File size: 17,619 Bytes
51ce47d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""This file contains the model definition of TiTok.

Copyright (2024) Bytedance Ltd. and/or its affiliates

Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 

    http://www.apache.org/licenses/LICENSE-2.0 

Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License.

Reference: 
    https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py
    https://github.com/facebookresearch/DiT/blob/main/models.py
"""


import torch
import torch.nn as nn
import torch.nn.functional as F
from modeling.modules import BaseModel
from functools import partial
from timm.layers import Mlp
from typing import Optional
import numpy as np
import random

# util function
def build_causal_mask(seq_length):
    mask = torch.empty(seq_length, seq_length)
    mask.fill_(float("-inf"))
    mask.triu_(1)  # zero out the lower diagonal
    return mask

# weight init
def init_weights(module):
    if (isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or
     isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d)):
        module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
        if module.bias is not None:
            module.bias.data.zero_()
    elif isinstance(module, nn.Embedding):
        module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
    elif isinstance(module, nn.LayerNorm):
        if module.bias is not None:
            module.bias.data.zero_()
        if module.weight is not None:
            module.weight.data.fill_(1.0)

# attention layer with KV cache supported
class Attention(nn.Module):
    def __init__(
            self,
            dim: int,
            num_heads: int = 8,
            qkv_bias: bool = False,
            qk_norm: bool = False,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
            norm_layer: nn.Module = nn.LayerNorm,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = True

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.kv_cache = False
        self.k_cache = None
        self.v_cache = None

    def reset_kv_cache(self):
        self.k_cache = None
        self.v_cache = None

    def forward(self, x: torch.Tensor, attn_mask=None) -> torch.Tensor:
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.kv_cache:
            if self.k_cache is None and self.v_cache is None:
                k_cache = k
                v_cache = v
            else:
                assert N in [1, 2], f"x.shape {x.shape}"
                k_cache = torch.cat([self.k_cache, k], dim=-2)
                v_cache = torch.cat([self.v_cache, v], dim=-2)

            self.k_cache = k_cache
            self.v_cache = v_cache

            k = k_cache
            v = v_cache

        x = F.scaled_dot_product_attention(
            q, k, v, attn_mask=attn_mask,
            dropout_p=self.attn_drop.p if self.training else 0.,
        )
        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

def modulate(x, shift, scale):
    return x * (1 + scale) + shift

class FinalLayer(nn.Module):
    def __init__(self, dim, norm_layer):
        super().__init__()
        self.norm_final = norm_layer(dim, elementwise_affine=False)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(), nn.Linear(dim, 2*dim)
        )
    
    def forward(self, x, c):
        scale, shift = self.adaLN_modulation(c).chunk(2, dim=-1)
        x = modulate(self.norm_final(x), shift, scale)
        return x
    

# basic transformer block
class Block(nn.Module):
    def __init__(
            self,
            dim: int,
            num_heads: int,
            mlp_ratio: float = 4.,
            qkv_bias: bool = False,
            qk_norm: bool = False,
            proj_drop: float = 0.,
            attn_drop: float = 0.,
            act_layer: nn.Module = nn.GELU,
            norm_layer: nn.Module = nn.LayerNorm,
            mlp_layer: nn.Module = Mlp,
    ) -> None:
        super().__init__()
        self.norm1 = norm_layer(dim)
        
        self.attn = Attention(
            dim=dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
        )

        self.norm2 = norm_layer(dim)
        self.mlp = mlp_layer(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(dim, 6 * dim, bias=True)
        )


    def forward(self, x: torch.Tensor, attn_mask=None, c = None) -> torch.Tensor:
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1)
        x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), attn_mask=attn_mask)
        x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class RAR(BaseModel):
    def __init__(self, config):
        super().__init__()
        
        self.config = config
        # parse the configs
        embed_dim = config.model.generator.hidden_size
        depth = config.model.generator.num_hidden_layers
        num_heads = config.model.generator.num_attention_heads
        intermediate_size = config.model.generator.intermediate_size
        mlp_ratio = intermediate_size / embed_dim

        image_seq_len = config.model.generator.image_seq_len
        target_codebook_size = config.model.vq_model.codebook_size
        condition_num_classes = config.model.generator.condition_num_classes
        norm_layer=partial(nn.LayerNorm, eps=1e-6)

        dropout_rate = config.model.generator.dropout
        attn_dropout_rate = config.model.generator.attn_drop
   
