"""Training utils for TiTok. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import os import time import math from pathlib import Path import pprint import glob from collections import defaultdict from data import SimpleImageDataset, PretoeknizedDataSetJSONL import torch from torch.utils.data import DataLoader from omegaconf import OmegaConf from torch.optim import AdamW from utils.lr_schedulers import get_scheduler from modeling.modules import EMAModel, ReconstructionLoss_Stage1, ReconstructionLoss_Stage2, MLMLoss, ARLoss from modeling.titok import TiTok, PretrainedTokenizer from modeling.maskgit import ImageBert, UViTBert from modeling.rar import RAR from evaluator import VQGANEvaluator from demo_util import get_titok_tokenizer, sample_fn from utils.viz_utils import make_viz_from_samples, make_viz_from_samples_generation from torchinfo import summary def get_config(): """Reads configs from a yaml file and terminal.""" cli_conf = OmegaConf.from_cli() yaml_conf = OmegaConf.load(cli_conf.config) conf = OmegaConf.merge(yaml_conf, cli_conf) return conf class AverageMeter(object): """Computes and stores the average and current value. This class is borrowed from https://github.com/pytorch/examples/blob/main/imagenet/main.py#L423 """ def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def create_pretrained_tokenizer(config, accelerator=None): if config.model.vq_model.finetune_decoder: # No need of pretrained tokenizer at stage2 pretrianed_tokenizer = None else: pretrianed_tokenizer = PretrainedTokenizer(config.model.vq_model.pretrained_tokenizer_weight) if accelerator is not None: pretrianed_tokenizer.to(accelerator.device) return pretrianed_tokenizer def create_model_and_loss_module(config, logger, accelerator, model_type="titok"): """Creates TiTok model and loss module.""" logger.info("Creating model and loss module.") if model_type == "titok": model_cls = TiTok loss_cls = ReconstructionLoss_Stage2 if config.model.vq_model.finetune_decoder else ReconstructionLoss_Stage1 elif model_type == "maskgit": if config.model.generator.model_type == "ViT": model_cls = ImageBert elif config.model.generator.model_type == "UViT": model_cls == UViTBert else: raise ValueError(f"Unsupported generator model_type {config.model.generator.model_type}") loss_cls = MLMLoss elif model_type == "rar": model_cls = RAR loss_cls = ARLoss else: raise ValueError(f"Unsupported model_type {model_type}") model = model_cls(config) if config.experiment.get("init_weight", ""): # If loading a pretrained weight model_weight = torch.load(config.experiment.init_weight, map_location="cpu") if config.model.vq_model.finetune_decoder: # Add the MaskGIT-VQGAN's quantizer/decoder weight as well pretrained_tokenizer_weight = torch.load( config.model.vq_model.pretrained_tokenizer_weight, map_location="cpu" ) # Only keep the quantize and decoder part pretrained_tokenizer_weight = {"pixel_" + k:v for k,v in pretrained_tokenizer_weight.items() if not "encoder." in k} model_weight.update(pretrained_tokenizer_weight) msg = model.load_state_dict(model_weight, strict=False) logger.info(f"loading weight from {config.experiment.init_weight}, msg: {msg}") # Create the EMA model. ema_model = None if config.training.use_ema: ema_model = EMAModel(model.parameters(), decay=0.999, model_cls=model_cls, config=config) # Create custom saving and loading hooks so that `accelerator.save_state(...)