Spaces:
Build error
Build error
yumikimi381
commited on
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +5 -0
- .gitignore +18 -0
- .gitlab-ci.yml +33 -0
- .gitmodules +0 -0
- .vscode/settings.json +2 -0
- Dockerfile +55 -0
- README.md +113 -7
- abstractClass.py +59 -0
- app.py +406 -0
- cropped_table.png +0 -0
- cropped_table_0.png +0 -0
- cropped_table_1.png +0 -0
- deepdoc/README.md +122 -0
- deepdoc/__init__.py +8 -0
- deepdoc/models/.gitattributes +35 -0
- deepdoc/models/README.md +3 -0
- deepdoc/models/det.onnx +3 -0
- deepdoc/models/layout.laws.onnx +3 -0
- deepdoc/models/layout.manual.onnx +3 -0
- deepdoc/models/layout.onnx +3 -0
- deepdoc/models/layout.paper.onnx +3 -0
- deepdoc/models/ocr.res +6623 -0
- deepdoc/models/rec.onnx +3 -0
- deepdoc/models/tsr.onnx +3 -0
- deepdoc/vision/__init__.py +3 -0
- deepdoc/vision/ocr.res +6623 -0
- deepdoc/vision/operators.py +711 -0
- deepdoc/vision/postprocess.py +353 -0
- deepdoc/vision/ragFlow.py +313 -0
- detectionAndOcrTable1.py +425 -0
- detectionAndOcrTable2.py +306 -0
- detectionAndOcrTable3.py +267 -0
- detectionAndOcrTable4.py +112 -0
- doctrfiles/__init__.py +4 -0
- doctrfiles/doctr_recognizer.py +183 -0
- doctrfiles/models/config-multi2.json +21 -0
- doctrfiles/models/db_mobilenet_v3_large-81e9b152.pt +3 -0
- doctrfiles/models/db_resnet34-cb6aed9e.pt +3 -0
- doctrfiles/models/db_resnet50-79bd7d70.pt +3 -0
- doctrfiles/models/db_resnet50_config.json +20 -0
- doctrfiles/models/doctr-multilingual-parseq.bin +3 -0
- doctrfiles/models/master-fde31e4a.pt +3 -0
- doctrfiles/models/master.json +21 -0
- doctrfiles/models/multi2.bin +3 -0
- doctrfiles/models/multilingual-parseq-config.json +21 -0
- doctrfiles/word_detector.py +282 -0
- image-1.png +0 -0
- image-2.png +0 -0
- image.png +0 -0
- june11.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
res0.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
table_drawn_bbox_with_extra.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
unitable/website/unitable-demo.gif filter=lfs diff=lfs merge=lfs -text
|
39 |
+
unitable/website/unitable-demo.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
unitable/website/wandb_screenshot.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
unitable/experiments/unitable_weights/**
|
3 |
+
|
4 |
+
res/**
|
5 |
+
|
6 |
+
TestingFiles/**
|
7 |
+
TestingFilesImages/**
|
8 |
+
|
9 |
+
# python generated files
|
10 |
+
__pycache__/
|
11 |
+
*.py[oc]
|
12 |
+
build/
|
13 |
+
dist/
|
14 |
+
wheels/
|
15 |
+
*.egg-info
|
16 |
+
|
17 |
+
# venv
|
18 |
+
.venv
|
.gitlab-ci.yml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
variables:
|
2 |
+
GIT_STRATEGY: fetch
|
3 |
+
GIT_SSL_NO_VERIFY: "true"
|
4 |
+
GIT_LFS_SKIP_SMUDGE: 1
|
5 |
+
DOCKER_BUILDKIT: 1
|
6 |
+
|
7 |
+
stages:
|
8 |
+
- build
|
9 |
+
|
10 |
+
image_build:
|
11 |
+
stage: build
|
12 |
+
image: docker:stable
|
13 |
+
before_script:
|
14 |
+
- docker login -u gitlab-ci-token -p $CI_JOB_TOKEN http://$CI_REGISTRY
|
15 |
+
script: |
|
16 |
+
CI_COMMIT_SHA_7=$(echo $CI_COMMIT_SHA | cut -c1-7)
|
17 |
+
DATE=$(date +%Y-%m-%d)
|
18 |
+
docker build --tag $CI_REGISTRY_IMAGE/$CI_COMMIT_BRANCH:latest \
|
19 |
+
--tag $CI_REGISTRY_IMAGE/$CI_COMMIT_BRANCH:$CI_COMMIT_SHA_7 \
|
20 |
+
--tag $CI_REGISTRY_IMAGE/$CI_COMMIT_BRANCH:$DATE \
|
21 |
+
-f Dockerfile .
