Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,100 Bytes
51ce47d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
"""Building blocks for TiTok.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Reference:
https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py
https://github.com/baofff/U-ViT/blob/main/libs/timm.py
"""
import torch
import torch.nn as nn
from collections import OrderedDict
import einops
from einops.layers.torch import Rearrange
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model,
n_head,
mlp_ratio = 4.0,
act_layer = nn.GELU,
norm_layer = nn.LayerNorm
):
super().__init__()
self.ln_1 = norm_layer(d_model)
self.attn = nn.MultiheadAttention(d_model, n_head)
self.mlp_ratio = mlp_ratio
# optionally we can disable the FFN
if mlp_ratio > 0:
self.ln_2 = norm_layer(d_model)
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model))
]))
def attention(
self,
x: torch.Tensor
):
return self.attn(x, x, x, need_weights=False)[0]
def forward(
self,
x: torch.Tensor,
):
attn_output = self.attention(x=self.ln_1(x))
x = x + attn_output
if self.mlp_ratio > 0:
x = x + self.mlp(self.ln_2(x))
return x
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
ATTENTION_MODE = 'flash'
else:
try:
import xformers
import xformers.ops
ATTENTION_MODE = 'xformers'
except:
ATTENTION_MODE = 'math'
print(f'attention mode is {ATTENTION_MODE}')
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, L, C = x.shape
qkv = self.qkv(x)
if ATTENTION_MODE == 'flash':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = einops.rearrange(x, 'B H L D -> B L (H D)')
elif ATTENTION_MODE == 'xformers':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
elif ATTENTION_MODE == 'math':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
else:
raise NotImplemented
x = self.proj(x)
x = self.proj_drop(x)
return x
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class UViTBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
self.use_checkpoint = use_checkpoint
def forward(self, x, skip=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
else:
return self._forward(x, skip)
def _forward(self, x, skip=None):
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip], dim=-1))
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def _expand_token(token, batch_size: int):
return token.unsqueeze(0).expand(batch_size, -1, -1)
class TiTokEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.image_size = config.dataset.preprocessing.crop_size
self.patch_size = config.model.vq_model.vit_enc_patch_size
self.grid_size = self.image_size // self.patch_size
self.model_size = config.model.vq_model.vit_enc_model_size
self.num_latent_tokens = config.model.vq_model.num_latent_tokens
self.token_size = config.model.vq_model.token_size
if config.model.vq_model.get("quantize_mode", "vq") == "vae":
self.token_size = self.token_size * 2 # needs to split into mean and std
self.is_legacy = config.model.vq_model.get("is_legacy", True)
self.width = {
"small": 512,
"base": 768,
"large": 1024,
}[self.model_size]
self.num_layers = {
"small": 8,
"base": 12,
"large": 24,
}[self.model_size]
self.num_heads = {
"small": 8,
"base": 12,
"large": 16,
}[self.model_size]
self.patch_embed = nn.Conv2d(
in_channels=3, out_channels=self.width,
kernel_size=self.patch_size, stride=self.patch_size, bias=True)
scale = self.width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width))
self.positional_embedding = nn.Parameter(
scale * torch.randn(self.grid_size ** 2 + 1, self.width))
self.latent_token_positional_embedding = nn.Parameter(
scale * torch.randn(self.num_latent_tokens, self.width))
self.ln_pre = nn.LayerNorm(self.width)
self.transformer = nn.ModuleList()
for i in range(self.num_layers):
self.transformer.append(ResidualAttentionBlock(
self.width, self.num_heads, mlp_ratio=4.0
))
self.ln_post = nn.LayerNorm(self.width)
self.conv_out = nn.Conv2d(self.width, self.token_size, kernel_size=1, bias=True)
def forward(self, pixel_values, latent_tokens):
batch_size = pixel_values.shape[0]
x = pixel_values
x = self.patch_embed(x)
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# class embeddings and positional embeddings
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
x = x + self.positional_embedding.to(x.dtype) # shape = [*, grid ** 2 + 1, width]
latent_tokens = _expand_token(latent_tokens, x.shape[0]).to(x.dtype)
latent_tokens = latent_tokens + self.latent_token_positional_embedding.to(x.dtype)
x = torch.cat([x, latent_tokens], dim=1)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
for i in range(self.num_layers):
x = self.transformer[i](x)
x = x.permute(1, 0, 2) # LND -> NLD
latent_tokens = x[:, 1+self.grid_size**2:]
latent_tokens = self.ln_post(latent_tokens)
# fake 2D shape
if self.is_legacy:
latent_tokens = latent_tokens.reshape(batch_size, self.width, self.num_latent_tokens, 1)
else:
