Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,131 Bytes
51ce47d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
"""This files contains training loss implementation.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Ref:
https://github.com/CompVis/taming-transformers/blob/master/taming/modules/losses/vqperceptual.py
"""
from typing import Mapping, Text, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.cuda.amp import autocast
from .perceptual_loss import PerceptualLoss
from .discriminator import NLayerDiscriminator
def hinge_d_loss(logits_real: torch.Tensor, logits_fake: torch.Tensor) -> torch.Tensor:
"""Hinge loss for discrminator.
This function is borrowed from
https://github.com/CompVis/taming-transformers/blob/master/taming/modules/losses/vqperceptual.py#L20
"""
loss_real = torch.mean(F.relu(1.0 - logits_real))
loss_fake = torch.mean(F.relu(1.0 + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def compute_lecam_loss(
logits_real_mean: torch.Tensor,
logits_fake_mean: torch.Tensor,
ema_logits_real_mean: torch.Tensor,
ema_logits_fake_mean: torch.Tensor
) -> torch.Tensor:
"""Computes the LeCam loss for the given average real and fake logits.
Args:
logits_real_mean -> torch.Tensor: The average real logits.
logits_fake_mean -> torch.Tensor: The average fake logits.
ema_logits_real_mean -> torch.Tensor: The EMA of the average real logits.
ema_logits_fake_mean -> torch.Tensor: The EMA of the average fake logits.
Returns:
lecam_loss -> torch.Tensor: The LeCam loss.
"""
lecam_loss = torch.mean(torch.pow(F.relu(logits_real_mean - ema_logits_fake_mean), 2))
lecam_loss += torch.mean(torch.pow(F.relu(ema_logits_real_mean - logits_fake_mean), 2))
return lecam_loss
class ReconstructionLoss_Stage1(torch.nn.Module):
def __init__(
self,
config
):
super().__init__()
loss_config = config.losses
self.quantizer_weight = loss_config.quantizer_weight
self.target_codebook_size = 1024
def forward(self,
target_codes: torch.Tensor,
reconstructions: torch.Tensor,
quantizer_loss: torch.Tensor,
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
return self._forward_generator(target_codes, reconstructions, quantizer_loss)
def _forward_generator(self,
target_codes: torch.Tensor,
reconstructions: torch.Tensor,
quantizer_loss: Mapping[Text, torch.Tensor],
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
reconstructions = reconstructions.contiguous()
loss_fct = nn.CrossEntropyLoss(reduction="mean")
batch_size = reconstructions.shape[0]
reconstruction_loss = loss_fct(reconstructions.view(batch_size, self.target_codebook_size, -1),
target_codes.view(batch_size, -1))
total_loss = reconstruction_loss + \
self.quantizer_weight * quantizer_loss["quantizer_loss"]
loss_dict = dict(
total_loss=total_loss.clone().detach(),
reconstruction_loss=reconstruction_loss.detach(),
quantizer_loss=(self.quantizer_weight * quantizer_loss["quantizer_loss"]).detach(),
commitment_loss=quantizer_loss["commitment_loss"].detach(),
codebook_loss=quantizer_loss["codebook_loss"].detach(),
)
return total_loss, loss_dict
class ReconstructionLoss_Stage2(torch.nn.Module):
def __init__(
self,
config
):
"""Initializes the losses module.
Args:
config: A dictionary, the configuration for the model and everything else.
"""
super().__init__()
loss_config = config.losses
self.discriminator = NLayerDiscriminator()
self.reconstruction_loss = loss_config.reconstruction_loss
self.reconstruction_weight = loss_config.reconstruction_weight
self.quantizer_weight = loss_config.quantizer_weight
self.perceptual_loss = PerceptualLoss(
loss_config.perceptual_loss).eval()
self.perceptual_weight = loss_config.perceptual_weight
self.discriminator_iter_start = loss_config.discriminator_start
self.discriminator_factor = loss_config.discriminator_factor
self.discriminator_weight = loss_config.discriminator_weight
self.lecam_regularization_weight = loss_config.lecam_regularization_weight
self.lecam_ema_decay = loss_config.get("lecam_ema_decay", 0.999)
if self.lecam_regularization_weight > 0.0:
self.register_buffer("ema_real_logits_mean", torch.zeros((1)))
self.register_buffer("ema_fake_logits_mean", torch.zeros((1)))
self.config = config
@autocast(enabled=False)
def forward(self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
extra_result_dict: Mapping[Text, torch.Tensor],
global_step: int,
mode: str = "generator",
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
# Both inputs and reconstructions are in range [0, 1].
inputs = inputs.float()
reconstructions = reconstructions.float()
if mode == "generator":
return self._forward_generator(inputs, reconstructions, extra_result_dict, global_step)
elif mode == "discriminator":
return self._forward_discriminator(inputs, reconstructions, global_step)
else:
raise ValueError(f"Unsupported mode {mode}")
def should_discriminator_be_trained(self, global_step : int):
return global_step >= self.discriminator_iter_start
def _forward_generator(self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
extra_result_dict: Mapping[Text, torch.Tensor],
global_step: int
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
"""Generator training step."""
