Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,619 Bytes
51ce47d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
"""This file contains the model definition of TiTok.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Reference:
https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py
https://github.com/facebookresearch/DiT/blob/main/models.py
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from modeling.modules import BaseModel
from functools import partial
from timm.layers import Mlp
from typing import Optional
import numpy as np
import random
# util function
def build_causal_mask(seq_length):
mask = torch.empty(seq_length, seq_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
# weight init
def init_weights(module):
if (isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or
isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d)):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
if module.weight is not None:
module.weight.data.fill_(1.0)
# attention layer with KV cache supported
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.,
norm_layer: nn.Module = nn.LayerNorm,
) -> None:
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = True
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.kv_cache = False
self.k_cache = None
self.v_cache = None
def reset_kv_cache(self):
self.k_cache = None
self.v_cache = None
def forward(self, x: torch.Tensor, attn_mask=None) -> torch.Tensor:
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.kv_cache:
if self.k_cache is None and self.v_cache is None:
k_cache = k
v_cache = v
else:
assert N in [1, 2], f"x.shape {x.shape}"
k_cache = torch.cat([self.k_cache, k], dim=-2)
v_cache = torch.cat([self.v_cache, v], dim=-2)
self.k_cache = k_cache
self.v_cache = v_cache
k = k_cache
v = v_cache
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask,
dropout_p=self.attn_drop.p if self.training else 0.,
)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def modulate(x, shift, scale):
return x * (1 + scale) + shift
class FinalLayer(nn.Module):
def __init__(self, dim, norm_layer):
super().__init__()
self.norm_final = norm_layer(dim, elementwise_affine=False)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(dim, 2*dim)
)
def forward(self, x, c):
scale, shift = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
return x
# basic transformer block
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.,
qkv_bias: bool = False,
qk_norm: bool = False,
proj_drop: float = 0.,
attn_drop: float = 0.,
act_layer: nn.Module = nn.GELU,
norm_layer: nn.Module = nn.LayerNorm,
mlp_layer: nn.Module = Mlp,
) -> None:
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)
self.norm2 = norm_layer(dim)
self.mlp = mlp_layer(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(dim, 6 * dim, bias=True)
)
def forward(self, x: torch.Tensor, attn_mask=None, c = None) -> torch.Tensor:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), attn_mask=attn_mask)
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class RAR(BaseModel):
def __init__(self, config):
super().__init__()
self.config = config
# parse the configs
embed_dim = config.model.generator.hidden_size
depth = config.model.generator.num_hidden_layers
num_heads = config.model.generator.num_attention_heads
intermediate_size = config.model.generator.intermediate_size
mlp_ratio = intermediate_size / embed_dim
image_seq_len = config.model.generator.image_seq_len
target_codebook_size = config.model.vq_model.codebook_size
condition_num_classes = config.model.generator.condition_num_classes
norm_layer=partial(nn.LayerNorm, eps=1e-6)
dropout_rate = config.model.generator.dropout
attn_dropout_rate = config.model.generator.attn_drop
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=True,
qk_norm=True,
proj_drop=dropout_rate,
attn_drop=attn_dropout_rate,
norm_layer=norm_layer)
for i in range(depth)])
self.embeddings = nn.Embedding(
target_codebook_size + 1 + condition_num_classes + 1, embed_dim)
self.pos_embed = nn.init.trunc_normal_(
nn.Parameter(torch.zeros(1, image_seq_len + 1024, embed_dim)), 0., 0.02)
self.target_aware_pos_embed = nn.init.trunc_normal_(
nn.Parameter(torch.zeros(1, image_seq_len + 1024, embed_dim)), 0., 0.02)
# number of steps == image_seq_len
self.timesteps_embeddings = nn.init.trunc_normal_(
nn.Parameter(torch.zeros(1, image_seq_len + 100, embed_dim)), 0., 0.02)
self.adaln_before_head = FinalLayer(embed_dim, norm_layer=norm_layer)
self.lm_head = nn.Linear(embed_dim,
target_codebook_size, bias=True)
self.condition_num_classes = condition_num_classes
self.image_seq_len = image_seq_len
self.target_codebook_size = target_codebook_size
self.none_condition_id = self.condition_num_classes + self.target_codebook_size + 1
self.apply(init_weights)
attn_mask = build_causal_mask(self.image_seq_len + 1024) # include condition
self.register_buffer('attn_mask', attn_mask, persistent=False)
self.use_checkpoint = config.model.generator.get("use_checkpoint", False)
