RAR / utils /train_utils.py
yucornetto's picture
upload
51ce47d verified
raw
history blame
37.5 kB
"""Training utils for TiTok.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import json
import os
import time
import math
from pathlib import Path
import pprint
import glob
from collections import defaultdict
from data import SimpleImageDataset, PretoeknizedDataSetJSONL
import torch
from torch.utils.data import DataLoader
from omegaconf import OmegaConf
from torch.optim import AdamW
from utils.lr_schedulers import get_scheduler
from modeling.modules import EMAModel, ReconstructionLoss_Stage1, ReconstructionLoss_Stage2, MLMLoss, ARLoss
from modeling.titok import TiTok, PretrainedTokenizer
from modeling.maskgit import ImageBert, UViTBert
from modeling.rar import RAR
from evaluator import VQGANEvaluator
from demo_util import get_titok_tokenizer, sample_fn
from utils.viz_utils import make_viz_from_samples, make_viz_from_samples_generation
from torchinfo import summary
def get_config():
"""Reads configs from a yaml file and terminal."""
cli_conf = OmegaConf.from_cli()
yaml_conf = OmegaConf.load(cli_conf.config)
conf = OmegaConf.merge(yaml_conf, cli_conf)
return conf
class AverageMeter(object):
"""Computes and stores the average and current value.
This class is borrowed from
https://github.com/pytorch/examples/blob/main/imagenet/main.py#L423
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def create_pretrained_tokenizer(config, accelerator=None):
if config.model.vq_model.finetune_decoder:
# No need of pretrained tokenizer at stage2
pretrianed_tokenizer = None
else:
pretrianed_tokenizer = PretrainedTokenizer(config.model.vq_model.pretrained_tokenizer_weight)
if accelerator is not None:
pretrianed_tokenizer.to(accelerator.device)
return pretrianed_tokenizer
def create_model_and_loss_module(config, logger, accelerator,
model_type="titok"):
"""Creates TiTok model and loss module."""
logger.info("Creating model and loss module.")
if model_type == "titok":
model_cls = TiTok
loss_cls = ReconstructionLoss_Stage2 if config.model.vq_model.finetune_decoder else ReconstructionLoss_Stage1
elif model_type == "maskgit":
if config.model.generator.model_type == "ViT":
model_cls = ImageBert
elif config.model.generator.model_type == "UViT":
model_cls == UViTBert
else:
raise ValueError(f"Unsupported generator model_type {config.model.generator.model_type}")
loss_cls = MLMLoss
elif model_type == "rar":
model_cls = RAR
loss_cls = ARLoss
else:
raise ValueError(f"Unsupported model_type {model_type}")
model = model_cls(config)
if config.experiment.get("init_weight", ""):
# If loading a pretrained weight
model_weight = torch.load(config.experiment.init_weight, map_location="cpu")
if config.model.vq_model.finetune_decoder:
# Add the MaskGIT-VQGAN's quantizer/decoder weight as well
pretrained_tokenizer_weight = torch.load(
config.model.vq_model.pretrained_tokenizer_weight, map_location="cpu"
)
# Only keep the quantize and decoder part
pretrained_tokenizer_weight = {"pixel_" + k:v for k,v in pretrained_tokenizer_weight.items() if not "encoder." in k}
model_weight.update(pretrained_tokenizer_weight)
msg = model.load_state_dict(model_weight, strict=False)
logger.info(f"loading weight from {config.experiment.init_weight}, msg: {msg}")
# Create the EMA model.
ema_model = None
if config.training.use_ema:
ema_model = EMAModel(model.parameters(), decay=0.999,
model_cls=model_cls, config=config)
# Create custom saving and loading hooks so that `accelerator.save_state(...)` serializes in a nice format.
def load_model_hook(models, input_dir):
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"),
model_cls=model_cls, config=config)
ema_model.load_state_dict(load_model.state_dict())
ema_model.to(accelerator.device)
del load_model
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
ema_model.save_pretrained(os.path.join(output_dir, "ema_model"))
accelerator.register_load_state_pre_hook(load_model_hook)
accelerator.register_save_state_pre_hook(save_model_hook)
# Create loss module along with discrminator.
loss_module = loss_cls(config=config)