|
22 |
+
docker push $CI_REGISTRY_IMAGE/$CI_COMMIT_BRANCH:latest
|
23 |
+
docker push $CI_REGISTRY_IMAGE/$CI_COMMIT_BRANCH:$CI_COMMIT_SHA_7
|
24 |
+
docker push $CI_REGISTRY_IMAGE/$CI_COMMIT_BRANCH:$DATE
|
25 |
+
# Run only when Dockerfile has changed
|
26 |
+
rules:
|
27 |
+
- if: $CI_PIPELINE_SOURCE == "push"
|
28 |
+
changes:
|
29 |
+
- Dockerfile
|
30 |
+
# Set to `on_success` to automatically rebuild
|
31 |
+
# Set to `manual` to trigger the build manually using Gitlab UI
|
32 |
+
when: on_success
|
33 |
+
allow_failure: true
|
.gitmodules
ADDED
File without changes
|
.vscode/settings.json
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
}
|
Dockerfile
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG BASE_IMAGE="nvidia/cuda:12.2.2-devel-ubuntu22.04"
|
2 |
+
|
3 |
+
FROM ${BASE_IMAGE}
|
4 |
+
ARG HOMEDIRECTORY="/myhome"
|
5 |
+
ENV HOMEDIRECTORY=$HOMEDIRECTORY
|
6 |
+
|
7 |
+
USER root
|
8 |
+
RUN apt-get update && \
|
9 |
+
apt-get install -y --no-install-recommends \
|
10 |
+
curl \
|
11 |
+
python3 \
|
12 |
+
python3-pip \
|
13 |
+
python3-dev \
|
14 |
+
poppler-utils \
|
15 |
+
gcc \
|
16 |
+
git \
|
17 |
+
git-lfs \
|
18 |
+
htop \
|
19 |
+
libgl1 \
|
20 |
+
libglib2.0-0 \
|
21 |
+
ncdu \
|
22 |
+
openssh-client \
|
23 |
+
openssh-server \
|
24 |
+
psmisc \
|
25 |
+
rsync \
|
26 |
+
screen \
|
27 |
+
sudo \
|
28 |
+
tmux \
|
29 |
+
unzip \
|
30 |
+
vim \
|
31 |
+
wget && \
|
32 |
+
wget -q https://github.com/justjanne/powerline-go/releases/download/v1.24/powerline-go-linux-"$(dpkg --print-architecture)" -O /usr/local/bin/powerline-shell && \
|
33 |
+
chmod a+x /usr/local/bin/powerline-shell
|
34 |
+
|
35 |
+
RUN ln -s /usr/bin/python3 /usr/bin/python
|
36 |
+
COPY requirements.txt .
|
37 |
+
RUN pip install --no-cache-dir -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117
|
38 |
+
|
39 |
+
|
40 |
+
# setup ssh
|
41 |
+
RUN ssh-keygen -A
|
42 |
+
RUN sed -i 's/#*PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config
|
43 |
+
EXPOSE 22
|
44 |
+
|
45 |
+
# Make the root user's home directory /myhome (the default for run.ai),
|
46 |
+
# and allow to login with password 'root'.
|
47 |
+
RUN echo 'root:root' | chpasswd
|
48 |
+
RUN sed -i 's|:root:/root:|:root:/myhome:|' /etc/passwd
|
49 |
+
|
50 |
+
ENTRYPOINT sudo service ssh start && /bin/bash
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
README.md
CHANGED
@@ -1,12 +1,118 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: alps
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 4.44.0
|
|
|
|
|
6 |
---
|
7 |
+
# Alps
|
8 |
+
|
9 |
+
Pipeline for OCRing PDFs and tables
|
10 |
+
|
11 |
+
This repository contains different OCR methods using various libraries/models.
|
12 |
+
|
13 |
+
## Running gradio:
|
14 |
+
`python app.py` in terminal
|
15 |
+
|
16 |
+
|
17 |
+
## Installation :
|
18 |
+
Build the docker image and run the contianer
|
19 |
+
|
20 |
+
Clone this repository and Install the required dependencies:
|
21 |
+
```
|
22 |
+
pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117
|
23 |
+
|
24 |
+
apt install weasyprint
|
25 |
+
|
26 |
+
```
|
27 |
+
Note: You need a GPU to run this code.
|
28 |
+
|
29 |
+
## Example Usage
|
30 |
+
|
31 |
+
Run python main.py inside the directory. Provide the path to the test file (the file must be placed inside the repository,and the file path should be relative to the repository (alps)). Next, provide the path to save intermediate outputs from the run (draw cell bounding boxes on the table, show table detection results in pdf), and specify which component to run.
|
32 |
+
|
33 |
+
outputs are printed in terminal
|
34 |
+
|
35 |
+
```
|
36 |
+
usage: main.py [-h] [--test_file TEST_FILE] [--debug_folder DEBUG_FOLDER] [--englishFlag ENGLISHFLAG] [--denoise DENOISE] ocr
|
37 |
+
|
38 |
+
```
|
39 |
+
Description of the component:
|
40 |
+
|
41 |
+
### ocr1
|
42 |
+
|
43 |
+
ocr1
|
44 |
+
Input: Path to a PDF file
|
45 |
+
Output: Dictionary of each page and list of line_annotations. List of LineAnnotations contains bboxes for each line and List of its children wordAnnotation. Each wordAnnotation contains bboxes and text inside.
