"""Vector quantizer. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Reference: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vqvae/quantize.py https://github.com/google-research/magvit/blob/main/videogvt/models/vqvae.py https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/distributions/distributions.py """ from typing import Mapping, Text, Tuple import torch from einops import rearrange from torch.cuda.amp import autocast class VectorQuantizer(torch.nn.Module): def __init__(self, codebook_size: int = 1024, token_size: int = 256, commitment_cost: float = 0.25, use_l2_norm: bool = False, ): super().__init__() self.commitment_cost = commitment_cost self.embedding = torch.nn.Embedding(codebook_size, token_size) self.embedding.weight.data.uniform_(-1.0 / codebook_size, 1.0 / codebook_size) self.use_l2_norm = use_l2_norm # Ensure quantization is performed using f32 @autocast(enabled=False) def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]: z = z.float() z = rearrange(z, 'b c h w -> b h w c').contiguous() z_flattened = rearrange(z, 'b h w c -> (b h w) c') if self.use_l2_norm: z_flattened = torch.nn.functional.normalize(z_flattened, dim=-1) embedding = torch.nn.functional.normalize(self.embedding.weight, dim=-1) else: embedding = self.embedding.weight d = torch.sum(z_flattened**2, dim=1, keepdim=True) + \ torch.sum(embedding**2, dim=1) - 2 * \ torch.einsum('bd,dn->bn', z_flattened, embedding.T) min_encoding_indices = torch.argmin(d, dim=1) # num_ele z_quantized = self.get_codebook_entry(min_encoding_indices).view(z.shape) if self.use_l2_norm: z = torch.nn.functional.normalize(z, dim=-1) # compute loss for embedding commitment_loss = self.commitment_cost * torch.mean((z_quantized.detach() - z) **2) codebook_loss = torch.mean((z_quantized - z.detach()) **2) loss = commitment_loss + codebook_loss # preserve gradients z_quantized = z + (z_quantized - z).detach() # reshape back to match original input shape z_quantized = rearrange(z_quantized, 'b h w c -> b c h w').contiguous() result_dict = dict( quantizer_loss=loss, commitment_loss=commitment_loss, codebook_loss=codebook_loss, min_encoding_indices=min_encoding_indices.view(z_quantized.shape[0], z_quantized.shape[2], z_quantized.shape[3]) ) return z_quantized, result_dict def get_codebook_entry(self, indices): if len(indices.shape) == 1: z_quantized = self.embedding(indices) elif len(indices.shape) == 2: z_quantized = torch.einsum('bd,dn->bn', indices, self.embedding.weight) else: raise NotImplementedError if self.use_l2_norm: z_quantized = torch.nn.functional.normalize(z_quantized, dim=-1) return z_quantized class DiagonalGaussianDistribution(object): @autocast(enabled=False) def __init__(self, parameters, deterministic=False): """Initializes a Gaussian distribution instance given the parameters. Args: parameters (torch.Tensor): The parameters for the Gaussian distribution. It is expected to be in shape [B, 2 * C, *], where B is batch size, and C is the embedding dimension. First C channels are used for mean and last C are used for logvar in the Gaussian distribution. deterministic (bool): Whether to use deterministic sampling. When it is true, the sampling results is purely based on mean (i.e., std = 0). """ self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters.float(), 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) @autocast(enabled=False) def sample(self): x = self.mean.float() + self.std.float() * torch.randn(self.mean.shape).to(device=self.parameters.device) return x @autocast(enabled=False) def mode(self): return self.mean @autocast(enabled=False) def kl(self): if self.deterministic: return torch.Tensor([0.]) else: return 0.5 * torch.sum(torch.pow(self.mean.float(), 2) + self.var.float() - 1.0 - self.logvar.float(), dim=[1, 2])