# Print Model for sanity check.
if accelerator.is_main_process:
if model_type in ["titok"]:
input_size = (1, 3, config.dataset.preprocessing.crop_size, config.dataset.preprocessing.crop_size)
model_summary_str = summary(model, input_size=input_size, depth=5,
col_names=("input_size", "output_size", "num_params", "params_percent", "kernel_size", "mult_adds"))
logger.info(model_summary_str)
elif model_type in ["maskgit", "rar"]:
input_size = (1, config.model.vq_model.num_latent_tokens)
input_data = [
torch.randint(0, config.model.vq_model.codebook_size, input_size),
torch.ones(1, dtype=int)
]
model_summary_str = summary(
model, input_data=input_data, depth=7,
col_names=("input_size", "output_size", "num_params", "params_percent", "kernel_size", "mult_adds"))
logger.info(model_summary_str)
else:
raise NotImplementedError
return model, ema_model, loss_module
def create_optimizer(config, logger, model, loss_module,
need_discrminator=True):
"""Creates optimizer for TiTok and discrminator."""
logger.info("Creating optimizers.")
optimizer_config = config.optimizer.params
learning_rate = optimizer_config.learning_rate
optimizer_type = config.optimizer.name
if optimizer_type == "adamw":
optimizer_cls = AdamW
else:
raise ValueError(f"Optimizer {optimizer_type} not supported")
# Exclude terms we may not want to apply weight decay.
exclude = (lambda n, p: p.ndim < 2 or "ln" in n or "bias" in n or 'latent_tokens' in n
or 'mask_token' in n or 'embedding' in n or 'norm' in n or 'gamma' in n or 'embed' in n)
include = lambda n, p: not exclude(n, p)
named_parameters = list(model.named_parameters())
gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad]
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]
optimizer = optimizer_cls(
[
{"params": gain_or_bias_params, "weight_decay": 0.},
{"params": rest_params, "weight_decay": optimizer_config.weight_decay},
],
lr=learning_rate,
betas=(optimizer_config.beta1, optimizer_config.beta2)
)
if config.model.vq_model.finetune_decoder and need_discrminator:
discriminator_learning_rate = optimizer_config.discriminator_learning_rate
discriminator_named_parameters = list(loss_module.named_parameters())
discriminator_gain_or_bias_params = [p for n, p in discriminator_named_parameters if exclude(n, p) and p.requires_grad]
discriminator_rest_params = [p for n, p in discriminator_named_parameters if include(n, p) and p.requires_grad]
discriminator_optimizer = optimizer_cls(
[
{"params": discriminator_gain_or_bias_params, "weight_decay": 0.},
{"params": discriminator_rest_params, "weight_decay": optimizer_config.weight_decay},
],
lr=discriminator_learning_rate,
betas=(optimizer_config.beta1, optimizer_config.beta2)
)
else:
discriminator_optimizer = None
return optimizer, discriminator_optimizer
def create_lr_scheduler(config, logger, accelerator, optimizer, discriminator_optimizer=None):
"""Creates learning rate scheduler for TiTok and discrminator."""
logger.info("Creating lr_schedulers.")
lr_scheduler = get_scheduler(
config.lr_scheduler.scheduler,
optimizer=optimizer,
num_training_steps=config.training.max_train_steps * accelerator.num_processes,
num_warmup_steps=config.lr_scheduler.params.warmup_steps * accelerator.num_processes,
base_lr=config.lr_scheduler.params.learning_rate,
end_lr=config.lr_scheduler.params.end_lr,
)
if discriminator_optimizer is not None:
discriminator_lr_scheduler = get_scheduler(
config.lr_scheduler.scheduler,
optimizer=discriminator_optimizer,
num_training_steps=config.training.max_train_steps * accelerator.num_processes - config.losses.discriminator_start,
num_warmup_steps=config.lr_scheduler.params.warmup_steps * accelerator.num_processes,
base_lr=config.lr_scheduler.params.learning_rate,
end_lr=config.lr_scheduler.params.end_lr,
)
else:
discriminator_lr_scheduler = None
return lr_scheduler, discriminator_lr_scheduler
def create_dataloader(config, logger, accelerator):
"""Creates data loader for training and testing."""
logger.info("Creating dataloaders.")