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=True,
                qk_norm=True,
                proj_drop=dropout_rate,
                attn_drop=attn_dropout_rate,
                norm_layer=norm_layer)
            for i in range(depth)])

        self.embeddings = nn.Embedding(
            target_codebook_size + 1 + condition_num_classes + 1, embed_dim)

        self.pos_embed = nn.init.trunc_normal_(
            nn.Parameter(torch.zeros(1, image_seq_len + 1024, embed_dim)), 0., 0.02)

        self.target_aware_pos_embed = nn.init.trunc_normal_(
            nn.Parameter(torch.zeros(1, image_seq_len + 1024, embed_dim)), 0., 0.02)

        # number of steps == image_seq_len
        self.timesteps_embeddings = nn.init.trunc_normal_(
            nn.Parameter(torch.zeros(1, image_seq_len + 100, embed_dim)), 0., 0.02)
        self.adaln_before_head = FinalLayer(embed_dim, norm_layer=norm_layer)
        self.lm_head = nn.Linear(embed_dim,
                                 target_codebook_size, bias=True)
        self.condition_num_classes = condition_num_classes
        self.image_seq_len = image_seq_len
        self.target_codebook_size = target_codebook_size
        self.none_condition_id = self.condition_num_classes + self.target_codebook_size + 1
        
        self.apply(init_weights)

        attn_mask = build_causal_mask(self.image_seq_len + 1024) # include condition
        self.register_buffer('attn_mask', attn_mask, persistent=False)

        self.use_checkpoint = config.model.generator.get("use_checkpoint", False)

        # init for adaln-zero.

        nn.init.constant_(self.adaln_before_head.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.adaln_before_head.adaLN_modulation[-1].bias, 0)
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        self.random_ratio = 0.0

    def enable_kv_cache(self):
        for block in self.blocks:
            block.attn.kv_cache = True
            block.attn.reset_kv_cache()

    def disable_kv_cache(self):
        for block in self.blocks:
            block.attn.kv_cache = False
            block.attn.reset_kv_cache()

    def sample_orders(self, x):
        batch_size = x.shape[0]
        shuffled_orders = []

        for _ in range(batch_size):
            if random.random() < self.random_ratio:
                # random order
                shuffled_orders.append(torch.randperm(self.image_seq_len, device=x.device))
            else:
                # raster order
                shuffled_orders.append(torch.arange(self.image_seq_len, device=x.device))
                
        shuffled_orders = torch.stack(shuffled_orders)
        return shuffled_orders.to(x.device)
    
    def set_random_ratio(self, new_ratio):
        self.random_ratio = new_ratio

    def get_raster_orders(self, x):
        batch_size = x.shape[0]
        shuffled_orders = torch.stack([torch.arange(self.image_seq_len, device=x.device) for _ in range(batch_size)])
        return shuffled_orders

    def shuffle(self, x, orders):
        batch_size, seq_len = x.shape[:2]
        batch_indices = torch.arange(batch_size).unsqueeze(1).expand(-1, seq_len)
        shuffled_x = x[batch_indices, orders]
        return shuffled_x

    def unshuffle(self, shuffled_x, orders):
        # Unshuffle the tensor based on the original orders
        batch_size, seq_len = shuffled_x.shape[:2]
        batch_indices = torch.arange(batch_size).unsqueeze(1).expand(-1, seq_len)
        unshuffled_x = torch.zeros_like(shuffled_x)
        unshuffled_x[batch_indices, orders] = shuffled_x
        return unshuffled_x

    def preprocess_condition(self, condition, cond_drop_prob=0.0):
        # Set class condition to None condition
        drop_label_mask = torch.rand_like(condition, dtype=torch.float) < cond_drop_prob
        condition = condition + self.target_codebook_size + 1  # [0, 999] -> [codebook_size + 1, codebook_size + 999]
        condition[drop_label_mask] = self.none_condition_id
        return condition

    def get_none_condition(self,
                           condition
                           ):
        return torch.full_like(condition, self.none_condition_id)
    
    def forward(self, input_ids, condition, return_labels=False):
        orders = self.sample_orders(input_ids)
        return self.forward_fn(input_ids, condition, return_labels, orders)

    def forward_fn(self, input_ids, condition,
                   return_labels=False,
                   orders=None,
                   is_sampling=False):
        # TODO: optimize the inference time where the computation of pos_embed etc can be shared across sampling steps.
        # Token space:
        #  [0, codebook_size - 1]                       : those are the learned quantized image tokens
        #  codebook_size                                : the mask token used to mask image tokens
        #  [codebook_size + 1, codebook_size + nclass]  : the imagenet class tokens
        #  codebook_size + 1 + nclass                   : the class drop label

        if orders is None:
            orders = self.get_raster_orders(input_ids)

        labels = input_ids.clone()
        # prepend condition token
        input_ids = torch.cat([condition.view(condition.shape[0], -1),
                               input_ids.view(input_ids.shape[0], -1),], dim=1)
        embeddings = self.embeddings(input_ids)
        condition_token = embeddings[:, 0]

