Spaces:
Running
on
Zero
Running
on
Zero
"""This file contains some base class implementation for EMA. | |
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). | |
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. | |
Reference: | |
https://github.com/huggingface/open-muse/blob/64e1afe033717d795866ab8204484705cd4dc3f7/muse/modeling_ema.py#L8 | |
""" | |
import copy | |
from typing import Any, Iterable, Optional, Union | |
import torch | |
class EMAModel: | |
"""Exponential Moving Average of models weights.""" | |
def __init__( | |
self, | |
parameters: Iterable[torch.nn.Parameter], | |
decay: float = 0.9999, | |
min_decay: float = 0.0, | |
update_after_step: int = 0, | |
update_every: int = 1, | |
current_step: int = 0, | |
use_ema_warmup: bool = False, | |
inv_gamma: Union[float, int] = 1.0, | |
power: Union[float, int] = 2 / 3, | |
model_cls: Optional[Any] = None, | |
**model_config_kwargs | |
): | |
""" | |
Args: | |
parameters (Iterable[torch.nn.Parameter]): The parameters to track. | |
decay (float): The decay factor for the exponential moving average. | |
min_decay (float): The minimum decay factor for the exponential moving average. | |
update_after_step (int): The number of steps to wait before starting to update the EMA weights. | |
update_every (int): The number of steps between each EMA update. | |
current_step (int): The current training step. | |
use_ema_warmup (bool): Whether to use EMA warmup. | |
inv_gamma (float): | |
Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True. | |
power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True. | |
notes on EMA Warmup: | |
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan | |
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps), | |
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 | |
at 215.4k steps). | |
""" | |
parameters = list(parameters) | |
self.shadow_params = [p.clone().detach() for p in parameters] | |
self.temp_stored_params = None | |
self.decay = decay | |
self.min_decay = min_decay | |
self.update_after_step = update_after_step | |
self.update_every = update_every | |
self.use_ema_warmup = use_ema_warmup | |
self.inv_gamma = inv_gamma | |
self.power = power | |
self.optimization_step = current_step | |
self.cur_decay_value = None # set in `step()` | |
self.model_cls = model_cls | |
self.model_config_kwargs = model_config_kwargs | |
def from_pretrained(cls, checkpoint, model_cls, **model_config_kwargs) -> "EMAModel": | |
model = model_cls(**model_config_kwargs) | |
model.load_pretrained_weight(checkpoint) | |
ema_model = cls(model.parameters(), model_cls=model_cls, **model_config_kwargs) | |
return ema_model | |
def save_pretrained(self, path): | |
if self.model_cls is None: | |
raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.") | |
if self.model_config_kwargs is None: | |
raise ValueError("`save_pretrained` can only be used if `model_config_kwargs` was defined at __init__.") | |
model = self.model_cls(**self.model_config_kwargs) | |
self.copy_to(model.parameters()) | |
model.save_pretrained_weight(path) | |
def set_step(self, optimization_step: int): | |
self.optimization_step = optimization_step | |
def get_decay(self, optimization_step: int) -> float: | |
"""Computes the decay factor for the exponential moving average.""" | |
step = max(0, optimization_step - self.update_after_step - 1) | |
if step <= 0: | |
return 0.0 | |
if self.use_ema_warmup: | |
cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power | |
else: | |
cur_decay_value = (1 + step) / (10 + step) | |
cur_decay_value = min(cur_decay_value, self.decay) | |
# Make sure decay is not smaller than min_decay. | |
cur_decay_value = max(cur_decay_value, self.min_decay) | |
return cur_decay_value | |
def step(self, parameters: Iterable[torch.nn.Parameter]): | |
parameters = list(parameters) | |
self.optimization_step += 1 | |
if (self.optimization_step - 1) % self.update_every != 0: | |
return | |
# Compute the decay factor for the exponential moving average. | |
decay = self.get_decay(self.optimization_step) | |
self.cur_decay_value = decay | |
one_minus_decay = 1 - decay | |
for s_param, param in zip(self.shadow_params, parameters): | |
if param.requires_grad: | |
s_param.sub_(one_minus_decay * (s_param - param)) | |
else: | |
s_param.copy_(param) | |
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: | |
"""Copies current averaged parameters into given collection of parameters. | |
Args: | |
parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
updated with the stored moving averages. If `None`, the parameters with which this | |
`ExponentialMovingAverage` was initialized will be used. | |
""" | |
parameters = list(parameters) | |
for s_param, param in zip(self.shadow_params, parameters): | |
param.data.copy_(s_param.to(param.device).data) | |
def to(self, device=None, dtype=None) -> None: | |
r"""Moves internal buffers of the ExponentialMovingAverage to `device`. | |
Args: | |
device: like `device` argument to `torch.Tensor.to` | |
""" | |
# .to() on the tensors handles None correctly | |
self.shadow_params = [ | |
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) | |
for p in self.shadow_params | |
] | |
def state_dict(self) -> dict: | |
r"""Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during | |
checkpointing to save the ema state dict. | |
""" | |
# Following PyTorch conventions, references to tensors are returned: | |
# "returns a reference to the state and not its copy!" - | |
# https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict | |
return { | |
"decay": self.decay, | |
"min_decay": self.min_decay, | |
"optimization_step": self.optimization_step, | |
"update_after_step": self.update_after_step, | |
"use_ema_warmup": self.use_ema_warmup, | |
"inv_gamma": self.inv_gamma, | |
"power": self.power, | |
"shadow_params": self.shadow_params, | |
} | |
def store(self, parameters: Iterable[torch.nn.Parameter]) -> None: | |
r""" | |
Args: | |
Save the current parameters for restoring later. | |
parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
temporarily stored. | |
""" | |
self.temp_stored_params = [param.detach().cpu().clone() for param in parameters] | |
def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: | |
r"""Restores the parameters stored with the `store` method. Useful to validate | |
the model with EMA parameters without affecting the original optimization process. | |
Store the parameters before the `copy_to()` method. After validation (or | |
model saving), use this to restore the former parameters. | |
Args: | |
parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
updated with the stored parameters. If `None`, the parameters with which this | |
`ExponentialMovingAverage` was initialized will be used. | |
""" | |
if self.temp_stored_params is None: | |
raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights to `restore()`") | |
for c_param, param in zip(self.temp_stored_params, parameters): | |
param.data.copy_(c_param.data) | |
# Better memory-wise. | |
self.temp_stored_params = None | |
def load_state_dict(self, state_dict: dict) -> None: | |
r"""Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the | |
ema state dict. | |
Args: | |
state_dict (dict): EMA state. Should be an object returned | |
from a call to :meth:`state_dict`. | |
""" | |
# Deepcopy, to be consistent with module API | |
state_dict = copy.deepcopy(state_dict) | |
self.decay = state_dict.get("decay", self.decay) | |
if self.decay < 0.0 or self.decay > 1.0: | |
raise ValueError("Decay must be between 0 and 1") | |
self.min_decay = state_dict.get("min_decay", self.min_decay) | |
if not isinstance(self.min_decay, float): | |
raise ValueError("Invalid min_decay") | |
self.optimization_step = state_dict.get("optimization_step", self.optimization_step) | |
if not isinstance(self.optimization_step, int): | |
raise ValueError("Invalid optimization_step") | |
self.update_after_step = state_dict.get("update_after_step", self.update_after_step) | |
if not isinstance(self.update_after_step, int): | |
raise ValueError("Invalid update_after_step") | |
self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup) | |
if not isinstance(self.use_ema_warmup, bool): | |
raise ValueError("Invalid use_ema_warmup") | |
self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma) | |
if not isinstance(self.inv_gamma, (float, int)): | |
raise ValueError("Invalid inv_gamma") | |
self.power = state_dict.get("power", self.power) | |
if not isinstance(self.power, (float, int)): | |
raise ValueError("Invalid power") | |
shadow_params = state_dict.get("shadow_params", None) | |
if shadow_params is not None: | |
self.shadow_params = shadow_params | |
if not isinstance(self.shadow_params, list): | |
raise ValueError("shadow_params must be a list") | |
if not all(isinstance(p, torch.Tensor) for p in self.shadow_params): | |
raise ValueError("shadow_params must all be Tensors") |