File size: 15,100 Bytes
51ce47d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""Building blocks for TiTok.

Copyright (2024) Bytedance Ltd. and/or its affiliates

Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 

    http://www.apache.org/licenses/LICENSE-2.0 

Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License. 

Reference: 
    https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py
    https://github.com/baofff/U-ViT/blob/main/libs/timm.py
"""

import torch
import torch.nn as nn
from collections import OrderedDict
import einops
from einops.layers.torch import Rearrange


class ResidualAttentionBlock(nn.Module):
    def __init__(
            self,
            d_model,
            n_head,
            mlp_ratio = 4.0,
            act_layer = nn.GELU,
            norm_layer = nn.LayerNorm
        ):
        super().__init__()

        self.ln_1 = norm_layer(d_model)
        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.mlp_ratio = mlp_ratio
        # optionally we can disable the FFN
        if mlp_ratio > 0:
            self.ln_2 = norm_layer(d_model)
            mlp_width = int(d_model * mlp_ratio)
            self.mlp = nn.Sequential(OrderedDict([
                ("c_fc", nn.Linear(d_model, mlp_width)),
                ("gelu", act_layer()),
                ("c_proj", nn.Linear(mlp_width, d_model))
            ]))

    def attention(
            self,
            x: torch.Tensor
    ):
        return self.attn(x, x, x, need_weights=False)[0]

    def forward(
            self,
            x: torch.Tensor,
    ):
        attn_output = self.attention(x=self.ln_1(x))
        x = x + attn_output
        if self.mlp_ratio > 0:
            x = x + self.mlp(self.ln_2(x))
        return x

if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
    ATTENTION_MODE = 'flash'
else:
    try:
        import xformers
        import xformers.ops
        ATTENTION_MODE = 'xformers'
    except:
        ATTENTION_MODE = 'math'
print(f'attention mode is {ATTENTION_MODE}')


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, L, C = x.shape

        qkv = self.qkv(x)
        if ATTENTION_MODE == 'flash':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
            q, k, v = qkv[0], qkv[1], qkv[2]  # B H L D
            x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
            x = einops.rearrange(x, 'B H L D -> B L (H D)')
        elif ATTENTION_MODE == 'xformers':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
            q, k, v = qkv[0], qkv[1], qkv[2]  # B L H D
            x = xformers.ops.memory_efficient_attention(q, k, v)
            x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
        elif ATTENTION_MODE == 'math':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads)
            q, k, v = qkv[0], qkv[1], qkv[2]  # B H L D
            attn = (q @ k.transpose(-2, -1)) * self.scale
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = (attn @ v).transpose(1, 2).reshape(B, L, C)
        else:
            raise NotImplemented

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class UViTBlock(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
        self.use_checkpoint = use_checkpoint

    def forward(self, x, skip=None):
        if self.use_checkpoint:
            return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
        else:
            return self._forward(x, skip)

    def _forward(self, x, skip=None):
        if self.skip_linear is not None:
            x = self.skip_linear(torch.cat([x, skip], dim=-1))
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x
    

def _expand_token(token, batch_size: int):
    return token.unsqueeze(0).expand(batch_size, -1, -1)


class TiTokEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.image_size = config.dataset.preprocessing.crop_size 
        self.patch_size = config.model.vq_model.vit_enc_patch_size
        self.grid_size = self.image_size // self.patch_size
        self.model_size = config.model.vq_model.vit_enc_model_size
        self.num_latent_tokens = config.model.vq_model.num_latent_tokens
        self.token_size = config.model.vq_model.token_size

        if config.model.vq_model.get("quantize_mode", "vq") == "vae":
            self.token_size = self.token_size * 2 # needs to split into mean and std

        self.is_legacy = config.model.vq_model.get("is_legacy", True)

        self.width = {
                "small": 512,
                "base": 768,
                "large": 1024,
            }[self.model_size]
        self.num_layers = {
                "small": 8,
                "base": 12,
                "large": 24,
            }[self.model_size]
        self.num_heads = {
                "small": 8,
                "base": 12,
                "large": 16,
            }[self.model_size]
        
        self.patch_embed = nn.Conv2d(
            in_channels=3, out_channels=self.width,
              kernel_size=self.patch_size, stride=self.patch_size, bias=True)
        
        scale = self.width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width))
        self.positional_embedding = nn.Parameter(
                scale * torch.randn(self.grid_size ** 2 + 1, self.width))
        self.latent_token_positional_embedding = nn.Parameter(
            scale * torch.randn(self.num_latent_tokens, self.width))
        self.ln_pre = nn.LayerNorm(self.width)
        self.transformer = nn.ModuleList()
        for i in range(self.num_layers):
            self.transformer.append(ResidualAttentionBlock(
                self.width, self.num_heads, mlp_ratio=4.0
            ))
        self.ln_post = nn.LayerNorm(self.width)
        self.conv_out = nn.Conv2d(self.width, self.token_size, kernel_size=1, bias=True)