        # prepare positional embeddings.
        # shuffle pos embed
        pos_embed = self.pos_embed.repeat(input_ids.shape[0], 1, 1)
        # cls_token, condition, the permute does not impact these prefix tokens.
        prefix = 2
        pos_embed_prefix = pos_embed[:, :prefix]
        pos_embed_postfix = self.shuffle(pos_embed[:, prefix:prefix+self.image_seq_len], orders)

        # prepare target-aware positional embeddings.
        target_aware_pos_embed = self.target_aware_pos_embed.repeat(input_ids.shape[0], 1, 1)
        # target_aware_pos_embed_prefix = target_aware_pos_embed[:, :prefix]
        target_aware_pos_embed_postfix = self.shuffle(target_aware_pos_embed[:, prefix:prefix+self.image_seq_len], orders)

        if not is_sampling:
            # shuffle labels
            labels = self.shuffle(labels, orders)
            # randomized permutation: during training, we need to shuffle the input_ids's order but not for sampling
            embeddings = torch.cat([embeddings[:, :1], self.shuffle(embeddings[:, 1:], orders)], dim=1)

        x = embeddings
        # prepend the cls token
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # add original pos embed
        x = x + torch.cat([pos_embed_prefix, pos_embed_postfix], dim=1)[:, :x.shape[1]]

        # add target-aware pos embed
        target_aware_pos_embed = torch.cat(
            [torch.zeros_like(x[:, :prefix-1]), target_aware_pos_embed_postfix, torch.zeros_like(x[:, -1:])], dim=1
        )
        x = x + target_aware_pos_embed[:, :x.shape[1]]

        # causal attention masking
        attn_mask = self.attn_mask[:x.shape[1], :x.shape[1]]
        
        # seperate condition token for each step, at generation, we start from 1 to seq len
        condition_token = condition_token.unsqueeze(1) + self.timesteps_embeddings[:, :x.shape[1]]

        if self.blocks[0].attn.kv_cache:
            if self.blocks[0].attn.k_cache is not None and self.blocks[0].attn.v_cache is not None:
                # only need to process the last token
                x = x[:, -1:]
                attn_mask = None
                # only keep the last condition
                condition_token = condition_token[:, -1:]

        for idx, blk in enumerate(self.blocks):
            if self.use_checkpoint:
                x = torch.utils.checkpoint.checkpoint(
                        blk.forward, x, attn_mask, condition_token, use_reentrant=False)
            else:
                x = blk(x, attn_mask=attn_mask, c=condition_token)

        if not self.blocks[0].attn.kv_cache:
            # remove cls token
            x = x[:, prefix - 1:]
            condition_token = condition_token[:, prefix - 1:]


        x = self.adaln_before_head(x, condition_token)
        x = self.lm_head(x)

        if return_labels:
            return x, labels
        return x
    
    @torch.no_grad()
    def generate(self,
                 condition,
                 guidance_scale,
                 randomize_temperature,
                 guidance_scale_pow,
                 kv_cache=True,
                 **kwargs):
        condition = self.preprocess_condition(
            condition, cond_drop_prob=0.0)
        device = condition.device
        num_samples = condition.shape[0]
        ids = torch.full((num_samples, 0), -1, device=device)
        cfg_scale = 0.

        if kv_cache:
            self.enable_kv_cache()

        orders = None
        cfg_orders = None

        for step in range(self.image_seq_len):
            # ref: https://github.com/sail-sg/MDT/blob/441d6a1d49781dbca22b708bbd9ed81e9e3bdee4/masked_diffusion/models.py#L513C13-L513C23
            scale_pow = torch.ones((1), device=device) * guidance_scale_pow
            scale_step = (1 - torch.cos(
                ((step / self.image_seq_len) ** scale_pow) * torch.pi)) * 1/2
            cfg_scale = (guidance_scale - 1) * scale_step + 1

            if guidance_scale != 0:
                logits = self.forward_fn(
                    torch.cat([ids, ids], dim=0),
                    torch.cat([condition, self.get_none_condition(condition)], dim=0),
                    orders=cfg_orders, is_sampling=True)
                cond_logits, uncond_logits = logits[:num_samples], logits[num_samples:]
                logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
            else:
                logits = self.forward_fn(
                    ids, condition, orders=orders, is_sampling=True
                )

            # keep the logit of last token
            logits = logits[:, -1]
            logits = logits / randomize_temperature
            probs = F.softmax(logits, dim=-1)
            sampled = torch.multinomial(probs, num_samples=1)
            ids = torch.cat((ids, sampled), dim = -1)


        self.disable_kv_cache()
        return ids