` serializes in a nice format. def load_model_hook(models, input_dir): load_model = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=model_cls, config=config) ema_model.load_state_dict(load_model.state_dict()) ema_model.to(accelerator.device) del load_model def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: ema_model.save_pretrained(os.path.join(output_dir, "ema_model")) accelerator.register_load_state_pre_hook(load_model_hook) accelerator.register_save_state_pre_hook(save_model_hook) # Create loss module along with discrminator. loss_module = loss_cls(config=config) # Print Model for sanity check. if accelerator.is_main_process: if model_type in ["titok"]: input_size = (1, 3, config.dataset.preprocessing.crop_size, config.dataset.preprocessing.crop_size) model_summary_str = summary(model, input_size=input_size, depth=5, col_names=("input_size", "output_size", "num_params", "params_percent", "kernel_size", "mult_adds")) logger.info(model_summary_str) elif model_type in ["maskgit", "rar"]: input_size = (1, config.model.vq_model.num_latent_tokens) input_data = [ torch.randint(0, config.model.vq_model.codebook_size, input_size), torch.ones(1, dtype=int) ] model_summary_str = summary( model, input_data=input_data, depth=7, col_names=("input_size", "output_size", "num_params", "params_percent", "kernel_size", "mult_adds")) logger.info(model_summary_str) else: raise NotImplementedError return model, ema_model, loss_module def create_optimizer(config, logger, model, loss_module, need_discrminator=True): """Creates optimizer for TiTok and discrminator.""" logger.info("Creating optimizers.") optimizer_config = config.optimizer.params learning_rate = optimizer_config.learning_rate optimizer_type = config.optimizer.name if optimizer_type == "adamw": optimizer_cls = AdamW else: raise ValueError(f"Optimizer {optimizer_type} not supported") # Exclude terms we may not want to apply weight decay. exclude = (lambda n, p: p.ndim < 2 or "ln" in n or "bias" in n or 'latent_tokens' in n or 'mask_token' in n or 'embedding' in n or 'norm' in n or 'gamma' in n or 'embed' in n) include = lambda n, p: not exclude(n, p) named_parameters = list(model.named_parameters()) gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad] rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad] optimizer = optimizer_cls( [ {"params": gain_or_bias_params, "weight_decay": 0.}, {"params": rest_params, "weight_decay": optimizer_config.weight_decay}, ], lr=learning_rate, betas=(optimizer_config.beta1, optimizer_config.beta2) ) if config.model.vq_model.finetune_decoder and need_discrminator: discriminator_learning_rate = optimizer_config.discriminator_learning_rate discriminator_named_parameters = list(loss_module.named_parameters()) discriminator_gain_or_bias_params = [p for n, p in discriminator_named_parameters if exclude(n, p) and p.requires_grad] discriminator_rest_params = [p for n, p in discriminator_named_parameters if include(n, p) and p.requires_grad] discriminator_optimizer = optimizer_cls( [ {"params": discriminator_gain_or_bias_params, "weight_decay": 0.}, {"params": discriminator_rest_params, "weight_decay": optimizer_config.weight_decay}, ], lr=discriminator_learning_rate, betas=(optimizer_config.beta1, optimizer_config.beta2) ) else: discriminator_optimizer = None return optimizer, discriminator_optimizer def create_lr_scheduler(config, logger, accelerator, optimizer, discriminator_optimizer=None): """Creates learning rate scheduler for TiTok and discrminator.""" logger.info("Creating lr_schedulers.") lr_scheduler = get_scheduler( config.lr_scheduler.scheduler, optimizer=optimizer, num_training_steps=config.training.max_train_steps * accelerator.num_processes, num_warmup_steps=config.lr_scheduler.params.warmup_steps * accelerator.num_processes, base_lr=config.lr_scheduler.params.learning_rate, end_lr=config.lr_scheduler.params.end_lr, ) if discriminator_optimizer is not None: discriminator_lr_scheduler = get_scheduler( config.lr_scheduler.scheduler, optimizer=discriminator_optimizer, num_training_steps=config.training.max_train_steps * accelerator.num_processes - config.losses.discriminator_start, num_warmup_steps=config.lr_scheduler.params.warmup_steps * accelerator.num_processes, base_lr=config.lr_scheduler.params.learning_rate, end_lr=config.lr_scheduler.params.end_lr, ) else: discriminator_lr_scheduler = None return lr_scheduler, discriminator_lr_scheduler def create_dataloader(config, logger, accelerator): """Creates data loader for training and testing.""" logger.info("Creating dataloaders.") total_batch_size_without_accum = config.training.per_gpu_batch_size * accelerator.num_processes total_batch_size = ( config.training.per_gpu_batch_size * accelerator.num_processes * config.training.gradient_accumulation_steps ) # We use webdataset for data loading. The dataloaders are created with sampling with replacement. # We don't do dataset resuming here, instead we resample the shards and buffer each time. The sampling is stochastic. # This means that the dataloading is not deterministic, but it's fast and efficient. preproc_config = config.dataset.preprocessing dataset_config = config.dataset.params # TODO: add support on pre-tokenization dataset dataset = SimpleImageDataset( train_shards_path=dataset_config.train_shards_path_or_url, eval_shards_path=dataset_config.eval_shards_path_or_url, num_train_examples=config.experiment.max_train_examples, per_gpu_batch_size=config.training.per_gpu_batch_size, global_batch_size=total_batch_size_without_accum, num_workers_per_gpu=dataset_config.num_workers_per_gpu, resize_shorter_edge=preproc_config.resize_shorter_edge, crop_size=preproc_config.crop_size, random_crop=preproc_config.random_crop, random_flip=preproc_config.random_flip, ) train_dataloader, eval_dataloader = dataset.train_dataloader, dataset.eval_dataloader # potentially, use a pretokenized dataset for speed-up. if dataset_config.get("pretokenization", ""): train_dataloader = DataLoader( PretoeknizedDataSetJSONL(dataset_config.pretokenization), batch_size=config.training.per_gpu_batch_size, shuffle=True, drop_last=True, pin_memory=True) train_dataloader.num_batches = math.ceil( config.experiment.max_train_examples / total_batch_size_without_accum) return train_dataloader, eval_dataloader def create_evaluator(config, logger, accelerator): """Creates evaluator.""" logger.info("Creating evaluator.") evaluator = VQGANEvaluator( device=accelerator.device, enable_rfid=True, enable_inception_score=True, enable_codebook_usage_measure=True, enable_codebook_entropy_measure=True, num_codebook_entries=config.model.vq_model.codebook_size ) return evaluator def auto_resume(config, logger, accelerator, ema_model, num_update_steps_per_epoch, strict=True): """Auto resuming the training.""" global_step = 0 first_epoch = 0 # If resuming training. if config.experiment.resume: accelerator.wait_for_everyone() local_ckpt_list = list(glob.glob(os.path.join( config.experiment.output_dir, "checkpoint*"))) logger.info(f"All globbed checkpoints are: {local_ckpt_list}") if len(local_ckpt_list) >= 1: if len(local_ckpt_list) > 1: fn = lambda x: int(x.split('/')[-1].split('-')[-1]) checkpoint_paths = sorted(local_ckpt_list, key=fn, reverse=True) else: checkpoint_paths = local_ckpt_list global_step = load_checkpoint( Path(checkpoint_paths[0]), accelerator, logger=logger, strict=strict ) if config.training.use_ema: ema_model.set_step(global_step) first_epoch = global_step // num_update_steps_per_epoch else: logger.info("Training from scratch.") return global_step, first_epoch def train_one_epoch(config, logger, accelerator, model, ema_model, loss_module, optimizer, discriminator_optimizer, lr_scheduler, discriminator_lr_scheduler, train_dataloader, eval_dataloader, evaluator, global_step, pretrained_tokenizer=None): """One epoch training.""" batch_time_meter = AverageMeter() data_time_meter = AverageMeter() end = time.time() model.train() autoencoder_logs = defaultdict(float) discriminator_logs = defaultdict(float) for i, batch in enumerate(train_dataloader): model.train() if "image" in batch: images = batch["image"].to( accelerator.device, memory_format=torch.contiguous_format, non_blocking=True ) else: raise ValueError(f"Not found valid keys: {batch.keys()}") fnames = batch["__key__"] data_time_meter.update(time.time() - end) # Obtain proxy codes if pretrained_tokenizer is not None: pretrained_tokenizer.eval() proxy_codes = pretrained_tokenizer.encode(images) else: proxy_codes = None with accelerator.accumulate([model, loss_module]): reconstructed_images, extra_results_dict = model(images) if proxy_codes is None: autoencoder_loss, loss_dict = loss_module( images, reconstructed_images, extra_results_dict, global_step, mode="generator", ) else: autoencoder_loss, loss_dict = loss_module( proxy_codes, reconstructed_images, extra_results_dict ) # Gather the losses across all processes for logging. autoencoder_logs = {} for k, v in loss_dict.items(): if k in ["discriminator_factor", "d_weight"]: if type(v) == torch.Tensor: autoencoder_logs["train/" + k] = v.cpu().item() else: autoencoder_logs["train/" + k] = v else: autoencoder_logs["train/" + k] = accelerator.gather(v).mean().item() accelerator.backward(autoencoder_loss) if config.training.max_grad_norm is not None and accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), config.training.max_grad_norm) optimizer.step() lr_scheduler.step() # Log gradient norm before zeroing it. if ( accelerator.sync_gradients and (global_step + 1) % config.experiment.log_grad_norm_every == 0 and accelerator.is_main_process ): log_grad_norm(model, accelerator, global_step + 1) optimizer.zero_grad(set_to_none=True) # Train discriminator. discriminator_logs = defaultdict(float) if config.model.vq_model.finetune_decoder and accelerator.unwrap_model(loss_module).should_discriminator_be_trained(global_step): discriminator_logs = defaultdict(float) discriminator_loss, loss_dict_discriminator = loss_module( images, reconstructed_images, extra_results_dict, global_step=global_step, mode="discriminator", ) # Gather the losses across all processes for logging. for k, v in loss_dict_discriminator.items(): if k in ["logits_real", "logits_fake"]: if type(v) == torch.Tensor: discriminator_logs["train/" + k] = v.cpu().item() else: discriminator_logs["train/" + k] = v else: discriminator_logs["train/" + k] = accelerator.gather(v).mean().item() accelerator.backward(discriminator_loss) if config.training.max_grad_norm is not None and accelerator.sync_gradients: accelerator.clip_grad_norm_(loss_module.parameters(), config.training.max_grad_norm) discriminator_optimizer.step() discriminator_lr_scheduler.step() # Log gradient norm before zeroing it. if ( accelerator.sync_gradients and (global_step + 1) % config.experiment.log_grad_norm_every == 0 and accelerator.is_main_process ): log_grad_norm(loss_module, accelerator, global_step + 1) discriminator_optimizer.zero_grad(set_to_none=True) if accelerator.sync_gradients: if config.training.use_ema: ema_model.step(model.parameters()) batch_time_meter.update(time.time() - end) end = time.time() if (global_step + 1) % config.experiment.log_every == 0: samples_per_second_per_gpu = ( config.training.gradient_accumulation_steps * config.training.per_gpu_batch_size / batch_time_meter.val ) lr = lr_scheduler.get_last_lr()[0] logger.info( f"Data (t): {data_time_meter.val:0.4f}, {samples_per_second_per_gpu:0.2f}/s/gpu " f"Batch (t): {batch_time_meter.val:0.4f} " f"LR: {lr:0.6f} " f"Step: {global_step + 1} " f"Total Loss: {autoencoder_logs['train/total_loss']:0.4f} " f"Recon Loss: {autoencoder_logs['train/reconstruction_loss']:0.4f} " ) logs = { "lr": lr, "lr/generator": lr, "samples/sec/gpu": samples_per_second_per_gpu, "time/data_time": data_time_meter.val, "time/batch_time": batch_time_meter.val, } logs.update(autoencoder_logs) logs.update(discriminator_logs) accelerator.log(logs, step=global_step + 1) # Reset batch / data time meters per log window. batch_time_meter.reset() data_time_meter.reset() # Save model checkpoint. if (global_step + 1) % config.experiment.save_every == 0: save_path = save_checkpoint( model, config.experiment.output_dir, accelerator, global_step + 1, logger=logger) # Wait for everyone to save their checkpoint. accelerator.wait_for_everyone() # Generate images. if (global_step + 1) % config.experiment.generate_every == 0 and accelerator.is_main_process: # Store the model parameters temporarily and load the EMA parameters to perform inference. if