File size: 6,778 Bytes
51ce47d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""Training script for MaskGIT with TiTok.

Copyright (2024) Bytedance Ltd. and/or its affiliates

Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 

    http://www.apache.org/licenses/LICENSE-2.0 

Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License.
"""
import math
import os
from pathlib import Path

from accelerate.utils import set_seed
from accelerate import Accelerator

import torch
from omegaconf import OmegaConf
from utils.logger import setup_logger

from utils.train_utils import (
    get_config, create_model_and_loss_module, get_titok_tokenizer,
    create_optimizer, create_lr_scheduler, create_dataloader,
    auto_resume, save_checkpoint, 
    train_one_epoch_generator)


def main():
    workspace = os.environ.get('WORKSPACE', '')
    torch.hub.set_dir(workspace + "/models/hub")

    config = get_config()
    # Enable TF32 on Ampere GPUs.
    if config.training.enable_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = False

    output_dir = config.experiment.output_dir
    os.makedirs(output_dir, exist_ok=True)
    config.experiment.logging_dir = os.path.join(output_dir, "logs")

    # Whether logging to Wandb or Tensorboard.
    tracker = "tensorboard"
    if config.training.enable_wandb:
        tracker = "wandb"

    accelerator = Accelerator(
        gradient_accumulation_steps=config.training.gradient_accumulation_steps,
        mixed_precision=config.training.mixed_precision,
        log_with=tracker,
        project_dir=config.experiment.logging_dir,
        split_batches=False,
    )

    logger = setup_logger(name="TiTok-Gen", log_level="INFO",
     output_file=f"{output_dir}/log{accelerator.process_index}.txt")

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers(config.experiment.name)
        config_path = Path(output_dir) / "config.yaml"
        logger.info(f"Saving config to {config_path}")
        OmegaConf.save(config, config_path)
        logger.info(f"Config:\n{OmegaConf.to_yaml(config)}")

    # If passed along, set the training seed now.
    if config.training.seed is not None:
        set_seed(config.training.seed, device_specific=True)

    tokenizer = get_titok_tokenizer(config)
    tokenizer.to(accelerator.device)

    model, ema_model, loss_module = create_model_and_loss_module(
        config, logger, accelerator, model_type="maskgit")

    optimizer, _ = create_optimizer(config, logger, model, loss_module,
                                    need_discrminator=False)

    lr_scheduler, _ = create_lr_scheduler(
        config, logger, accelerator, optimizer, discriminator_optimizer=None)

    train_dataloader, _ = create_dataloader(config, logger, accelerator)

    # Prepare everything with accelerator.
    logger.info("Preparing model, optimizer and dataloaders")
    if config.dataset.params.get("pretokenization", ""):
        model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
            model, optimizer, lr_scheduler, train_dataloader
        )
    else:
        # The dataloader are already aware of distributed training, so we don't need to prepare them.
        model, optimizer, lr_scheduler = accelerator.prepare(
            model, optimizer, lr_scheduler
        )
    if config.training.use_ema:
        ema_model.to(accelerator.device)

    total_batch_size_without_accum = config.training.per_gpu_batch_size * accelerator.num_processes
    num_batches = math.ceil(
        config.experiment.max_train_examples / total_batch_size_without_accum)
    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(num_batches / config.training.gradient_accumulation_steps)

    # Afterwards we recalculate our number of training epochs.
    # Note: We are not doing epoch based training here, but just using this for book keeping and being able to
    # reuse the same training loop with other datasets/loaders.
    num_train_epochs = math.ceil(config.training.max_train_steps / num_update_steps_per_epoch)

    # Start training.
    logger.info("***** Running training *****")
    logger.info(f"  Num training steps = {config.training.max_train_steps}")
    logger.info(f"  Gradient Accumulation steps = {config.training.gradient_accumulation_steps}")
    logger.info(f"  Instantaneous batch size per gpu = { config.training.per_gpu_batch_size}")
    logger.info(f"""  Total train batch size (w. parallel, distributed & accumulation) = {(
        config.training.per_gpu_batch_size *
        accelerator.num_processes *
        config.training.gradient_accumulation_steps)}""")
    global_step = 0
    first_epoch = 0

    global_step, first_epoch = auto_resume(
        config, logger, accelerator, ema_model, num_update_steps_per_epoch,
        strict=True)

    for current_epoch in range(first_epoch, num_train_epochs):
        accelerator.print(f"Epoch {current_epoch}/{num_train_epochs-1} started.")
        global_step = train_one_epoch_generator(config, logger, accelerator,
                            model, ema_model, loss_module,
                            optimizer,
                            lr_scheduler,
                            train_dataloader,
                            tokenizer,
                            global_step,
                            model_type="maskgit")
        # Stop training if max steps is reached.
        if global_step >= config.training.max_train_steps:
            accelerator.print(
                f"Finishing training: Global step is >= Max train steps: {global_step} >= {config.training.max_train_steps}"
            )
            break

    accelerator.wait_for_everyone()
    # Save checkpoint at the end of training.
    save_checkpoint(model, output_dir, accelerator, global_step, logger=logger)
    # Save the final trained checkpoint
    if accelerator.is_main_process:
        model = accelerator.unwrap_model(model)
        if config.training.use_ema:
            ema_model.copy_to(model.parameters())
        model.save_pretrained_weight(output_dir)
    accelerator.end_training()


if __name__ == "__main__":
    main()