total_batch_size_without_accum = config.training.per_gpu_batch_size * accelerator.num_processes
total_batch_size = (
config.training.per_gpu_batch_size * accelerator.num_processes * config.training.gradient_accumulation_steps
)
# We use webdataset for data loading. The dataloaders are created with sampling with replacement.
# We don't do dataset resuming here, instead we resample the shards and buffer each time. The sampling is stochastic.
# This means that the dataloading is not deterministic, but it's fast and efficient.
preproc_config = config.dataset.preprocessing
dataset_config = config.dataset.params
# TODO: add support on pre-tokenization dataset
dataset = SimpleImageDataset(
train_shards_path=dataset_config.train_shards_path_or_url,
eval_shards_path=dataset_config.eval_shards_path_or_url,
num_train_examples=config.experiment.max_train_examples,
per_gpu_batch_size=config.training.per_gpu_batch_size,
global_batch_size=total_batch_size_without_accum,
num_workers_per_gpu=dataset_config.num_workers_per_gpu,
resize_shorter_edge=preproc_config.resize_shorter_edge,
crop_size=preproc_config.crop_size,
random_crop=preproc_config.random_crop,
random_flip=preproc_config.random_flip,
)
train_dataloader, eval_dataloader = dataset.train_dataloader, dataset.eval_dataloader
# potentially, use a pretokenized dataset for speed-up.
if dataset_config.get("pretokenization", ""):
train_dataloader = DataLoader(
PretoeknizedDataSetJSONL(dataset_config.pretokenization),
batch_size=config.training.per_gpu_batch_size,
shuffle=True, drop_last=True, pin_memory=True)
train_dataloader.num_batches = math.ceil(
config.experiment.max_train_examples / total_batch_size_without_accum)
return train_dataloader, eval_dataloader
def create_evaluator(config, logger, accelerator):
"""Creates evaluator."""
logger.info("Creating evaluator.")
evaluator = VQGANEvaluator(
device=accelerator.device,
enable_rfid=True,
enable_inception_score=True,
enable_codebook_usage_measure=True,
enable_codebook_entropy_measure=True,
num_codebook_entries=config.model.vq_model.codebook_size
)
return evaluator
def auto_resume(config, logger, accelerator, ema_model,
num_update_steps_per_epoch, strict=True):
"""Auto resuming the training."""
global_step = 0
first_epoch = 0
# If resuming training.
if config.experiment.resume:
accelerator.wait_for_everyone()
local_ckpt_list = list(glob.glob(os.path.join(
config.experiment.output_dir, "checkpoint*")))
logger.info(f"All globbed checkpoints are: {local_ckpt_list}")
if len(local_ckpt_list) >= 1:
if len(local_ckpt_list) > 1:
fn = lambda x: int(x.split('/')[-1].split('-')[-1])
checkpoint_paths = sorted(local_ckpt_list, key=fn, reverse=True)
else:
checkpoint_paths = local_ckpt_list
global_step = load_checkpoint(
Path(checkpoint_paths[0]),
accelerator,
logger=logger,
strict=strict
)
if config.training.use_ema:
ema_model.set_step(global_step)
first_epoch = global_step // num_update_steps_per_epoch
else:
logger.info("Training from scratch.")
return global_step, first_epoch
def train_one_epoch(config, logger, accelerator,
model, ema_model, loss_module,
optimizer, discriminator_optimizer,
lr_scheduler, discriminator_lr_scheduler,
train_dataloader, eval_dataloader,
evaluator,
global_step,
pretrained_tokenizer=None):
"""One epoch training."""
batch_time_meter = AverageMeter()
data_time_meter = AverageMeter()
end = time.time()
model.train()
autoencoder_logs = defaultdict(float)
discriminator_logs = defaultdict(float)
for i, batch in enumerate(train_dataloader):
model.train()
if "image" in batch:
images = batch["image"].to(
accelerator.device, memory_format=torch.contiguous_format, non_blocking=True
)
else:
raise ValueError(f"Not found valid keys: {batch.keys()}")
fnames = batch["__key__"]
data_time_meter.update(time.time() - end)
# Obtain proxy codes
if pretrained_tokenizer is not None:
pretrained_tokenizer.eval()
proxy_codes = pretrained_tokenizer.encode(images)
else:
proxy_codes = None
with accelerator.accumulate([model, loss_module]):
reconstructed_images, extra_results_dict = model(images)
if proxy_codes is None:
autoencoder_loss, loss_dict = loss_module(
images,
reconstructed_images,
extra_results_dict,
global_step,
mode="generator",
)
else:
autoencoder_loss, loss_dict = loss_module(
proxy_codes,
reconstructed_images,
extra_results_dict
)