config.training.get("use_ema", False): ema_model.store(model.parameters()) ema_model.copy_to(model.parameters()) reconstruct_images( model, images[:config.training.num_generated_images], fnames[:config.training.num_generated_images], accelerator, global_step + 1, config.experiment.output_dir, logger=logger, config=config, pretrained_tokenizer=pretrained_tokenizer ) if config.training.get("use_ema", False): # Switch back to the original model parameters for training. ema_model.restore(model.parameters()) # Evaluate reconstruction. if eval_dataloader is not None and (global_step + 1) % config.experiment.eval_every == 0: logger.info(f"Computing metrics on the validation set.") if config.training.get("use_ema", False): ema_model.store(model.parameters()) ema_model.copy_to(model.parameters()) # Eval for EMA. eval_scores = eval_reconstruction( model, eval_dataloader, accelerator, evaluator, pretrained_tokenizer=pretrained_tokenizer ) logger.info( f"EMA EVALUATION " f"Step: {global_step + 1} " ) logger.info(pprint.pformat(eval_scores)) if accelerator.is_main_process: eval_log = {f'ema_eval/'+k: v for k, v in eval_scores.items()} accelerator.log(eval_log, step=global_step + 1) if config.training.get("use_ema", False): # Switch back to the original model parameters for training. ema_model.restore(model.parameters()) else: # Eval for non-EMA. eval_scores = eval_reconstruction( model, eval_dataloader, accelerator, evaluator, pretrained_tokenizer=pretrained_tokenizer ) logger.info( f"Non-EMA EVALUATION " f"Step: {global_step + 1} " ) logger.info(pprint.pformat(eval_scores)) if accelerator.is_main_process: eval_log = {f'eval/'+k: v for k, v in eval_scores.items()} accelerator.log(eval_log, step=global_step + 1) accelerator.wait_for_everyone() global_step += 1 if global_step >= config.training.max_train_steps: accelerator.print( f"Finishing training: Global step is >= Max train steps: {global_step} >= {config.training.max_train_steps}" ) break return global_step def get_rar_random_ratio(config, cur_step): randomness_anneal_start = config.model.generator.randomness_anneal_start randomness_anneal_end = config.model.generator.randomness_anneal_end if cur_step < randomness_anneal_start: return 1.0 elif cur_step > randomness_anneal_end: return 0.0 else: return 1.0 - (cur_step - randomness_anneal_start) / (randomness_anneal_end - randomness_anneal_start) def train_one_epoch_generator( config, logger, accelerator, model, ema_model, loss_module, optimizer, lr_scheduler, train_dataloader, tokenizer, global_step, model_type="maskgit"): """One epoch training.""" batch_time_meter = AverageMeter() data_time_meter = AverageMeter() end = time.time() model.train() for i, batch in enumerate(train_dataloader): model.train() if config.dataset.params.get("pretokenization", ""): # the data is already pre-tokenized conditions, input_tokens = batch input_tokens = input_tokens.to( accelerator.device, memory_format=torch.contiguous_format, non_blocking=True ) conditions = conditions.to( accelerator.device, memory_format=torch.contiguous_format, non_blocking=True ) else: # tokenize on the fly if "image" in batch: images = batch["image"].to( accelerator.device, memory_format=torch.contiguous_format, non_blocking=True ) conditions = batch["class_id"].to( accelerator.device, memory_format=torch.contiguous_format, non_blocking=True ) # Encode images on the flight. with torch.no_grad(): tokenizer.eval() input_tokens = tokenizer.encode(images)[1]["min_encoding_indices"].reshape(images.shape[0], -1) else: raise ValueError(f"Not found valid keys: {batch.keys()}") data_time_meter.update(time.time() - end) unwrap_model = accelerator.unwrap_model(model) if model_type == "maskgit": # Randomly masking out input tokens. masked_tokens, masks = unwrap_model.masking_input_tokens( input_tokens) elif model_type == "rar": unwrap_model.set_random_ratio(get_rar_random_ratio(config, global_step)) else: raise NotImplementedError with accelerator.accumulate([model]): if model_type == "maskgit": logits = model(masked_tokens, conditions, cond_drop_prob=config.model.generator.class_label_dropout) loss, loss_dict= loss_module(logits, input_tokens, weights=masks) elif model_type == "rar": condition = unwrap_model.preprocess_condition( conditions, cond_drop_prob=config.model.generator.class_label_dropout ) logits, labels = model(input_tokens, condition, return_labels=True) loss, loss_dict = loss_module(logits, labels) # Gather the losses across all processes for logging. gen_logs = {} for k, v in loss_dict.items(): gen_logs["train/" + k] = accelerator.gather(v).mean().item() accelerator.backward(loss) if config.training.max_grad_norm is not None and accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), config.training.max_grad_norm) optimizer.step() lr_scheduler.step() # Log gradient norm before zeroing it. if ( accelerator.sync_gradients and (global_step + 1) % config.experiment.log_grad_norm_every == 0 and accelerator.is_main_process ): log_grad_norm(model, accelerator, global_step + 1) optimizer.zero_grad(set_to_none=True) if accelerator.sync_gradients: if config.training.use_ema: ema_model.step(model.parameters()) batch_time_meter.update(time.time() - end) end = time.time() if (global_step + 1) % config.experiment.log_every == 0: samples_per_second_per_gpu = ( config.training.gradient_accumulation_steps * config.training.per_gpu_batch_size / batch_time_meter.val ) lr = lr_scheduler.get_last_lr()[0] logger.info( f"Data (t): {data_time_meter.val:0.4f}, {samples_per_second_per_gpu:0.2f}/s/gpu " f"Batch (t): {batch_time_meter.val:0.4f} " f"LR: {lr:0.6f} " f"Step: {global_step + 1} " f"Loss: {gen_logs['train/loss']:0.4f} " f"Accuracy: {gen_logs['train/correct_tokens']:0.4f} " ) logs = { "lr": lr, "lr/generator": lr, "samples/sec/gpu": samples_per_second_per_gpu, "time/data_time": data_time_meter.val, "time/batch_time": batch_time_meter.val, } logs.update(gen_logs) accelerator.log(logs, step=global_step + 1) # Reset batch / data time meters per log window. batch_time_meter.reset() data_time_meter.reset() # Save model checkpoint. if (global_step + 1) % config.experiment.save_every == 0: save_path = save_checkpoint( model, config.experiment.output_dir, accelerator, global_step + 1, logger=logger) # Wait for everyone to save their checkpoint. accelerator.wait_for_everyone() # Generate images. if (global_step + 1) % config.experiment.generate_every == 0 and accelerator.is_main_process: # Store the model parameters temporarily and load the EMA parameters to perform inference. if config.training.get("use_ema", False): ema_model.store(model.parameters()) ema_model.copy_to(model.parameters()) generate_images( model, tokenizer, accelerator, global_step + 1, config.experiment.output_dir, logger=logger, config=config ) if config.training.get("use_ema", False): # Switch back to the original model parameters for training. ema_model.restore(model.parameters()) global_step += 1 if global_step >= config.training.max_train_steps: accelerator.print( f"Finishing training: Global step is >= Max train steps: {global_step} >= {config.training.max_train_steps}" ) break return global_step @torch.no_grad() def eval_reconstruction( model, eval_loader, accelerator, evaluator, pretrained_tokenizer=None ): model.eval() evaluator.reset_metrics() local_model = accelerator.unwrap_model(model) for batch in eval_loader: images = batch["image"].to( accelerator.device, memory_format=torch.contiguous_format, non_blocking=True ) original_images = torch.clone(images) reconstructed_images, model_dict = local_model(images) if pretrained_tokenizer is not None: reconstructed_images = pretrained_tokenizer.decode(reconstructed_images.argmax(1)) reconstructed_images = torch.clamp(reconstructed_images, 0.0, 1.0) # Quantize to uint8 reconstructed_images = torch.round(reconstructed_images * 255.0) / 255.0 original_images = torch.clamp(original_images, 0.0, 1.0) # For VQ model. evaluator.update(original_images, reconstructed_images.squeeze(2), model_dict["min_encoding_indices"]) model.train() return