|
46 |
+
What it does: Runs Ragflow textline detector + OCR with DocTR
|
47 |
+
|
48 |
+
Example:
|
49 |
+
```
|
50 |
+
python main.py ocr1 --test_file TestingFiles/OCRTest1German.pdf --debug_folder ./res/ocrdebug1/
|
51 |
+
python main.py ocr1 --test_file TestingFiles/OCRTest3English.pdf --debug_folder ./res/ocrdebug1/ --englishFlag True
|
52 |
+
```
|
53 |
+
|
54 |
+
### table1
|
55 |
+
Input : file path to an image of a cropped table
|
56 |
+
Output: Parsed table in HTML form
|
57 |
+
What it does: Uses Unitable + DocTR
|
58 |
+
|
59 |
+
```
|
60 |
+
python main.py table1 --test_file cropped_table.png --debug_folder ./res/table1/
|
61 |
+
|
62 |
+
```
|
63 |
+
|
64 |
+
### table2
|
65 |
+
Input: File path to an image of a cropped table
|
66 |
+
Output: Parsed table in HTML form
|
67 |
+
What it does: Uses Unitable
|
68 |
+
|
69 |
+
```
|
70 |
+
python main.py table2 --test_file cropped_table.png --debug_folder ./res/table2/
|
71 |
+
|
72 |
+
```
|
73 |
+
### pdftable1
|
74 |
+
Input: PDF file path
|
75 |
+
Output: Parsed table in HTML form
|
76 |
+
What it does: Uses Unitable + DocTR
|
77 |
+
|
78 |
+
|
79 |
+
```
|
80 |
+
python main.py pdftable1 --test_file TestingFiles/OCRTest5English.pdf --debug_folder ./res/table_debug1/
|
81 |
+
|
82 |
+
python main.py pdftable3 --test_file TestingFiles/TableOCRTestEnglish.pdf --debug_folder ./res/poor_relief2
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
### pdftable2 :
|
87 |
+
Input: PDF file path
|
88 |
+
Output: Parsed table in HTML form
|
89 |
+
What it does: Detects table and parses them, Runs Full Unitable Table detection
|
90 |
+
|
91 |
+
```
|
92 |
+
python main.py pdftable2 --test_file TestingFiles/OCRTest5English.pdf --debug_folder ./res/table_debug2/
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
### pdftable3
|
97 |
+
Input: PDF file path
|
98 |
+
Output: Parsed table in HTML form
|
99 |
+
What it does: Detects table with YOLO, Unitable + DocTR
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
### pdftable4
|
104 |
+
Input: PDF file path
|
105 |
+
Output: Parsed table in HTML form
|
106 |
+
What it does: Detects table with YOLO, Runs Full doctr Table detection
|
107 |
+
|
108 |
+
python main.py pdftable4 --test_file TestingFiles/TableOCRTestEasier.pdf --debug_folder ./res/table_debug3/
|
109 |
+
|
110 |
+
|
111 |
+
## bbox
|
112 |
+
They are ordered as ordered as [xmin,ymin,xmax,ymax] . Cause the coordinates starts from (0,0) of the image which is upper left corner
|
113 |
+
|
114 |
+
xmin ymim - upper left corner
|
115 |
+
xmax ymax - bottom lower corner
|
116 |
+
|
117 |
+
![alt text](image-2.png)
|
118 |
|
|
abstractClass.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import Any, List, Literal, Mapping, Optional, Tuple
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from PIL import Image
|
8 |
+
from abc import ABC, abstractmethod
|
9 |
+
|
10 |
+
from utils import cropImage
|
11 |
+
|
12 |
+
|
13 |
+
class OCRComponent:
|
14 |
+
"""
|
15 |
+
Wrapper class for cropping images and giving it to OCR Predictor
|
16 |
+
"""
|
17 |
+
def predict_pdf(self, pdf_name:str="", page:int=None, bbx:List[List[float]]=None)-> List[List[float]]:
|
18 |
+
#TODO: Preprocessing to crop interest region
|
19 |
+
pass
|
20 |
+
|
21 |
+
|
22 |
+
class TextDetector(ABC):
|
23 |
+
"""
|
24 |
+
Abstract base class for text detectors that takes in bounding boxes, pdf name, and page
|
25 |
+
and returns bounding boxes results on them.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
|
30 |
+
pass
|
31 |
+
|
32 |
+
"""
|
33 |
+
This is for predicting given an already cropped image
|
34 |
+
"""
|
35 |
+
@abstractmethod
|
36 |
+
def predict_img(self, img:np.ndarray=None)-> List[List[float]]:
|
37 |
+
# do something with self.input and return bbx
|
38 |
+
pass
|
39 |
+
|
40 |
+
class textRecognizer(ABC):
|
41 |
+
"""
|
42 |
+
class of textRecognizer that takes in bounding boxes, pdf name and page and returns
|
43 |
+
OCR results on them
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self):
|
47 |
+
|
48 |
+
pass
|
49 |
+
|
50 |
+
|
51 |
+
"""
|
52 |
+
This is for predicting given text line detection result form text line detector
|
53 |
+
"""
|
54 |
+
@abstractmethod
|
55 |
+
def predict_img(self, bxs:List[List[float]], img:Image.Image)-> List[List[float]]:
|
56 |
+
# do something with self.input and return bbx
|
57 |
+
pass
|
58 |
+
|
59 |
+
|
app.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import traceback
|
4 |
+
import argparse
|
5 |
+
from typing import List, Tuple, Set, Dict
|
6 |
+
|
7 |
+
import time
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
from doctr.models import ocr_predictor
|
11 |
+
import logging
|
12 |
+
import pandas as pd
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
+