# Gather the losses across all processes for logging.
autoencoder_logs = {}
for k, v in loss_dict.items():
if k in ["discriminator_factor", "d_weight"]:
if type(v) == torch.Tensor:
autoencoder_logs["train/" + k] = v.cpu().item()
else:
autoencoder_logs["train/" + k] = v
else:
autoencoder_logs["train/" + k] = accelerator.gather(v).mean().item()
accelerator.backward(autoencoder_loss)
if config.training.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), config.training.max_grad_norm)
optimizer.step()
lr_scheduler.step()
# Log gradient norm before zeroing it.
if (
accelerator.sync_gradients
and (global_step + 1) % config.experiment.log_grad_norm_every == 0
and accelerator.is_main_process
):
log_grad_norm(model, accelerator, global_step + 1)
optimizer.zero_grad(set_to_none=True)
# Train discriminator.
discriminator_logs = defaultdict(float)
if config.model.vq_model.finetune_decoder and accelerator.unwrap_model(loss_module).should_discriminator_be_trained(global_step):
discriminator_logs = defaultdict(float)
discriminator_loss, loss_dict_discriminator = loss_module(
images,
reconstructed_images,
extra_results_dict,
global_step=global_step,
mode="discriminator",
)
# Gather the losses across all processes for logging.
for k, v in loss_dict_discriminator.items():
if k in ["logits_real", "logits_fake"]:
if type(v) == torch.Tensor:
discriminator_logs["train/" + k] = v.cpu().item()
else:
discriminator_logs["train/" + k] = v
else:
discriminator_logs["train/" + k] = accelerator.gather(v).mean().item()
accelerator.backward(discriminator_loss)
if config.training.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(loss_module.parameters(), config.training.max_grad_norm)
discriminator_optimizer.step()
discriminator_lr_scheduler.step()
# Log gradient norm before zeroing it.
if (
accelerator.sync_gradients
and (global_step + 1) % config.experiment.log_grad_norm_every == 0
and accelerator.is_main_process
):
log_grad_norm(loss_module, accelerator, global_step + 1)
discriminator_optimizer.zero_grad(set_to_none=True)
if accelerator.sync_gradients:
if config.training.use_ema:
ema_model.step(model.parameters())
batch_time_meter.update(time.time() - end)
end = time.time()
if (global_step + 1) % config.experiment.log_every == 0:
samples_per_second_per_gpu = (
config.training.gradient_accumulation_steps * config.training.per_gpu_batch_size / batch_time_meter.val
)
lr = lr_scheduler.get_last_lr()[0]
logger.info(
f"Data (t): {data_time_meter.val:0.4f}, {samples_per_second_per_gpu:0.2f}/s/gpu "
f"Batch (t): {batch_time_meter.val:0.4f} "
f"LR: {lr:0.6f} "
f"Step: {global_step + 1} "
f"Total Loss: {autoencoder_logs['train/total_loss']:0.4f} "
f"Recon Loss: {autoencoder_logs['train/reconstruction_loss']:0.4f} "
)
logs = {
"lr": lr,
"lr/generator": lr,
"samples/sec/gpu": samples_per_second_per_gpu,
"time/data_time": data_time_meter.val,
"time/batch_time": batch_time_meter.val,
}
logs.update(autoencoder_logs)
logs.update(discriminator_logs)
accelerator.log(logs, step=global_step + 1)
# Reset batch / data time meters per log window.
batch_time_meter.reset()
data_time_meter.reset()
# Save model checkpoint.
if (global_step + 1) % config.experiment.save_every == 0:
save_path = save_checkpoint(
model, config.experiment.output_dir, accelerator, global_step + 1, logger=logger)
# Wait for everyone to save their checkpoint.
accelerator.wait_for_everyone()
# Generate images.
if (global_step + 1) % config.experiment.generate_every == 0 and accelerator.is_main_process:
# Store the model parameters temporarily and load the EMA parameters to perform inference.
if config.training.get("use_ema", False):
ema_model.store(model.parameters())
ema_model.copy_to(model.parameters())
reconstruct_images(
model,
images[:config.training.num_generated_images],
fnames[:config.training.num_generated_images],
accelerator,
global_step + 1,
config.experiment.output_dir,
logger=logger,
config=config,
pretrained_tokenizer=pretrained_tokenizer
)
if config.training.get("use_ema", False):
# Switch back to the original model parameters for training.
ema_model.restore(model.parameters())
# Evaluate reconstruction.
if eval_dataloader is not None and (global_step + 1) % config.experiment.eval_every == 0:
logger.info(f"Computing metrics on the validation set.")
if config.training.get("use_ema", False):
ema_model.store(model.parameters())
ema_model.copy_to(model.parameters())
# Eval for EMA.
eval_scores = eval_reconstruction(
model,
eval_dataloader,
accelerator,
evaluator,
pretrained_tokenizer=pretrained_tokenizer
)
logger.info(
f"EMA EVALUATION "
f"Step: {global_step + 1} "
)
logger.info(pprint.pformat(eval_scores))
if accelerator.is_main_process:
eval_log = {f'ema_eval/'+k: v for k, v in eval_scores.items()}
accelerator.log(eval_log, step=global_step + 1)
if config.training.get("use_ema", False):
# Switch back to the original model parameters for training.
ema_model.restore(model.parameters())
else:
# Eval for non-EMA.
eval_scores = eval_reconstruction(
model,
eval_dataloader,
accelerator,
evaluator,
pretrained_tokenizer=pretrained_tokenizer
)
logger.info(
f"Non-EMA EVALUATION "
f"Step: {global_step + 1} "
)
logger.info(pprint.pformat(eval_scores))
if accelerator.is_main_process:
eval_log = {f'eval/'+k: v for k, v in eval_scores.items()}
accelerator.log(eval_log, step=global_step + 1)
accelerator.wait_for_everyone()
global_step += 1
if global_step >= config.training.max_train_steps:
accelerator.print(
f"Finishing training: Global step is >= Max train steps: {global_step} >= {config.training.max_train_steps}"
)
break
return global_step
def get_rar_random_ratio(config, cur_step):
randomness_anneal_start = config.model.generator.randomness_anneal_start
randomness_anneal_end = config.model.generator.randomness_anneal_end
if cur_step < randomness_anneal_start:
return 1.0
elif cur_step > randomness_anneal_end:
return 0.0
else:
return 1.0 - (cur_step - randomness_anneal_start) / (randomness_anneal_end - randomness_anneal_start)
def train_one_epoch_generator(
config, logger, accelerator,
model, ema_model, loss_module,
optimizer,
lr_scheduler,
train_dataloader,
tokenizer,
global_step,
model_type="maskgit"):
"""One epoch training."""
batch_time_meter = AverageMeter()
data_time_meter = AverageMeter()
end = time.time()
model.train()
for i, batch in enumerate(train_dataloader):
model.train()
if config.dataset.params.get("pretokenization", ""):
# the data is already pre-tokenized
conditions, input_tokens = batch
input_tokens = input_tokens.to(
accelerator.device, memory_format=torch.contiguous_format, non_blocking=True
)
conditions = conditions.to(
accelerator.device, memory_format=torch.contiguous_format, non_blocking=True
)
else:
# tokenize on the fly
if "image" in batch:
images = batch["image"].to(
accelerator.device, memory_format=torch.contiguous_format, non_blocking=True
)
conditions = batch["class_id"].to(
accelerator.device, memory_format=torch.contiguous_format, non_blocking=True
)
# Encode images on the flight.
with torch.no_grad():
tokenizer.eval()
input_tokens = tokenizer.encode(images)[1]["min_encoding_indices"].reshape(images.shape[0], -1)
else:
raise ValueError(f"Not found valid keys: {batch.keys()}")
data_time_meter.update(time.time() - end)
unwrap_model = accelerator.unwrap_model(model)
if model_type == "maskgit":