evaluator.result() @torch.no_grad() def reconstruct_images(model, original_images, fnames, accelerator, global_step, output_dir, logger, config=None, pretrained_tokenizer=None): logger.info("Reconstructing images...") original_images = torch.clone(original_images) model.eval() dtype = torch.float32 if accelerator.mixed_precision == "fp16": dtype = torch.float16 elif accelerator.mixed_precision == "bf16": dtype = torch.bfloat16 with torch.autocast("cuda", dtype=dtype, enabled=accelerator.mixed_precision != "no"): enc_tokens, encoder_dict = accelerator.unwrap_model(model).encode(original_images) reconstructed_images = accelerator.unwrap_model(model).decode(enc_tokens) if pretrained_tokenizer is not None: reconstructed_images = pretrained_tokenizer.decode(reconstructed_images.argmax(1)) images_for_saving, images_for_logging = make_viz_from_samples( original_images, reconstructed_images ) # Log images. if config.training.enable_wandb: accelerator.get_tracker("wandb").log_images( {f"Train Reconstruction": images_for_saving}, step=global_step ) else: accelerator.get_tracker("tensorboard").log_images( {"Train Reconstruction": images_for_logging}, step=global_step ) # Log locally. root = Path(output_dir) / "train_images" os.makedirs(root, exist_ok=True) for i,img in enumerate(images_for_saving): filename = f"{global_step:08}_s-{i:03}-{fnames[i]}.png" path = os.path.join(root, filename) img.save(path) model.train() @torch.no_grad() def generate_images(model, tokenizer, accelerator, global_step, output_dir, logger, config=None): model.eval() tokenizer.eval() logger.info("Generating images...") generated_image = sample_fn( accelerator.unwrap_model(model), tokenizer, guidance_scale=config.model.generator.get("guidance_scale", 3.0), guidance_decay=config.model.generator.get("guidance_decay", "constant"), guidance_scale_pow=config.model.generator.get("guidance_scale_pow", 3.0), randomize_temperature=config.model.generator.get("randomize_temperature", 2.0), softmax_temperature_annealing=config.model.generator.get("softmax_temperature_annealing", False), num_sample_steps=config.model.generator.get("num_steps", 8), device=accelerator.device, return_tensor=True ) images_for_saving, images_for_logging = make_viz_from_samples_generation( generated_image) # Log images. if config.training.enable_wandb: accelerator.get_tracker("wandb").log_images( {"Train Generated": [images_for_saving]}, step=global_step ) else: accelerator.get_tracker("tensorboard").log_images( {"Train Generated": images_for_logging}, step=global_step ) # Log locally. root = Path(output_dir) / "train_generated_images" os.makedirs(root, exist_ok=True) filename = f"{global_step:08}_s-generated.png" path = os.path.join(root, filename) images_for_saving.save(path) model.train() return def save_checkpoint(model, output_dir, accelerator, global_step, logger) -> Path: save_path = Path(output_dir) / f"checkpoint-{global_step}" state_dict = accelerator.get_state_dict(model) if accelerator.is_main_process: unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained_weight( save_path / "unwrapped_model", save_function=accelerator.save, state_dict=state_dict, ) json.dump({"global_step": global_step}, (save_path / "metadata.json").open("w+")) logger.info(f"Saved state to {save_path}") accelerator.save_state(save_path) return save_path def load_checkpoint(checkpoint_path: Path, accelerator, logger, strict=True): logger.info(f"Load checkpoint from {checkpoint_path}") accelerator.load_state(checkpoint_path, strict=strict) with open(checkpoint_path / "metadata.json", "r") as f: global_step = int(json.load(f)["global_step"]) logger.info(f"Resuming at global_step {global_step}") return global_step def log_grad_norm(model, accelerator, global_step): for name, param in model.named_parameters(): if param.grad is not None: grads = param.grad.detach().data grad_norm = (grads.norm(p=2) / grads.numel()).item() accelerator.log({"grad_norm/" + name: grad_norm}, step=global_step)