File size: 9,988 Bytes
55a66b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import requests
import timm 
import torch
import torchvision.transforms as T
import types
import albumentations as A

from PIL import Image
from tqdm import tqdm
from sklearn.decomposition import PCA
from torch_kmeans import KMeans, CosineSimilarity

cmap = plt.get_cmap("tab20")
MEAN = np.array([123.675, 116.280, 103.530]) / 255
STD = np.array([58.395, 57.120, 57.375]) / 255

transforms = A.Compose([
            A.Normalize(mean=list(MEAN), std=list(STD)),
    ])

def get_intermediate_layers(
    self,
    x: torch.Tensor,
    n=1,
    reshape: bool = False,
    return_prefix_tokens: bool = False,
    return_class_token: bool = False,
    norm: bool = True,
):
    outputs = self._intermediate_layers(x, n)
    if norm:
        outputs = [self.norm(out) for out in outputs]
    if return_class_token:
        prefix_tokens = [out[:, 0] for out in outputs]
    else:
        prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs]
    outputs = [out[:, self.num_prefix_tokens :] for out in outputs]

    if reshape:
        B, C, H, W = x.shape
        grid_size = (
            (H - self.patch_embed.patch_size[0])
            // self.patch_embed.proj.stride[0]
            + 1,
            (W - self.patch_embed.patch_size[1])
            // self.patch_embed.proj.stride[1]
            + 1,
        )
        outputs = [
            out.reshape(x.shape[0], grid_size[0], grid_size[1], -1)
            .permute(0, 3, 1, 2)
            .contiguous()
            for out in outputs
        ]

    if return_prefix_tokens or return_class_token:
        return tuple(zip(outputs, prefix_tokens))
    return tuple(outputs)

def viz_feat(feat):

    _,_,h,w = feat.shape
    feat = feat.squeeze(0).permute((1,2,0))
    projected_featmap = feat.reshape(-1, feat.shape[-1]).cpu()

    pca = PCA(n_components=3)
    pca.fit(projected_featmap)
    pca_features = pca.transform(projected_featmap)
    pca_features = (pca_features - pca_features.min()) / (pca_features.max() - pca_features.min())
    pca_features = pca_features * 255
    res_pred = Image.fromarray(pca_features.reshape(h, w, 3).astype(np.uint8))

    return res_pred

def plot_feats(model_option, ori_feats, fine_feats, ori_labels=None, fine_labels=None):

    ori_feats_map = viz_feat(ori_feats)
    fine_feats_map = viz_feat(fine_feats)

    fig, ax = plt.subplots(2, 2, figsize=(6, 5))
    ax[0][0].imshow(ori_feats_map)
    ax[0][0].set_title("Original " + model_option, fontsize=15)
    ax[0][1].imshow(fine_feats_map)
    ax[0][1].set_title("Ours", fontsize=15)
    ax[1][0].imshow(ori_labels)
    ax[1][1].imshow(fine_labels)
    for xx in ax:
      for x in xx:
        x.xaxis.set_major_formatter(plt.NullFormatter())
        x.yaxis.set_major_formatter(plt.NullFormatter())
        x.set_xticks([])
        x.set_yticks([])
        x.axis('off')

    plt.tight_layout()
    plt.close(fig)
    return fig

    
def download_image(url, save_path):
    response = requests.get(url)
    with open(save_path, 'wb') as file:
        file.write(response.content)


def process_image(image, stride, transforms):
    transformed = transforms(image=np.array(image))
    image_tensor = torch.tensor(transformed['image'])
    image_tensor = image_tensor.permute(2,0,1)
    image_tensor = image_tensor.unsqueeze(0).to(device)

    h, w = image_tensor.shape[2:]

    height_int = (h // stride)*stride
    width_int = (w // stride)*stride

    image_resized = torch.nn.functional.interpolate(image_tensor, size=(height_int, width_int), mode='bilinear')

    return image_resized


def kmeans_clustering(feats_map, n_clusters=20):
    if n_clusters == None:
        n_clusters = 20
    print('num clusters: ', n_clusters)
    B, D, h, w = feats_map.shape
    feats_map_flattened = feats_map.permute((0, 2, 3, 1)).reshape(B, -1, D)

    kmeans_engine = KMeans(n_clusters=n_clusters, distance=CosineSimilarity)
    kmeans_engine.fit(feats_map_flattened)
    labels = kmeans_engine.predict(
        feats_map_flattened
        )
    labels = labels.reshape(
        B, h, w
        ).float()
    labels = labels[0].cpu().numpy()

    label_map = cmap(labels / n_clusters)[..., :3]
    label_map = np.uint8(label_map * 255)
    label_map = Image.fromarray(label_map)

    return label_map
    
def load_model(options):
    original_models = {}
    fine_models = {}
    for option in tqdm(options):
        print('Please wait ...')
        print('loading weights of ', option)
        original_models[option] = timm.create_model(
                timm_model_card[option],
                pretrained=True,
                num_classes=0,
                dynamic_img_size=True,
                dynamic_img_pad=False,
            ).to(device)
        original_models[option].get_intermediate_layers = types.MethodType(
            get_intermediate_layers,
            original_models[option]
        )
            
        fine_models[option] = torch.hub.load("ywyue/FiT3D", our_model_card[option]).to(device)
        fine_models[option].get_intermediate_layers = types.MethodType(
            get_intermediate_layers,
            fine_models[option]
        )
    print('Done! Now play the demo :)')
    return original_models, fine_models
        
if __name__ == "__main__":