    def forward(self, pixel_values, latent_tokens):
        batch_size = pixel_values.shape[0]
        x = pixel_values
        x = self.patch_embed(x)
        x = x.reshape(x.shape[0], x.shape[1], -1)
        x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
        # class embeddings and positional embeddings
        x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
        x = x + self.positional_embedding.to(x.dtype) # shape = [*, grid ** 2 + 1, width]
        

        latent_tokens = _expand_token(latent_tokens, x.shape[0]).to(x.dtype)
        latent_tokens = latent_tokens + self.latent_token_positional_embedding.to(x.dtype)
        x = torch.cat([x, latent_tokens], dim=1)

        x = self.ln_pre(x)
        x = x.permute(1, 0, 2)  # NLD -> LND
        for i in range(self.num_layers):
            x = self.transformer[i](x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        
        latent_tokens = x[:, 1+self.grid_size**2:]
        latent_tokens = self.ln_post(latent_tokens)
        # fake 2D shape
        if self.is_legacy:
            latent_tokens = latent_tokens.reshape(batch_size, self.width, self.num_latent_tokens, 1)
        else:
            # Fix legacy problem.
            latent_tokens = latent_tokens.reshape(batch_size, self.num_latent_tokens, self.width, 1).permute(0, 2, 1, 3)
        latent_tokens = self.conv_out(latent_tokens)
        latent_tokens = latent_tokens.reshape(batch_size, self.token_size, 1, self.num_latent_tokens)
        return latent_tokens
    

class TiTokDecoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.image_size = config.dataset.preprocessing.crop_size
        self.patch_size = config.model.vq_model.vit_dec_patch_size
        self.grid_size = self.image_size // self.patch_size
        self.model_size = config.model.vq_model.vit_dec_model_size
        self.num_latent_tokens = config.model.vq_model.num_latent_tokens
        self.token_size = config.model.vq_model.token_size
        self.is_legacy = config.model.vq_model.get("is_legacy", True)
        self.width = {
                "small": 512,
                "base": 768,
                "large": 1024,
            }[self.model_size]
        self.num_layers = {
                "small": 8,
                "base": 12,
                "large": 24,
            }[self.model_size]
        self.num_heads = {
                "small": 8,
                "base": 12,
                "large": 16,
            }[self.model_size]

        self.decoder_embed = nn.Linear(
            self.token_size, self.width, bias=True)
        scale = self.width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width))
        self.positional_embedding = nn.Parameter(
                scale * torch.randn(self.grid_size ** 2 + 1, self.width))
        # add mask token and query pos embed
        self.mask_token = nn.Parameter(scale * torch.randn(1, 1, self.width))
        self.latent_token_positional_embedding = nn.Parameter(
            scale * torch.randn(self.num_latent_tokens, self.width))
        self.ln_pre = nn.LayerNorm(self.width)
        self.transformer = nn.ModuleList()
        for i in range(self.num_layers):
            self.transformer.append(ResidualAttentionBlock(
                self.width, self.num_heads, mlp_ratio=4.0
            ))
        self.ln_post = nn.LayerNorm(self.width)

        if self.is_legacy:
            self.ffn = nn.Sequential(
                nn.Conv2d(self.width, 2 * self.width, 1, padding=0, bias=True),
                nn.Tanh(),
                nn.Conv2d(2 * self.width, 1024, 1, padding=0, bias=True),
            )
            self.conv_out = nn.Identity()
        else:
            # Directly predicting RGB pixels
            self.ffn = nn.Sequential(
                nn.Conv2d(self.width, self.patch_size * self.patch_size * 3, 1, padding=0, bias=True),
                Rearrange('b (p1 p2 c) h w -> b c (h p1) (w p2)',
                    p1 = self.patch_size, p2 = self.patch_size),)
            self.conv_out = nn.Conv2d(3, 3, 3, padding=1, bias=True)
    
    def forward(self, z_quantized):
        N, C, H, W = z_quantized.shape
        assert H == 1 and W == self.num_latent_tokens, f"{H}, {W}, {self.num_latent_tokens}"
        x = z_quantized.reshape(N, C*H, W).permute(0, 2, 1) # NLD
        x = self.decoder_embed(x)

        batchsize, seq_len, _ = x.shape

        mask_tokens = self.mask_token.repeat(batchsize, self.grid_size**2, 1).to(x.dtype)
        mask_tokens = torch.cat([_expand_token(self.class_embedding, mask_tokens.shape[0]).to(mask_tokens.dtype),
                                    mask_tokens], dim=1)
        mask_tokens = mask_tokens + self.positional_embedding.to(mask_tokens.dtype)
        x = x + self.latent_token_positional_embedding[:seq_len]
        x = torch.cat([mask_tokens, x], dim=1)
        
        x = self.ln_pre(x)
        x = x.permute(1, 0, 2)  # NLD -> LND
        for i in range(self.num_layers):
            x = self.transformer[i](x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = x[:, 1:1+self.grid_size**2] # remove cls embed
        x = self.ln_post(x)
        # N L D -> N D H W
        x = x.permute(0, 2, 1).reshape(batchsize, self.width, self.grid_size, self.grid_size)
        x = self.ffn(x.contiguous())
        x = self.conv_out(x)
        return x