import gradio
|
15 |
+
|
16 |
+
from utils import cropImages
|
17 |
+
from utils import draw_only_box,draw_box_with_text,getlogger,Annotation
|
18 |
+
from ocr_component1 import OCRComponent1
|
19 |
+
from detectionAndOcrTable1 import DetectionAndOcrTable1
|
20 |
+
from detectionAndOcrTable2 import DetectionAndOcrTable2
|
21 |
+
from detectionAndOcrTable3 import DetectionAndOcrTable3
|
22 |
+
from detectionAndOcrTable4 import DetectionAndOcrTable4
|
23 |
+
from ocrTable1 import OcrTable1
|
24 |
+
from ocrTable2 import OcrTable2
|
25 |
+
from pdf2image import convert_from_path
|
26 |
+
|
27 |
+
|
28 |
+
def convertHTMLToCSV(html:str,output_path:str)->str:
|
29 |
+
|
30 |
+
# empty list
|
31 |
+
data = []
|
32 |
+
|
33 |
+
# for getting the header from
|
34 |
+
# the HTML file
|
35 |
+
list_header = []
|
36 |
+
soup = BeautifulSoup(html,'html.parser')
|
37 |
+
header = soup.find_all("table")[0].find("tr")
|
38 |
+
|
39 |
+
for items in header:
|
40 |
+
try:
|
41 |
+
list_header.append(items.get_text())
|
42 |
+
except:
|
43 |
+
continue
|
44 |
+
|
45 |
+
# for getting the data
|
46 |
+
HTML_data = soup.find_all("table")[0].find_all("tr")[1:]
|
47 |
+
|
48 |
+
for element in HTML_data:
|
49 |
+
sub_data = []
|
50 |
+
for sub_element in element:
|
51 |
+
try:
|
52 |
+
sub_data.append(sub_element.get_text())
|
53 |
+
except:
|
54 |
+
continue
|
55 |
+
data.append(sub_data)
|
56 |
+
|
57 |
+
# Storing the data into Pandas
|
58 |
+
# DataFrame
|
59 |
+
dataFrame = pd.DataFrame(data = data, columns = list_header)
|
60 |
+
|
61 |
+
# Converting Pandas DataFrame
|
62 |
+
# into CSV file
|
63 |
+
dataFrame.to_csv(output_path)
|
64 |
+
|
65 |
+
def saveResults(image_list, results, labels, output_dir='output/', threshold=0.5):
|
66 |
+
if not os.path.exists(output_dir):
|
67 |
+
os.makedirs(output_dir)
|
68 |
+
for idx, im in enumerate(image_list):
|
69 |
+
im = draw_only_box(im, results[idx], labels, threshold=threshold)
|
70 |
+
|
71 |
+
out_path = os.path.join(output_dir, f"{idx}.jpg")
|
72 |
+
im.save(out_path, quality=95)
|
73 |
+
print("save result to: " + out_path)
|
74 |
+
|
75 |
+
def InputToImages(input_path:str,resolution=300)-> List[Image.Image]:
|
76 |
+
"""
|
77 |
+
input is file location to image
|
78 |
+
return : List of Pillow image objects
|
79 |
+
"""
|
80 |
+
images=[]
|
81 |
+
try:
|
82 |
+
img =Image.open(input_path)
|
83 |
+
if img.mode == 'RGBA':
|
84 |
+
img = img.convert('RGB')
|
85 |
+
images.append(img)
|
86 |
+
except Exception as e:
|
87 |
+
traceback.print_exc()
|
88 |
+
return images
|
89 |
+
|
90 |
+
def drawTextDetRes(bxs :List[List[float]],img:Image.Image,output_path:str):
|
91 |
+
"""
|
92 |
+
draw layout analysis results
|
93 |
+
"""
|
94 |
+
"""bxs_draw is xmin, ymin, xmax, ymax"""
|
95 |
+
bxs_draw = [[b[0][0], b[0][1], b[1][0], b[-1][1]] for b in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
|
96 |
+
|
97 |
+
#images_to_recognizer = cropImage(bxs, img)
|
98 |
+
img_to_save = draw_only_box(img, bxs_draw)
|
99 |
+
img_to_save.save(output_path, quality=95)
|
100 |
+
|
101 |
+
def test_ocr_component1(test_file="TestingFiles/OCRTest1German.pdf", debug_folder = './res/table1/',englishFlag = False):
|
102 |
+
#Takes as input image of a single page and returns the detected lines and words
|
103 |
+
|
104 |
+
images = convert_from_path(test_file)
|
105 |
+
ocr = OCRComponent1(englishFlag)
|
106 |
+
ocr_results = {}
|
107 |
+
|
108 |
+
all_text_in_pages = {}
|
109 |
+
for page_number,img in enumerate(images):
|
110 |
+
text_in_page = ""
|
111 |
+
|
112 |
+
line_annotations= ocr.predict(img = np.array(img))
|
113 |
+
ocr_results[page_number] = line_annotations
|
114 |
+
|
115 |
+
"""
|
116 |
+
boxes_to_draw =[]
|
117 |
+
for list_of_ann in word_annotations:
|
118 |
+
for ann in list_of_ann:
|
119 |
+
logger.info(ann.text)
|
120 |
+
b = ann.box
|
121 |
+
boxes_to_draw.append(b)
|
122 |
+
|
123 |
+
img_to_save = draw_only_box(img,boxes_to_draw)
|
124 |
+
img_to_save.save("res/12June_2_lines.png", quality=95)
|
125 |
+
"""
|
126 |
+
|
127 |
+
line_boxes_to_draw =[]
|
128 |
+
#print("Detected lines are ")
|
129 |
+
#print(len(line_annotations.items()))
|
130 |
+
for index,ann in line_annotations.items():
|
131 |
+
|
132 |
+
b = ann.box
|
133 |
+
line_boxes_to_draw.append(b)
|
134 |
+
line_words = ""
|
135 |
+
#print("detected words per line")
|
136 |
+
#print(len(ann.words))
|
137 |
+
for wordann in ann.words:
|
138 |
+
line_words += wordann.text +" "
|
139 |
+
print(line_words)
|
140 |
+
text_in_page += line_words +"\n"
|
141 |
+
|
142 |
+
img_to_save1 = draw_only_box(img,line_boxes_to_draw)
|
143 |
+
imgname = test_file.split("/")[-1][:-4]
|
144 |
+
img_to_save1.save(debug_folder+imgname+"_"+str(page_number)+"_bbox_detection.png", quality=95)
|
145 |
+
|
146 |
+
