yucornetto commited on
Commit
29dcf96
·
verified ·
1 Parent(s): 51ce47d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -0
app.py CHANGED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Reference: https://huggingface.co/spaces/FoundationVision/LlamaGen/blob/main/app.py
2
+ from PIL import Image
3
+ import gradio as gr
4
+ from imagenet_classes import imagenet_idx2classname
5
+ import torch
6
+ torch.backends.cuda.matmul.allow_tf32 = True
7
+ torch.backends.cudnn.allow_tf32 = True
8
+ import time
9
+ import demo_util
10
+ from utils.train_utils import create_pretrained_tokenizer
11
+ import os
12
+ import spaces
13
+ from huggingface_hub import hf_hub_download
14
+
15
+ os.system("pip3 install -U numpy")
16
+
17
+
18
+ hf_hub_download(repo_id="fun-research/TiTok", filename="maskgit-vqgan-imagenet-f16-256.bin", local_dir="./")
19
+ hf_hub_download(repo_id="yucornetto/RAR", filename="rar_b.bin", local_dir="./")
20
+
21
+ # @spaces.GPU
22
+ def load_model():
23
+ device = "cuda" if torch.cuda.is_available() else "cpu"
24
+ # load config
25
+ rar_model_size = "rar_b"
26
+ config = demo_util.get_config("configs/training/generator/rar.yaml")
27
+ config.experiment.generator_checkpoint = f"{rar_model_size}.bin"
28
+ config.model.generator.hidden_size = {"rar_b": 768, "rar_l": 1024, "rar_xl": 1280, "rar_xxl": 1408}[rar_model_size]
29
+ config.model.generator.num_hidden_layers = {"rar_b": 24, "rar_l": 24, "rar_xl": 32, "rar_xxl": 40}[rar_model_size]
30
+ config.model.generator.num_attention_heads = 16
31
+ config.model.generator.intermediate_size = {"rar_b": 3072, "rar_l": 4096, "rar_xl": 5120, "rar_xxl": 6144}[rar_model_size]
32
+
33
+ print(config)
34
+ tokenizer = create_pretrained_tokenizer(config)
35
+ print(tokenizer)
36
+ generator = demo_util.get_rar_generator(config)
37
+ print(generator)
38
+
39
+ tokenizer = tokenizer.to(device)
40
+ generator = generator.to(device)
41
+ return tokenizer, generator
42
+
43
+ tokenizer, generator = load_model()
44
+
45
+ @spaces.GPU
46
+ def demo_infer(
47
+ guidance_scale, randomize_temperature, guidance_scale_pow,
48
+ class_label, seed):
49
+ device = "cuda" if torch.cuda.is_available() else "cpu"
50
+ n = 4
51
+ class_labels = [class_label for _ in range(n)]
52
+ torch.manual_seed(seed)
53
+ torch.cuda.manual_seed(seed)
54
+ t1 = time.time()
55
+ generated_image = demo_util.sample_fn(
56
+ generator=generator,
57
+ tokenizer=tokenizer,
58
+ labels=class_labels,
59
+ guidance_scale=guidance_scale,
60
+ randomize_temperature=randomize_temperature,
61
+ guidance_scale_pow=guidance_scale_pow,
62
+ device=device
63
+ )
64
+ sampling_time = time.time() - t1
65
+ print(f"generation takes about {sampling_time:.2f} seconds.")
66
+ samples = [Image.fromarray(sample) for sample in generated_image]
67
+ return samples
68
+
69
+ with gr.Blocks() as demo:
70
+ gr.Markdown("<h1 style='text-align: center'>An Image is Worth 32 Tokens for Reconstruction and Generation</h1>")
71
+
72
+ with gr.Tabs():
73
+ with gr.TabItem('Generate'):
74
+ with gr.Row():
75
+ with gr.Column():
76
+ with gr.Row():
77
+ i1k_class = gr.Dropdown(
78
+ list(imagenet_idx2classname.values()),
79
+ value='Eskimo dog, husky',
80
+ type="index", label='ImageNet-1K Class'
81
+ )
82
+ guidance_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=10.0, label='Classifier-free Guidance Scale')
83
+ randomize_temperature = gr.Slider(minimum=0.8, maximum=1.2, step=0.01, value=1.0, label='randomize_temperature')
84
+ guidance_scale_pow = gr.Slider(minimum=0.0, maximum=4.0, step=0.25, value=0.0, label='guidance_scale_pow')
85
+ seed = gr.Slider(minimum=0, maximum=1000, step=1, value=42, label='Seed')
86
+ button = gr.Button("Generate", variant="primary")
87
+ with gr.Column():
88
+ output = gr.Gallery(label='Generated Images',
89
+ columns=4,
90
+ rows=1,
91
+ height=256, object_fit="scale-down")
92
+ button.click(demo_infer, inputs=[
93
+ guidance_scale, randomize_temperature, guidance_scale_pow,
94
+ i1k_class, seed],
95
+ outputs=[output])
96
+ demo.queue()
97
+ demo.launch(debug=True)