Spaces:
Running
on
Zero
Running
on
Zero
"""This file contains some base class implementation for models. | |
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). | |
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. | |
Reference: | |
https://github.com/huggingface/open-muse/blob/main/muse/modeling_utils.py | |
""" | |
import os | |
from typing import Union, Callable, Dict, Optional | |
import torch | |
class BaseModel(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def save_pretrained_weight( | |
self, | |
save_directory: Union[str, os.PathLike], | |
save_function: Callable = None, | |
state_dict: Optional[Dict[str, torch.Tensor]] = None, | |
): | |
"""Saves a model and its configuration file to a directory. | |
Args: | |
save_directory: A string or os.PathLike, directory to which to save. | |
Will be created if it doesn't exist. | |
save_function: A Callable function, the function to use to save the state dictionary. | |
Useful on distributed training like TPUs when one need to replace `torch.save` by | |
another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. | |
state_dict: A dictionary from str to torch.Tensor, the state dictionary to save. | |
If `None`, the model's state dictionary will be saved. | |
""" | |
if os.path.isfile(save_directory): | |
print(f"Provided path ({save_directory}) should be a directory, not a file") | |
return | |
if save_function is None: | |
save_function = torch.save | |
os.makedirs(save_directory, exist_ok=True) | |
model_to_save = self | |
if state_dict is None: | |
state_dict = model_to_save.state_dict() | |
weights_name = "pytorch_model.bin" | |
save_function(state_dict, os.path.join(save_directory, weights_name)) | |
print(f"Model weights saved in {os.path.join(save_directory, weights_name)}") | |
def load_pretrained_weight( | |
self, | |
pretrained_model_path: Union[str, os.PathLike], | |
strict_loading: bool = True, | |
torch_dtype: Optional[torch.dtype] = None | |
): | |
r"""Instantiates a pretrained pytorch model from a pre-trained model configuration. | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train | |
the model, you should first set it back in training mode with `model.train()`. | |
Args: | |
pretrained_model_path: A string or os.PathLike, a path to a *directory* or *file* containing model weights. | |
Raises: | |
ValueError: If pretrained_model_path does not exist. | |
""" | |
# If pretrained_model_path is a file, set model_file to this file. | |
if os.path.isfile(pretrained_model_path): | |
model_file = pretrained_model_path | |
# If pretrained_model_path is a directory, set model_file to the path of the | |
# file "pytorch_model.bin" in this directory. | |
elif os.path.isdir(pretrained_model_path): | |
pretrained_model_path = os.path.join(pretrained_model_path, "pytorch_model.bin") | |
if os.path.isfile(pretrained_model_path): | |
model_file = pretrained_model_path | |
else: | |
raise ValueError(f"{pretrained_model_path} does not exist") | |
else: | |
raise ValueError(f"{pretrained_model_path} does not exist") | |
# Load model state from checkpoint. | |
checkpoint = torch.load(model_file, map_location="cpu") | |
# Load state dictionary into self. | |
msg = self.load_state_dict(checkpoint, strict=strict_loading) | |
# Print information about loading weights. | |
print(f"loading weight from {model_file}, msg: {msg}") | |
# If torch_dtype is specified and is a valid torch.dtype, convert self to this dtype. | |
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
) | |
elif torch_dtype is not None: | |
self.to(torch_dtype) | |
# Set model in evaluation mode to deactivate DropOut modules by default. | |
self.eval() | |
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: | |
"""Gets the number of parameters in the module. | |
Args: | |
only_trainable: A boolean, whether to only include trainable parameters. | |
exclude_embeddings: A boolean, whether to exclude parameters associated with embeddings. | |
Returns: | |
An integer, the number of parameters. | |
""" | |
if exclude_embeddings: | |
embedding_param_names = [ | |
f"{name}.weight" | |
for name, module_type in self.named_modules() | |
if isinstance(module_type, torch.nn.Embedding) | |
] | |
non_embedding_parameters = [ | |
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names | |
] | |
return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable) | |
else: | |
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) | |