all_text_in_pages[page_number] = text_in_page
|
147 |
+
|
148 |
+
return ocr_results, all_text_in_pages
|
149 |
+
|
150 |
+
|
151 |
+
def test_tableOcrOnly1(test_file :Image.Image , debug_folder = './res/table1/',denoise = False,englishFlag = False):
|
152 |
+
#Hybrid Unitable +DocTR
|
153 |
+
#Good at these kind of tables - with a lot of texts
|
154 |
+
table = OcrTable1(englishFlag)
|
155 |
+
image = test_file.convert("RGB")
|
156 |
+
"""
|
157 |
+
parts = test_file.split("/")
|
158 |
+
filename = parts[-1][:-4]
|
159 |
+
debugfolder_filename_page_name= debug_folder+filename+"_"
|
160 |
+
|
161 |
+
table_code = table.predict([image],debugfolder_filename_page_name,denoise = denoise)
|
162 |
+
with open(debugfolder_filename_page_name+'output.txt', 'w') as file:
|
163 |
+
file.write(table_code)
|
164 |
+
"""
|
165 |
+
|
166 |
+
table_code = table.predict([image],denoise = denoise)
|
167 |
+
return table_code
|
168 |
+
|
169 |
+
|
170 |
+
def test_tableOcrOnly2(test_file:Image.Image, debug_folder = './res/table2/'):
|
171 |
+
table = OcrTable2()
|
172 |
+
#FullUnitable
|
173 |
+
#Good at these kind of tables - with not much text
|
174 |
+
|
175 |
+
image = test_file.convert("RGB")
|
176 |
+
table.predict([image],debug_folder)
|
177 |
+
|
178 |
+
def test_table_component1(test_file = 'TestingFiles/TableOCRTestEnglish.pdf', debug_folder ='./res/table_debug2/',denoise = False,englishFlag = True):
|
179 |
+
table_predictor = DetectionAndOcrTable1(englishFlag)
|
180 |
+
|
181 |
+
images = convert_from_path(test_file)
|
182 |
+
for page_number,img in enumerate(images):
|
183 |
+
|
184 |
+
#print(img.mode)
|
185 |
+
print("Looking at page:")
|
186 |
+
print(page_number)
|
187 |
+
parts = test_file.split("/")
|
188 |
+
filename = parts[-1][:-4]
|
189 |
+
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
|
190 |
+
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name,denoise = denoise)
|
191 |
+
for index, table_code in enumerate(table_codes):
|
192 |
+
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
|
193 |
+
file.write(table_code)
|
194 |
+
return table_codes
|
195 |
+
|
196 |
+
def test_table_component2(test_file = 'TestingFiles/TableOCRTestEnglish.pdf', debug_folder ='./res/table_debug2/'):
|
197 |
+
#This components can take in entire pdf page as input , scan for tables and return the table in html format
|
198 |
+
#Uses the full unitable model
|
199 |
+
|
200 |
+
table_predictor = DetectionAndOcrTable2()
|
201 |
+
|
202 |
+
images = convert_from_path(test_file)
|
203 |
+
for page_number,img in enumerate(images):
|
204 |
+
print("Looking at page:")
|
205 |
+
print(page_number)
|
206 |
+
parts = test_file.split("/")
|
207 |
+
filename = parts[-1][:-4]
|
208 |
+
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
|
209 |
+
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name)
|
210 |
+
for index, table_code in enumerate(table_codes):
|
211 |
+
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
|
212 |
+
file.write(table_code)
|
213 |
+
return table_codes
|
214 |
+
|
215 |
+
def test_table_component3(test_file = 'TestingFiles/TableOCRTestEnglish.pdf',debug_folder ='./res/table_debug3/',denoise = False,englishFlag = True):
|
216 |
+
table_predictor = DetectionAndOcrTable3(englishFlag)
|
217 |
+
|
218 |
+
images = convert_from_path(test_file)
|
219 |
+
for page_number,img in enumerate(images):
|
220 |
+
#print(img.mode)
|
221 |
+
print("Looking at page:")
|
222 |
+
print(page_number)
|
223 |
+
parts = test_file.split("/")
|
224 |
+
filename = parts[-1][:-4]
|
225 |
+
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
|
226 |
+
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name)
|
227 |
+
for index, table_code in enumerate(table_codes):
|
228 |
+
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
|
229 |
+
file.write(table_code)
|
230 |
+
return table_codes
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
def test_table_component4(test_file = 'TestingFiles/TableOCRTestEnglish.pdf',debug_folder ='./res/table_debug3/'):
|
235 |
+
table_predictor = DetectionAndOcrTable4()
|
236 |
+
|
237 |
+
images = convert_from_path(test_file)
|
238 |
+
for page_number,img in enumerate(images):
|
239 |
+
#print(img.mode)
|
240 |
+
print("Looking at page:")
|
241 |
+
print(page_number)
|
242 |
+
parts = test_file.split("/")
|
243 |
+
filename = parts[-1][:-4]
|
244 |
+
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
|
245 |
+
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name)
|
246 |
+
for index, table_code in enumerate(table_codes):
|
247 |
+
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
|
248 |
+
file.write(table_code)
|
249 |
+
return table_codes
|
250 |
+
|
251 |
+
|
252 |
+
"""
|
253 |
+
parser = argparse.ArgumentParser(description='Process some strings.')