# Randomly masking out input tokens.
masked_tokens, masks = unwrap_model.masking_input_tokens(
input_tokens)
elif model_type == "rar":
unwrap_model.set_random_ratio(get_rar_random_ratio(config, global_step))
else:
raise NotImplementedError
with accelerator.accumulate([model]):
if model_type == "maskgit":
logits = model(masked_tokens, conditions,
cond_drop_prob=config.model.generator.class_label_dropout)
loss, loss_dict= loss_module(logits, input_tokens, weights=masks)
elif model_type == "rar":
condition = unwrap_model.preprocess_condition(
conditions, cond_drop_prob=config.model.generator.class_label_dropout
)
logits, labels = model(input_tokens, condition, return_labels=True)
loss, loss_dict = loss_module(logits, labels)
# Gather the losses across all processes for logging.
gen_logs = {}
for k, v in loss_dict.items():
gen_logs["train/" + k] = accelerator.gather(v).mean().item()
accelerator.backward(loss)
if config.training.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), config.training.max_grad_norm)
optimizer.step()
lr_scheduler.step()
# Log gradient norm before zeroing it.
if (
accelerator.sync_gradients
and (global_step + 1) % config.experiment.log_grad_norm_every == 0
and accelerator.is_main_process
):
log_grad_norm(model, accelerator, global_step + 1)
optimizer.zero_grad(set_to_none=True)
if accelerator.sync_gradients:
if config.training.use_ema:
ema_model.step(model.parameters())
batch_time_meter.update(time.time() - end)
end = time.time()
if (global_step + 1) % config.experiment.log_every == 0:
samples_per_second_per_gpu = (
config.training.gradient_accumulation_steps * config.training.per_gpu_batch_size / batch_time_meter.val
)
lr = lr_scheduler.get_last_lr()[0]
logger.info(
f"Data (t): {data_time_meter.val:0.4f}, {samples_per_second_per_gpu:0.2f}/s/gpu "
f"Batch (t): {batch_time_meter.val:0.4f} "
f"LR: {lr:0.6f} "
f"Step: {global_step + 1} "
f"Loss: {gen_logs['train/loss']:0.4f} "
f"Accuracy: {gen_logs['train/correct_tokens']:0.4f} "
)
logs = {
"lr": lr,
"lr/generator": lr,
"samples/sec/gpu": samples_per_second_per_gpu,
"time/data_time": data_time_meter.val,
"time/batch_time": batch_time_meter.val,
}
logs.update(gen_logs)
accelerator.log(logs, step=global_step + 1)
# Reset batch / data time meters per log window.
batch_time_meter.reset()
data_time_meter.reset()
# Save model checkpoint.
if (global_step + 1) % config.experiment.save_every == 0:
save_path = save_checkpoint(
model, config.experiment.output_dir, accelerator, global_step + 1, logger=logger)
# Wait for everyone to save their checkpoint.
accelerator.wait_for_everyone()
# Generate images.
if (global_step + 1) % config.experiment.generate_every == 0 and accelerator.is_main_process:
# Store the model parameters temporarily and load the EMA parameters to perform inference.
if config.training.get("use_ema", False):
ema_model.store(model.parameters())
ema_model.copy_to(model.parameters())
generate_images(
model,
tokenizer,
accelerator,
global_step + 1,
config.experiment.output_dir,
logger=logger,
config=config
)
if config.training.get("use_ema", False):
# Switch back to the original model parameters for training.
ema_model.restore(model.parameters())
global_step += 1
if global_step >= config.training.max_train_steps:
accelerator.print(
f"Finishing training: Global step is >= Max train steps: {global_step} >= {config.training.max_train_steps}"
)
break
return global_step
@torch.no_grad()
def eval_reconstruction(
model,
eval_loader,
accelerator,
evaluator,
pretrained_tokenizer=None
):
model.eval()
evaluator.reset_metrics()
local_model = accelerator.unwrap_model(model)
for batch in eval_loader:
images = batch["image"].to(
accelerator.device, memory_format=torch.contiguous_format, non_blocking=True
)
original_images = torch.clone(images)
reconstructed_images, model_dict = local_model(images)
if pretrained_tokenizer is not None:
reconstructed_images = pretrained_tokenizer.decode(reconstructed_images.argmax(1))
reconstructed_images = torch.clamp(reconstructed_images, 0.0, 1.0)
# Quantize to uint8
reconstructed_images = torch.round(reconstructed_images * 255.0) / 255.0
original_images = torch.clamp(original_images, 0.0, 1.0)
# For VQ model.
evaluator.update(original_images, reconstructed_images.squeeze(2), model_dict["min_encoding_indices"])
model.train()
return evaluator.result()
@torch.no_grad()
def reconstruct_images(model, original_images, fnames, accelerator,
global_step, output_dir, logger, config=None,
pretrained_tokenizer=None):
logger.info("Reconstructing images...")
