RAR / modeling /titok.py
yucornetto's picture
upload
51ce47d verified
"""This file contains the model definition of TiTok.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import torch
import torch.nn as nn
from einops import rearrange
from modeling.modules.base_model import BaseModel
from modeling.modules.blocks import TiTokEncoder, TiTokDecoder
from modeling.quantizer.quantizer import VectorQuantizer, DiagonalGaussianDistribution
from modeling.modules.maskgit_vqgan import Encoder as Pixel_Eecoder
from modeling.modules.maskgit_vqgan import Decoder as Pixel_Decoder
from modeling.modules.maskgit_vqgan import VectorQuantizer as Pixel_Quantizer
import json
from omegaconf import OmegaConf
from pathlib import Path
from huggingface_hub import PyTorchModelHubMixin
class PretrainedTokenizer(nn.Module):
def __init__(self, pretrained_weight):
super().__init__()
conf = OmegaConf.create(
{"channel_mult": [1, 1, 2, 2, 4],
"num_resolutions": 5,
"dropout": 0.0,
"hidden_channels": 128,
"num_channels": 3,
"num_res_blocks": 2,
"resolution": 256,
"z_channels": 256})
self.encoder = Pixel_Eecoder(conf)
self.decoder = Pixel_Decoder(conf)
self.quantize = Pixel_Quantizer(
num_embeddings=1024, embedding_dim=256, commitment_cost=0.25)
# Load pretrained weights
self.load_state_dict(torch.load(pretrained_weight, map_location=torch.device("cpu")), strict=True)
self.eval()
for param in self.parameters():
param.requires_grad = False
@torch.no_grad()
def encode(self, x):
hidden_states = self.encoder(x)
quantized_states, codebook_indices, codebook_loss = self.quantize(hidden_states)
return codebook_indices.detach()
@torch.no_grad()
def decode(self, codes):
quantized_states = self.quantize.get_codebook_entry(codes)
rec_images = self.decoder(quantized_states)
rec_images = torch.clamp(rec_images, 0.0, 1.0)
return rec_images.detach()
@torch.no_grad()
def decode_tokens(self, codes):
return self.decode(codes)
class TiTok(BaseModel, PyTorchModelHubMixin, tags=["arxiv:2406.07550", "image-tokenization"], repo_url="https://github.com/bytedance/1d-tokenizer", license="apache-2.0"):
def __init__(self, config):
if isinstance(config, dict):
config = OmegaConf.create(config)
super().__init__()
self.config = config
# This should be False for stage1 and True for stage2.
self.finetune_decoder = config.model.vq_model.get("finetune_decoder", True)
self.quantize_mode = config.model.vq_model.get("quantize_mode", "vq")
if self.quantize_mode not in ["vq", "vae"]:
raise ValueError(f"Unsupported quantize mode {self.quantize_mode}.")
if self.finetune_decoder and self.quantize_mode not in ["vq"]:
raise ValueError("Only supprot finetune_decoder with vq quantization for now.")
self.encoder = TiTokEncoder(config)
self.decoder = TiTokDecoder(config)
self.num_latent_tokens = config.model.vq_model.num_latent_tokens
scale = self.encoder.width ** -0.5
self.latent_tokens = nn.Parameter(
scale * torch.randn(self.num_latent_tokens, self.encoder.width))
self.apply(self._init_weights)
if self.quantize_mode == "vq":
self.quantize = VectorQuantizer(
codebook_size=config.model.vq_model.codebook_size,
token_size=config.model.vq_model.token_size,
commitment_cost=config.model.vq_model.commitment_cost,
use_l2_norm=config.model.vq_model.use_l2_norm,)
elif self.quantize_mode == "vae":
self.quantize = DiagonalGaussianDistribution
else:
raise NotImplementedError
if self.finetune_decoder:
# Freeze encoder/quantizer/latent tokens
self.latent_tokens.requires_grad_(False)
self.encoder.eval()
self.encoder.requires_grad_(False)
self.quantize.eval()
self.quantize.requires_grad_(False)
# Include MaskGiT-VQGAN's quantizer and decoder
self.pixel_quantize = Pixel_Quantizer(
num_embeddings=1024, embedding_dim=256, commitment_cost=0.25)
self.pixel_decoder = Pixel_Decoder(OmegaConf.create(
{"channel_mult": [1, 1, 2, 2, 4],
"num_resolutions": 5,
"dropout": 0.0,
"hidden_channels": 128,
"num_channels": 3,
"num_res_blocks": 2,
"resolution": 256,
"z_channels": 256}))
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights and config to a local directory."""
# Assume 'self.config' is your DictConfig object
# Convert to a regular dictionary
dict_config = OmegaConf.to_container(self.config)
# Save as JSON
file_path = Path(save_directory) / "config.json"
with open(file_path, 'w') as json_file:
json.dump(dict_config, json_file, indent=4)
super()._save_pretrained(save_directory)
def _init_weights(self, module):
""" Initialize the weights.
:param:
module -> torch.nn.Module: module to initialize
"""
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or isinstance(module, nn.Conv2d):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def encode(self, x):
if self.finetune_decoder:
with torch.no_grad():
self.encoder.eval()
self.quantize.eval()
z = self.encoder(pixel_values=x, latent_tokens=self.latent_tokens)
z_quantized, result_dict = self.quantize(z)
result_dict["quantizer_loss"] *= 0
result_dict["commitment_loss"] *= 0
result_dict["codebook_loss"] *= 0
else:
z = self.encoder(pixel_values=x, latent_tokens=self.latent_tokens)
if self.quantize_mode == "vq":
z_quantized, result_dict = self.quantize(z)
elif self.quantize_mode == "vae":
posteriors = self.quantize(z)
z_quantized = posteriors.sample()
result_dict = posteriors
return z_quantized, result_dict
def decode(self, z_quantized):
decoded = self.decoder(z_quantized)
if self.finetune_decoder:
quantized_states = torch.einsum(
'nchw,cd->ndhw', decoded.softmax(1),
self.pixel_quantize.embedding.weight)
decoded = self.pixel_decoder(quantized_states)
return decoded
def decode_tokens(self, tokens):
if self.quantize_mode == "vq":
tokens = tokens.squeeze(1)
batch, seq_len = tokens.shape # B x N
z_quantized = self.quantize.get_codebook_entry(
tokens.reshape(-1)).reshape(batch, 1, seq_len, -1)
z_quantized = rearrange(z_quantized, 'b h w c -> b c h w').contiguous()
elif self.quantize_mode == "vae":
z_quantized = tokens
decoded = self.decode(z_quantized)
return decoded
def forward(self, x):
z_quantized, result_dict = self.encode(x)
decoded = self.decode(z_quantized)
return decoded, result_dict