|
254 |
+
parser.add_argument('ocr', type=str, help='type in id of the component to test')
|
255 |
+
parser.add_argument('--test_file',type=str, help='path to the testing file')
|
256 |
+
parser.add_argument('--debug_folder',type=str, help='path to the folder you want to save your results in')
|
257 |
+
parser.add_argument('--englishFlag',type=bool, help='Whether your pdf is in english => could lead to better results ')
|
258 |
+
parser.add_argument('--denoise',type=bool, help='preprocessing for not clean scans ')
|
259 |
+
|
260 |
+
args = parser.parse_args()
|
261 |
+
start = time.time()
|
262 |
+
if args.ocr == "ocr1":
|
263 |
+
test_ocr_component1(args.test_file,args.debug_folder, args.englishFlag)
|
264 |
+
elif args.ocr == "table1":
|
265 |
+
test_tableOcrOnly1(args.test_file,args.debug_folder,args.englishFlag,args.denoise)
|
266 |
+
elif args.ocr == "table2":
|
267 |
+
test_tableOcrOnly2(args.test_file,args.debug_folder)
|
268 |
+
elif args.ocr =="pdftable1":
|
269 |
+
test_table_component1(args.test_file,args.debug_folder,args.englishFlag,args.denoise)
|
270 |
+
elif args.ocr =="pdftable2":
|
271 |
+
test_table_component2(args.test_file,args.debug_folder)
|
272 |
+
elif args.ocr =="pdftable3":
|
273 |
+
test_table_component3(args.test_file,args.debug_folder,args.englishFlag,args.denoise)
|
274 |
+
elif args.ocr =="pdftable4":
|
275 |
+
test_table_component4(args.test_file,args.debug_folder)
|
276 |
+
|
277 |
+
"""
|
278 |
+
import gradio as gr
|
279 |
+
from gradio_pdf import PDF
|
280 |
+
|
281 |
+
with gr.Blocks() as demo:
|
282 |
+
gr.Markdown("# OCR component")
|
283 |
+
inputs_for_ocr = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="English Document?",value =False)]
|
284 |
+
ocr_btn = gr.Button("Run ocr")
|
285 |
+
|
286 |
+
gr.Examples(
|
287 |
+
examples=[["TestingFiles/OCRTest1German.pdf",'./res/table1/',False]],
|
288 |
+
inputs=inputs_for_ocr
|
289 |
+
)
|
290 |
+
|
291 |
+
outputs_for_ocr = [gr.Textbox(label="List of annotation objects"), gr.Textbox("Text in page")]
|
292 |
+
|
293 |
+
ocr_btn.click(fn=test_ocr_component1,
|
294 |
+
inputs = inputs_for_ocr,
|
295 |
+
outputs = outputs_for_ocr,
|
296 |
+
api_name="OCR"
|
297 |
+
)
|
298 |
+
|
299 |
+
gr.Markdown("# Table OCR components that takes a pdf, extract table and return their html code ")
|
300 |
+
gr.Markdown("## Component 1 uses table transformer and doctr +Unitable")
|
301 |
+
inputs_for_pdftable1 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="Denoise?",value =False),gr.Checkbox(label ="English Document?",value =False)]
|
302 |
+
table1_btn = gr.Button("Run pdftable1")
|
303 |
+
|
304 |
+
gr.Examples(
|
305 |
+
examples=[["TestingFiles/OCRTest5English.pdf",'./res/table1/',False]],
|
306 |
+
inputs=inputs_for_pdftable1
|
307 |
+
)
|
308 |
+
outputs_for_pdftable1 = [gr.Textbox(label="Table code")]
|
309 |
+
|
310 |
+
table1_btn.click(fn=test_table_component1,
|
311 |
+
inputs = inputs_for_pdftable1,
|
312 |
+
outputs = outputs_for_pdftable1,
|
313 |
+
api_name="pdfTable1"
|
314 |
+
)
|
315 |
+
|
316 |
+
gr.Markdown("## Component 2 uses table transformer and Unitable")
|
317 |
+
inputs_for_pdftable2 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/")]
|
318 |
+
table2_btn = gr.Button("Run pdftable2")
|
319 |
+
|
320 |
+
gr.Examples(
|
321 |
+
examples=[["TestingFiles/OCRTest5English.pdf",'./res/table1/',False]],
|
322 |
+
inputs=inputs_for_pdftable1
|
323 |
+
)
|
324 |
+
outputs_for_pdftable2 = [gr.Textbox(label="Table code")]
|
325 |
+
|
326 |
+
table2_btn.click(fn=test_table_component2,
|
327 |
+
inputs = inputs_for_pdftable2,
|
328 |
+
outputs = outputs_for_pdftable2,
|
329 |
+
api_name="pdfTable2"
|
330 |
+
)
|
331 |
+
|
332 |
+
gr.Markdown("## Component 3 uses Yolo and Unitable+doctr")
|
333 |
+
inputs_for_pdftable3 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="Denoise?",value =False),gr.Checkbox(label ="English Document?",value =False)]
|
334 |
+
table3_btn = gr.Button("Run pdftable3")
|
335 |
+
|
336 |
+
|
337 |
+
gr.Examples(
|
338 |
+
examples=[["TestingFiles/TableOCRTestEnglish.pdf",'./res/table1/',False]],
|
339 |
+
inputs=inputs_for_pdftable1
|
340 |
+
)
|
341 |
+
outputs_for_pdftable3 = [gr.Textbox(label="Table code")]
|
342 |
+
|
343 |
+
table3_btn.click(fn=test_table_component3,
|
344 |
+
inputs = inputs_for_pdftable3,
|
345 |
+
outputs = outputs_for_pdftable3,
|
346 |
+