# init for adaln-zero.
nn.init.constant_(self.adaln_before_head.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaln_before_head.adaLN_modulation[-1].bias, 0)
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
self.random_ratio = 0.0
def enable_kv_cache(self):
for block in self.blocks:
block.attn.kv_cache = True
block.attn.reset_kv_cache()
def disable_kv_cache(self):
for block in self.blocks:
block.attn.kv_cache = False
block.attn.reset_kv_cache()
def sample_orders(self, x):
batch_size = x.shape[0]
shuffled_orders = []
for _ in range(batch_size):
if random.random() < self.random_ratio:
# random order
shuffled_orders.append(torch.randperm(self.image_seq_len, device=x.device))
else:
# raster order
shuffled_orders.append(torch.arange(self.image_seq_len, device=x.device))
shuffled_orders = torch.stack(shuffled_orders)
return shuffled_orders.to(x.device)
def set_random_ratio(self, new_ratio):
self.random_ratio = new_ratio
def get_raster_orders(self, x):
batch_size = x.shape[0]
shuffled_orders = torch.stack([torch.arange(self.image_seq_len, device=x.device) for _ in range(batch_size)])
return shuffled_orders
def shuffle(self, x, orders):
batch_size, seq_len = x.shape[:2]
batch_indices = torch.arange(batch_size).unsqueeze(1).expand(-1, seq_len)
shuffled_x = x[batch_indices, orders]
return shuffled_x
def unshuffle(self, shuffled_x, orders):
# Unshuffle the tensor based on the original orders
batch_size, seq_len = shuffled_x.shape[:2]
batch_indices = torch.arange(batch_size).unsqueeze(1).expand(-1, seq_len)
unshuffled_x = torch.zeros_like(shuffled_x)
unshuffled_x[batch_indices, orders] = shuffled_x
return unshuffled_x
def preprocess_condition(self, condition, cond_drop_prob=0.0):
# Set class condition to None condition
drop_label_mask = torch.rand_like(condition, dtype=torch.float) < cond_drop_prob
condition = condition + self.target_codebook_size + 1 # [0, 999] -> [codebook_size + 1, codebook_size + 999]
condition[drop_label_mask] = self.none_condition_id
return condition
def get_none_condition(self,
condition
):
return torch.full_like(condition, self.none_condition_id)
def forward(self, input_ids, condition, return_labels=False):
orders = self.sample_orders(input_ids)
return self.forward_fn(input_ids, condition, return_labels, orders)
def forward_fn(self, input_ids, condition,
return_labels=False,
orders=None,
is_sampling=False):
# TODO: optimize the inference time where the computation of pos_embed etc can be shared across sampling steps.
# Token space:
# [0, codebook_size - 1] : those are the learned quantized image tokens
# codebook_size : the mask token used to mask image tokens
# [codebook_size + 1, codebook_size + nclass] : the imagenet class tokens
# codebook_size + 1 + nclass : the class drop label
if orders is None:
orders = self.get_raster_orders(input_ids)
labels = input_ids.clone()
# prepend condition token
input_ids = torch.cat([condition.view(condition.shape[0], -1),
input_ids.view(input_ids.shape[0], -1),], dim=1)
embeddings = self.embeddings(input_ids)
condition_token = embeddings[:, 0]
