text, "sim": score.item()} | |
fout.write(json.dumps(obj, ensure_ascii=False) + "\n") | |
cluster_info = get_cluster_info(texts, labels, topk_indices) | |
with open(filename_prefix + "_cluster.pkl", "wb") as fout: | |
pickle.dump(cluster_info, fout) | |