api_name="pdfTable3"
|
347 |
+
)
|
348 |
+
|
349 |
+
gr.Markdown("## Component 4 uses Yolo and Unitable")
|
350 |
+
inputs_for_pdftable4 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/")]
|
351 |
+
table4_btn = gr.Button("Run pdftable4")
|
352 |
+
|
353 |
+
gr.Examples(
|
354 |
+
examples=[["TestingFiles/TableOCRTestEasier.pdf",'./res/table1/',False]],
|
355 |
+
inputs=inputs_for_pdftable1
|
356 |
+
)
|
357 |
+
outputs_for_pdftable4 = [gr.Textbox(label="Table code")]
|
358 |
+
|
359 |
+
|
360 |
+
table4_btn.click(fn=test_table_component4,
|
361 |
+
inputs = inputs_for_pdftable4,
|
362 |
+
outputs = outputs_for_pdftable4,
|
363 |
+
api_name="pdfTable4"
|
364 |
+
)
|
365 |
+
|
366 |
+
|
367 |
+
gr.Markdown("# Table OCR component that takes image of an cropped tavle, extract table and return their html code ")
|
368 |
+
|
369 |
+
inputs_for_table1 = [gr.Image(label="Image of cropped table",type='pil'), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="Denoise?",value =False),gr.Checkbox(label ="English Document?",value =False)]
|
370 |
+
onlytable1_btn = gr.Button("Run table1")
|
371 |
+
|
372 |
+
gr.Examples(
|
373 |
+
examples=[[Image.open("cropped_table.png"),'./res/table1/',False]],
|
374 |
+
inputs=inputs_for_table1
|
375 |
+
)
|
376 |
+
outputs_for_table1 = [gr.HTML(label="Table code")]
|
377 |
+
|
378 |
+
|
379 |
+
onlytable1_btn.click(fn=test_tableOcrOnly1,
|
380 |
+
inputs = inputs_for_table1,
|
381 |
+
outputs = outputs_for_table1,
|
382 |
+
api_name="table1"
|
383 |
+
)
|
384 |
+
|
385 |
+
gr.Markdown("## Another Table OCR component that takes image of an cropped table, extract table and return their html code ")
|
386 |
+
|
387 |
+
inputs_for_table2 = [gr.Image(label="Image of cropped table",type='pil'), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/")]
|
388 |
+
onlytable2_btn = gr.Button("Run table2")
|
389 |
+
|
390 |
+
|
391 |
+
gr.Examples(
|
392 |
+
examples=[[Image.open("cropped_table.png"),'./res/table1/',False]],
|
393 |
+
inputs=inputs_for_table2
|
394 |
+
)
|
395 |
+
outputs_for_table2 = [gr.HTML(label="Table code")]
|
396 |
+
|
397 |
+
onlytable2_btn.click(fn=test_tableOcrOnly2,
|
398 |
+
inputs = inputs_for_table2,
|
399 |
+
outputs = outputs_for_table2,
|
400 |
+
api_name="table2"
|
401 |
+
)
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
demo.launch(share=True)
|
cropped_table.png
ADDED
cropped_table_0.png
ADDED
cropped_table_1.png
ADDED
deepdoc/README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
English | [简体中文](./README_zh.md)
|
2 |
+
|
3 |
+
# *Deep*Doc
|
4 |
+
|
5 |
+
- [1. Introduction](#1)
|
6 |
+
- [2. Vision](#2)
|
7 |
+
- [3. Parser](#3)
|
8 |
+
|
9 |
+
<a name="1"></a>
|
10 |
+
## 1. Introduction
|
11 |
+
|
12 |
+
With a bunch of documents from various domains with various formats and along with diverse retrieval requirements,
|
13 |
+
an accurate analysis becomes a very challenge task. *Deep*Doc is born for that purpose.
|
14 |
+
There are 2 parts in *Deep*Doc so far: vision and parser.
|
15 |
+
You can run the flowing test programs if you're interested in our results of OCR, layout recognition and TSR.
|
16 |
+
```bash
|
17 |
+
python deepdoc/vision/t_ocr.py -h
|
18 |
+
usage: t_ocr.py [-h] --inputs INPUTS [--output_dir OUTPUT_DIR]
|
19 |
+
|
20 |
+
options:
|
21 |
+
-h, --help show this help message and exit
|
22 |
+
--inputs INPUTS Directory where to store images or PDFs, or a file path to a single image or PDF
|
23 |
+
--output_dir OUTPUT_DIR
|
24 |
+
Directory where to store the output images. Default: './ocr_outputs'
|
25 |
+
```
|
26 |
+
```bash
|
27 |
+
python deepdoc/vision/t_recognizer.py -h
|
28 |
+
usage: t_recognizer.py [-h] --inputs INPUTS [--output_dir OUTPUT_DIR] [--threshold THRESHOLD] [--mode {layout,tsr}]
|
29 |
+
|
30 |
+
options:
|
31 |
+
-h, --help show this help message and exit
|
32 |
+
--inputs INPUTS Directory where to store images or PDFs, or a file path to a single image or PDF
|
33 |
+
--output_dir OUTPUT_DIR
|
34 |
+
Directory where to store the output images. Default: './layouts_outputs'
|
35 |
+
--threshold THRESHOLD
|
36 |
+
A threshold to filter out detections. Default: 0.5
|
37 |
+
--mode {layout,tsr} Task mode: layout recognition or table structure recognition
|
38 |
+
```
|
39 |
+
|
40 |
+
Our models are served on HuggingFace. If you have trouble downloading HuggingFace models, this might help!!