    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    print("device: ")
    print(device)

    example_urls = {
        "library.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/library.jpg",
        "livingroom.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/livingroom.jpg",
        "airplane.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/airplane.jpg",
        "ship.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/ship.jpg",
        "chair.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/chair.jpg",
    }

    example_dir = "/tmp/examples"

    os.makedirs(example_dir, exist_ok=True)


    for name, url in example_urls.items():
        save_path = os.path.join(example_dir, name)
        if not os.path.exists(save_path):
            print(f"Downloading to {save_path}...")
            download_image(url, save_path)
        else:
            print(f"{save_path} already exists.")
        
    image_input = gr.Image(label="Choose an image:",
                           height=500,
                           type="pil",
                           image_mode='RGB',
                           sources=['upload', 'webcam', 'clipboard']
                           )

    options = ['DINOv2', 'DINOv2-reg', 'CLIP', 'MAE', 'DeiT-III']
    model_option = gr.Radio(options, value="DINOv2", label='Choose a 2D foundation model')
    kmeans_num = gr.Number(
                            label="number of K-Means clusters", value=20
                        )
    
    timm_model_card = {
        "DINOv2": "vit_small_patch14_dinov2.lvd142m",
        "DINOv2-reg": "vit_small_patch14_reg4_dinov2.lvd142m",
        "CLIP": "vit_base_patch16_clip_384.laion2b_ft_in12k_in1k",
        "MAE": "vit_base_patch16_224.mae",
        "DeiT-III": "deit3_base_patch16_224.fb_in1k"
    }
    
    our_model_card = {
        "DINOv2": "dinov2_small_fine",
        "DINOv2-reg": "dinov2_reg_small_fine",
        "CLIP": "clip_base_fine",
        "MAE": "mae_base_fine",
        "DeiT-III": "deit3_base_fine"
    }


    os.environ['TORCH_HOME'] = '/tmp/.cache'
    os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'

    # Pre-load all models
    original_models, fine_models = load_model(options)
    
    def fit3d(image, model_option, kmeans_num):
        
        # Select model
        original_model = original_models[model_option]
        fine_model = fine_models[model_option]
        
        # Data preprocessing
        p = original_model.patch_embed.patch_size
        stride = p if isinstance(p, int) else p[0]
        image_resized = process_image(image, stride, transforms)


        with torch.no_grad():
            ori_feats = original_model.get_intermediate_layers(image_resized, n=[8,9,10,11], reshape=True, return_prefix_tokens=False,
                                            return_class_token=False, norm=True)
            fine_feats = fine_model.get_intermediate_layers(image_resized, n=[8,9,10,11], reshape=True, return_prefix_tokens=False,
                                            return_class_token=False, norm=True)

        ori_feats = ori_feats[-1]
        fine_feats = fine_feats[-1]

        ori_labels = kmeans_clustering(ori_feats, kmeans_num)
        fine_labels = kmeans_clustering(fine_feats, kmeans_num)
        
        return plot_feats(model_option, ori_feats, fine_feats, ori_labels, fine_labels)
        


    
    demo = gr.Interface(
        title="<div> \
        <h1>FiT3D</h1> \
        <h2>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</h2> \
        <h2>ECCV 2024</h2> \
        </div>",
        description="<div style='display: flex; justify-content: center; align-items: center; text-align: center;'> \
        <a href='https://arxiv.org/abs/2407.20229'><img src='https://img.shields.io/badge/arXiv-2407.20229-red'></a> \
        &nbsp; \
        <a href='https://ywyue.github.io/FiT3D'><img src='https://img.shields.io/badge/Project_Page-FiT3D-green' alt='Project Page'></a> \
        &nbsp; \
        <a href='https://github.com/ywyue/FiT3D'><img src='https://img.shields.io/badge/Github-Code-blue'></a> \
        </div>",
        fn=fit3d, 
        inputs=[image_input, model_option, kmeans_num],
        outputs="plot",
        examples=[
                    ["/tmp/examples/library.jpg", "DINOv2"],
                    ["/tmp/examples/livingroom.jpg", "DINOv2"],
                    ["/tmp/examples/airplane.jpg", "DINOv2"],
                    ["/tmp/examples/ship.jpg", "DINOv2"],
                    ["/tmp/examples/chair.jpg", "DINOv2"],
            ])
    demo.launch()