update
Browse files
app.py
CHANGED
@@ -7,15 +7,15 @@ import torch
|
|
7 |
|
8 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
9 |
|
10 |
-
checkpoint = "microsoft/git-base"
|
11 |
-
processor = AutoProcessor.from_pretrained(checkpoint)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
13 |
-
|
14 |
openai.organization = os.getenv("API_ORG")
|
15 |
openai.api_key = os.getenv("API_KEY")
|
16 |
app_password = os.getenv("APP_PASSWORD")
|
17 |
app_username = os.getenv("APP_USERNAME")
|
18 |
|
|
|
|
|
|
|
|
|
19 |
def generate(input_image):
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
inputs = processor(images=input_image, return_tensors="pt").to(device)
|
|
|
7 |
|
8 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
9 |
|
|
|
|
|
|
|
|
|
10 |
openai.organization = os.getenv("API_ORG")
|
11 |
openai.api_key = os.getenv("API_KEY")
|
12 |
app_password = os.getenv("APP_PASSWORD")
|
13 |
app_username = os.getenv("APP_USERNAME")
|
14 |
|
15 |
+
checkpoint = "openai/clip-vit-base-patch32"
|
16 |
+
processor = AutoProcessor.from_pretrained(checkpoint)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
18 |
+
|
19 |
def generate(input_image):
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
inputs = processor(images=input_image, return_tensors="pt").to(device)
|
app2.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import openai
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
|
6 |
+
openai.organization = os.getenv("API_ORG")
|
7 |
+
openai.api_key = os.getenv("API_KEY")
|
8 |
+
app_password = os.getenv("APP_PASSWORD")
|
9 |
+
app_username = os.getenv("APP_USERNAME")
|
10 |
+
|
11 |
+
def generate_prompt(input):
|
12 |
+
prompt = """You are a prompt writing support system for image generation AI.
|
13 |
+
From the user's input, You output prompt in English that should be input to the image generation AI, imagining its intent as much as possible.
|
14 |
+
You are not allowed to ask questions of the user.
|
15 |
+
You will always output only brief prompt in English to be input to the image generation AI.
|
16 |
+
Your output will always English.
|
17 |
+
Input from user:
|
18 |
+
"""
|
19 |
+
response = openai.ChatCompletion.create(
|
20 |
+
model = "gpt-3.5-turbo",
|
21 |
+
messages = [{"role": "system", "content": prompt+input}],
|
22 |
+
max_tokens=256
|
23 |
+
)
|
24 |
+
generated_text = response['choices'][0]['message']['content'].strip()
|
25 |
+
return "Make the illustration a photo: "+generated_text
|
26 |
+
|
27 |
+
def get_related_caption(prompt):
|
28 |
+
url = "https://api.irasutoya.nibo.sh/semantic-search"
|
29 |
+
params = {'q': prompt}
|
30 |
+
headers = {"content-type": "application/json"}
|
31 |
+
r = requests.get(url, params=params, headers=headers)
|
32 |
+
data = r.json()
|
33 |
+
return data['illustrations'][0]['description']
|
34 |
+
|
35 |
+
def generate(prompt):
|
36 |
+
caption = get_related_caption(prompt)
|
37 |
+
generated_prompt = generate_prompt(caption)
|
38 |
+
response = openai.Image.create(
|
39 |
+
prompt=generated_prompt,
|
40 |
+
n=1,
|
41 |
+
size="256x256"
|
42 |
+
)
|
43 |
+
return caption, generated_prompt, response['data'][0]['url']
|
44 |
+
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
with gr.Column():
|
47 |
+
with gr.Row():
|
48 |
+
with gr.Column():
|
49 |
+
prompt_text = gr.Textbox(lines=5, label="Prompt")
|
50 |
+
prompt_examples = gr.Examples(
|
51 |
+
examples=[
|
52 |
+
"ใใฎใใฎๅฑฑ",
|
53 |
+
"ใใใฎใใฎ้",
|
54 |
+
"ใ่ๅญใฎๅฎถ",
|
55 |
+
],
|
56 |
+
inputs=[prompt_text],
|
57 |
+
outputs=None,
|
58 |
+
)
|
59 |
+
btn = gr.Button(value="Generate Image")
|
60 |
+
|
61 |
+
with gr.Column():
|
62 |
+
caption = gr.Textbox(lines=5, label="Related Caption")
|
63 |
+
generated_prompt = gr.Textbox(lines=5, label="Generated Prompt")
|
64 |
+
out_image = gr.components.Image(type="filepath", label="Generated Image")
|
65 |
+
|
66 |
+
btn.click(generate, inputs=[prompt_text], outputs=[caption, generated_prompt, out_image])
|
67 |
+
demo.load()
|
68 |
+
|
69 |
+
demo.launch(share=True, auth=(app_username, app_password))
|