original_images = torch.clone(original_images)
model.eval()
dtype = torch.float32
if accelerator.mixed_precision == "fp16":
dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
dtype = torch.bfloat16
with torch.autocast("cuda", dtype=dtype, enabled=accelerator.mixed_precision != "no"):
enc_tokens, encoder_dict = accelerator.unwrap_model(model).encode(original_images)
reconstructed_images = accelerator.unwrap_model(model).decode(enc_tokens)
if pretrained_tokenizer is not None:
reconstructed_images = pretrained_tokenizer.decode(reconstructed_images.argmax(1))
images_for_saving, images_for_logging = make_viz_from_samples(
original_images,
reconstructed_images
)
# Log images.
if config.training.enable_wandb:
accelerator.get_tracker("wandb").log_images(
{f"Train Reconstruction": images_for_saving},
step=global_step
)
else:
accelerator.get_tracker("tensorboard").log_images(
{"Train Reconstruction": images_for_logging}, step=global_step
)
# Log locally.
root = Path(output_dir) / "train_images"
os.makedirs(root, exist_ok=True)
for i,img in enumerate(images_for_saving):
filename = f"{global_step:08}_s-{i:03}-{fnames[i]}.png"
path = os.path.join(root, filename)
img.save(path)
model.train()
@torch.no_grad()
def generate_images(model, tokenizer, accelerator,
global_step, output_dir, logger, config=None):
model.eval()
tokenizer.eval()
logger.info("Generating images...")
generated_image = sample_fn(
accelerator.unwrap_model(model),
tokenizer,
guidance_scale=config.model.generator.get("guidance_scale", 3.0),
guidance_decay=config.model.generator.get("guidance_decay", "constant"),
guidance_scale_pow=config.model.generator.get("guidance_scale_pow", 3.0),
randomize_temperature=config.model.generator.get("randomize_temperature", 2.0),
softmax_temperature_annealing=config.model.generator.get("softmax_temperature_annealing", False),
num_sample_steps=config.model.generator.get("num_steps", 8),
device=accelerator.device,
return_tensor=True
)
images_for_saving, images_for_logging = make_viz_from_samples_generation(
generated_image)
# Log images.
if config.training.enable_wandb:
accelerator.get_tracker("wandb").log_images(
{"Train Generated": [images_for_saving]}, step=global_step
)
else:
accelerator.get_tracker("tensorboard").log_images(
{"Train Generated": images_for_logging}, step=global_step
)
# Log locally.
root = Path(output_dir) / "train_generated_images"
os.makedirs(root, exist_ok=True)
filename = f"{global_step:08}_s-generated.png"
path = os.path.join(root, filename)
images_for_saving.save(path)
model.train()
return
def save_checkpoint(model, output_dir, accelerator, global_step, logger) -> Path:
save_path = Path(output_dir) / f"checkpoint-{global_step}"
state_dict = accelerator.get_state_dict(model)
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained_weight(
save_path / "unwrapped_model",
save_function=accelerator.save,
state_dict=state_dict,
)
json.dump({"global_step": global_step}, (save_path / "metadata.json").open("w+"))
logger.info(f"Saved state to {save_path}")
accelerator.save_state(save_path)
return save_path
def load_checkpoint(checkpoint_path: Path, accelerator, logger, strict=True):
logger.info(f"Load checkpoint from {checkpoint_path}")
accelerator.load_state(checkpoint_path, strict=strict)
with open(checkpoint_path / "metadata.json", "r") as f:
global_step = int(json.load(f)["global_step"])
logger.info(f"Resuming at global_step {global_step}")
return global_step
def log_grad_norm(model, accelerator, global_step):
for name, param in model.named_parameters():
if param.grad is not None:
grads = param.grad.detach().data
grad_norm = (grads.norm(p=2) / grads.numel()).item()
accelerator.log({"grad_norm/" + name: grad_norm}, step=global_step)