inputs = inputs.contiguous()
reconstructions = reconstructions.contiguous()
if self.reconstruction_loss == "l1":
reconstruction_loss = F.l1_loss(inputs, reconstructions, reduction="mean")
elif self.reconstruction_loss == "l2":
reconstruction_loss = F.mse_loss(inputs, reconstructions, reduction="mean")
else:
raise ValueError(f"Unsuppored reconstruction_loss {self.reconstruction_loss}")
reconstruction_loss *= self.reconstruction_weight
# Compute perceptual loss.
perceptual_loss = self.perceptual_loss(inputs, reconstructions).mean()
# Compute discriminator loss.
generator_loss = torch.zeros((), device=inputs.device)
discriminator_factor = self.discriminator_factor if self.should_discriminator_be_trained(global_step) else 0
d_weight = 1.0
if discriminator_factor > 0.0 and self.discriminator_weight > 0.0:
# Disable discriminator gradients.
for param in self.discriminator.parameters():
param.requires_grad = False
logits_fake = self.discriminator(reconstructions)
generator_loss = -torch.mean(logits_fake)
d_weight *= self.discriminator_weight
# Compute quantizer loss.
quantizer_loss = extra_result_dict["quantizer_loss"]
total_loss = (
reconstruction_loss
+ self.perceptual_weight * perceptual_loss
+ self.quantizer_weight * quantizer_loss
+ d_weight * discriminator_factor * generator_loss
)
loss_dict = dict(
total_loss=total_loss.clone().detach(),
reconstruction_loss=reconstruction_loss.detach(),
perceptual_loss=(self.perceptual_weight * perceptual_loss).detach(),
quantizer_loss=(self.quantizer_weight * quantizer_loss).detach(),
weighted_gan_loss=(d_weight * discriminator_factor * generator_loss).detach(),
discriminator_factor=torch.tensor(discriminator_factor),
commitment_loss=extra_result_dict["commitment_loss"].detach(),
codebook_loss=extra_result_dict["codebook_loss"].detach(),
d_weight=d_weight,
gan_loss=generator_loss.detach(),
)
return total_loss, loss_dict
def _forward_discriminator(self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
global_step: int,
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
"""Discrminator training step."""
discriminator_factor = self.discriminator_factor if self.should_discriminator_be_trained(global_step) else 0
loss_dict = {}
# Turn the gradients on.
for param in self.discriminator.parameters():
param.requires_grad = True
real_images = inputs.detach().requires_grad_(True)
logits_real = self.discriminator(real_images)
logits_fake = self.discriminator(reconstructions.detach())
discriminator_loss = discriminator_factor * hinge_d_loss(logits_real=logits_real, logits_fake=logits_fake)
# optional lecam regularization
lecam_loss = torch.zeros((), device=inputs.device)
if self.lecam_regularization_weight > 0.0:
lecam_loss = compute_lecam_loss(
torch.mean(logits_real),
torch.mean(logits_fake),
self.ema_real_logits_mean,
self.ema_fake_logits_mean
) * self.lecam_regularization_weight
self.ema_real_logits_mean = self.ema_real_logits_mean * self.lecam_ema_decay + torch.mean(logits_real).detach() * (1 - self.lecam_ema_decay)
self.ema_fake_logits_mean = self.ema_fake_logits_mean * self.lecam_ema_decay + torch.mean(logits_fake).detach() * (1 - self.lecam_ema_decay)
discriminator_loss += lecam_loss
loss_dict = dict(
discriminator_loss=discriminator_loss.detach(),
logits_real=logits_real.detach().mean(),
logits_fake=logits_fake.detach().mean(),
lecam_loss=lecam_loss.detach(),
)
return discriminator_loss, loss_dict
class MLMLoss(torch.nn.Module):
def __init__(self,
config):
super().__init__()
self.label_smoothing = config.losses.label_smoothing
self.loss_weight_unmasked_token = config.losses.loss_weight_unmasked_token
self.criterion = torch.nn.CrossEntropyLoss(label_smoothing=self.label_smoothing,
reduction="none")
def forward(self, inputs: torch.Tensor, targets: torch.Tensor,
weights=None) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
inputs = rearrange(inputs, "b n c -> b c n")
loss = self.criterion(inputs, targets)
weights = weights.to(loss)
loss_weights = (1.0 - weights) * self.loss_weight_unmasked_token + weights # set 0 to self.loss_weight_unasked_token
loss = (loss * loss_weights).sum() / (loss_weights.sum() + 1e-8)
# we only compute correct tokens on masked tokens
correct_tokens = ((torch.argmax(inputs, dim=1) == targets) * weights).sum(dim=1) / (weights.sum(1) + 1e-8)
return loss, {"loss": loss, "correct_tokens": correct_tokens.mean()}
class ARLoss(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.target_vocab_size = config.model.vq_model.codebook_size
self.criterion = torch.nn.CrossEntropyLoss(reduction="mean")
def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
shift_logits = logits[..., :-1, :].permute(0, 2, 1).contiguous() # NLC->NCL
shift_labels = labels.contiguous()
shift_logits = shift_logits.view(shift_logits.shape[0], self.target_vocab_size, -1)
shift_labels = shift_labels.view(shift_labels.shape[0], -1)
shift_labels = shift_labels.to(shift_logits.device)
loss = self.criterion(shift_logits, shift_labels)
correct_tokens = (torch.argmax(shift_logits, dim=1) == shift_labels).sum(dim=1) / shift_labels.size(1)
return loss, {"loss": loss, "correct_tokens": correct_tokens.mean()} |