# prepare positional embeddings.
# shuffle pos embed
pos_embed = self.pos_embed.repeat(input_ids.shape[0], 1, 1)
# cls_token, condition, the permute does not impact these prefix tokens.
prefix = 2
pos_embed_prefix = pos_embed[:, :prefix]
pos_embed_postfix = self.shuffle(pos_embed[:, prefix:prefix+self.image_seq_len], orders)
# prepare target-aware positional embeddings.
target_aware_pos_embed = self.target_aware_pos_embed.repeat(input_ids.shape[0], 1, 1)
# target_aware_pos_embed_prefix = target_aware_pos_embed[:, :prefix]
target_aware_pos_embed_postfix = self.shuffle(target_aware_pos_embed[:, prefix:prefix+self.image_seq_len], orders)
if not is_sampling:
# shuffle labels
labels = self.shuffle(labels, orders)
# randomized permutation: during training, we need to shuffle the input_ids's order but not for sampling
embeddings = torch.cat([embeddings[:, :1], self.shuffle(embeddings[:, 1:], orders)], dim=1)
x = embeddings
# prepend the cls token
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# add original pos embed
x = x + torch.cat([pos_embed_prefix, pos_embed_postfix], dim=1)[:, :x.shape[1]]
# add target-aware pos embed
target_aware_pos_embed = torch.cat(
[torch.zeros_like(x[:, :prefix-1]), target_aware_pos_embed_postfix, torch.zeros_like(x[:, -1:])], dim=1
)
x = x + target_aware_pos_embed[:, :x.shape[1]]
# causal attention masking
attn_mask = self.attn_mask[:x.shape[1], :x.shape[1]]
# seperate condition token for each step, at generation, we start from 1 to seq len
condition_token = condition_token.unsqueeze(1) + self.timesteps_embeddings[:, :x.shape[1]]
if self.blocks[0].attn.kv_cache:
if self.blocks[0].attn.k_cache is not None and self.blocks[0].attn.v_cache is not None:
# only need to process the last token
x = x[:, -1:]
attn_mask = None
# only keep the last condition
condition_token = condition_token[:, -1:]
for idx, blk in enumerate(self.blocks):
if self.use_checkpoint:
x = torch.utils.checkpoint.checkpoint(
blk.forward, x, attn_mask, condition_token, use_reentrant=False)
else:
x = blk(x, attn_mask=attn_mask, c=condition_token)
if not self.blocks[0].attn.kv_cache:
# remove cls token
x = x[:, prefix - 1:]
condition_token = condition_token[:, prefix - 1:]
x = self.adaln_before_head(x, condition_token)
x = self.lm_head(x)
if return_labels:
return x, labels
return x
@torch.no_grad()
def generate(self,
condition,
guidance_scale,
randomize_temperature,
guidance_scale_pow,
kv_cache=True,
**kwargs):
condition = self.preprocess_condition(
condition, cond_drop_prob=0.0)
device = condition.device
num_samples = condition.shape[0]
ids = torch.full((num_samples, 0), -1, device=device)
cfg_scale = 0.
if kv_cache:
self.enable_kv_cache()
orders = None
cfg_orders = None
for step in range(self.image_seq_len):
# ref: https://github.com/sail-sg/MDT/blob/441d6a1d49781dbca22b708bbd9ed81e9e3bdee4/masked_diffusion/models.py#L513C13-L513C23
scale_pow = torch.ones((1), device=device) * guidance_scale_pow
scale_step = (1 - torch.cos(
((step / self.image_seq_len) ** scale_pow) * torch.pi)) * 1/2
cfg_scale = (guidance_scale - 1) * scale_step + 1
if guidance_scale != 0:
logits = self.forward_fn(
torch.cat([ids, ids], dim=0),
torch.cat([condition, self.get_none_condition(condition)], dim=0),
orders=cfg_orders, is_sampling=True)
cond_logits, uncond_logits = logits[:num_samples], logits[num_samples:]
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
else:
logits = self.forward_fn(
ids, condition, orders=orders, is_sampling=True
)
# keep the logit of last token
logits = logits[:, -1]
logits = logits / randomize_temperature
probs = F.softmax(logits, dim=-1)
sampled = torch.multinomial(probs, num_samples=1)
ids = torch.cat((ids, sampled), dim = -1)
self.disable_kv_cache()
return ids
|