# Fix legacy problem.
latent_tokens = latent_tokens.reshape(batch_size, self.num_latent_tokens, self.width, 1).permute(0, 2, 1, 3)
latent_tokens = self.conv_out(latent_tokens)
latent_tokens = latent_tokens.reshape(batch_size, self.token_size, 1, self.num_latent_tokens)
return latent_tokens
class TiTokDecoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.image_size = config.dataset.preprocessing.crop_size
self.patch_size = config.model.vq_model.vit_dec_patch_size
self.grid_size = self.image_size // self.patch_size
self.model_size = config.model.vq_model.vit_dec_model_size
self.num_latent_tokens = config.model.vq_model.num_latent_tokens
self.token_size = config.model.vq_model.token_size
self.is_legacy = config.model.vq_model.get("is_legacy", True)
self.width = {
"small": 512,
"base": 768,
"large": 1024,
}[self.model_size]
self.num_layers = {
"small": 8,
"base": 12,
"large": 24,
}[self.model_size]
self.num_heads = {
"small": 8,
"base": 12,
"large": 16,
}[self.model_size]
self.decoder_embed = nn.Linear(
self.token_size, self.width, bias=True)
scale = self.width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width))
self.positional_embedding = nn.Parameter(
scale * torch.randn(self.grid_size ** 2 + 1, self.width))
# add mask token and query pos embed
self.mask_token = nn.Parameter(scale * torch.randn(1, 1, self.width))
self.latent_token_positional_embedding = nn.Parameter(
scale * torch.randn(self.num_latent_tokens, self.width))
self.ln_pre = nn.LayerNorm(self.width)
self.transformer = nn.ModuleList()
for i in range(self.num_layers):
self.transformer.append(ResidualAttentionBlock(
self.width, self.num_heads, mlp_ratio=4.0
))
self.ln_post = nn.LayerNorm(self.width)
if self.is_legacy:
self.ffn = nn.Sequential(
nn.Conv2d(self.width, 2 * self.width, 1, padding=0, bias=True),
nn.Tanh(),
nn.Conv2d(2 * self.width, 1024, 1, padding=0, bias=True),
)
self.conv_out = nn.Identity()
else:
# Directly predicting RGB pixels
self.ffn = nn.Sequential(
nn.Conv2d(self.width, self.patch_size * self.patch_size * 3, 1, padding=0, bias=True),
Rearrange('b (p1 p2 c) h w -> b c (h p1) (w p2)',
p1 = self.patch_size, p2 = self.patch_size),)
self.conv_out = nn.Conv2d(3, 3, 3, padding=1, bias=True)
def forward(self, z_quantized):
N, C, H, W = z_quantized.shape
assert H == 1 and W == self.num_latent_tokens, f"{H}, {W}, {self.num_latent_tokens}"
x = z_quantized.reshape(N, C*H, W).permute(0, 2, 1) # NLD
x = self.decoder_embed(x)
batchsize, seq_len, _ = x.shape
mask_tokens = self.mask_token.repeat(batchsize, self.grid_size**2, 1).to(x.dtype)
mask_tokens = torch.cat([_expand_token(self.class_embedding, mask_tokens.shape[0]).to(mask_tokens.dtype),
mask_tokens], dim=1)
mask_tokens = mask_tokens + self.positional_embedding.to(mask_tokens.dtype)
x = x + self.latent_token_positional_embedding[:seq_len]
x = torch.cat([mask_tokens, x], dim=1)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
for i in range(self.num_layers):
x = self.transformer[i](x)
x = x.permute(1, 0, 2) # LND -> NLD
x = x[:, 1:1+self.grid_size**2] # remove cls embed
x = self.ln_post(x)
# N L D -> N D H W
x = x.permute(0, 2, 1).reshape(batchsize, self.width, self.grid_size, self.grid_size)
x = self.ffn(x.contiguous())
x = self.conv_out(x)
return x |