|
41 |
+
```bash
|
42 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
43 |
+
```
|
44 |
+
|
45 |
+
<a name="2"></a>
|
46 |
+
## 2. Vision
|
47 |
+
|
48 |
+
We use vision information to resolve problems as human being.
|
49 |
+
- OCR. Since a lot of documents presented as images or at least be able to transform to image,
|
50 |
+
OCR is a very essential and fundamental or even universal solution for text extraction.
|
51 |
+
```bash
|
52 |
+
python deepdoc/vision/t_ocr.py --inputs=path_to_images_or_pdfs --output_dir=path_to_store_result
|
53 |
+
```
|
54 |
+
The inputs could be directory to images or PDF, or a image or PDF.
|
55 |
+
You can look into the folder 'path_to_store_result' where has images which demonstrate the positions of results,
|
56 |
+
txt files which contain the OCR text.
|
57 |
+
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
58 |
+
<img src="https://github.com/infiniflow/ragflow/assets/12318111/f25bee3d-aaf7-4102-baf5-d5208361d110" width="900"/>
|
59 |
+
</div>
|
60 |
+
|
61 |
+
- Layout recognition. Documents from different domain may have various layouts,
|
62 |
+
like, newspaper, magazine, book and résumé are distinct in terms of layout.
|
63 |
+
Only when machine have an accurate layout analysis, it can decide if these text parts are successive or not,
|
64 |
+
or this part needs Table Structure Recognition(TSR) to process, or this part is a figure and described with this caption.
|
65 |
+
We have 10 basic layout components which covers most cases:
|
66 |
+
- Text
|
67 |
+
- Title
|
68 |
+
- Figure
|
69 |
+
- Figure caption
|
70 |
+
- Table
|
71 |
+
- Table caption
|
72 |
+
- Header
|
73 |
+
- Footer
|
74 |
+
- Reference
|
75 |
+
- Equation
|
76 |
+
|
77 |
+
Have a try on the following command to see the layout detection results.
|
78 |
+
```bash
|
79 |
+
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=layout --output_dir=path_to_store_result
|
80 |
+
```
|
81 |
+
The inputs could be directory to images or PDF, or a image or PDF.
|
82 |
+
You can look into the folder 'path_to_store_result' where has images which demonstrate the detection results as following:
|
83 |
+
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
84 |
+
<img src="https://github.com/infiniflow/ragflow/assets/12318111/07e0f625-9b28-43d0-9fbb-5bf586cd286f" width="1000"/>
|
85 |
+
</div>
|
86 |
+
|
87 |
+
- Table Structure Recognition(TSR). Data table is a frequently used structure to present data including numbers or text.
|
88 |
+
And the structure of a table might be very complex, like hierarchy headers, spanning cells and projected row headers.
|
89 |
+
Along with TSR, we also reassemble the content into sentences which could be well comprehended by LLM.
|
90 |
+
We have five labels for TSR task:
|
91 |
+
- Column
|
92 |
+
- Row
|
93 |
+
- Column header
|
94 |
+
- Projected row header
|
95 |
+
- Spanning cell
|
96 |
+
|
97 |
+
Have a try on the following command to see the layout detection results.
|
98 |
+
```bash
|
99 |
+
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=tsr --output_dir=path_to_store_result
|
100 |
+
```
|
101 |
+
The inputs could be directory to images or PDF, or a image or PDF.
|
102 |
+
You can look into the folder 'path_to_store_result' where has both images and html pages which demonstrate the detection results as following:
|
103 |
+
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
104 |
+
<img src="https://github.com/infiniflow/ragflow/assets/12318111/cb24e81b-f2ba-49f3-ac09-883d75606f4c" width="1000"/>
|
105 |
+
</div>
|
106 |
+
|
107 |
+
<a name="3"></a>
|
108 |
+
## 3. Parser
|
109 |
+
|
110 |
+
Four kinds of document formats as PDF, DOCX, EXCEL and PPT have their corresponding parser.
|
111 |
+
The most complex one is PDF parser since PDF's flexibility. The output of PDF parser includes:
|
112 |
+
- Text chunks with their own positions in PDF(page number and rectangular positions).
|
113 |
+
- Tables with cropped image from the PDF, and contents which has already translated into natural language sentences.
|
114 |
+
- Figures with caption and text in the figures.
|
115 |
+
|
116 |
+
### Résumé
|
117 |
+
|
118 |
+
The résumé is a very complicated kind of document. A résumé which is composed of unstructured text
|
119 |
+
with various layouts could be resolved into structured data composed of nearly a hundred of fields.
|
120 |
+
We haven't opened the parser yet, as we open the processing method after parsing procedure.
|
121 |
+
|
122 |
+
|
deepdoc/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
In deepdoc/__init__.py, import the class from ragFlow.py and make it available for import from the deepdoc package:
|
4 |
+
"""
|
5 |
+
|
6 |
+
from .vision import RagFlow
|
7 |
+
|
8 |
+
__all__ = ['RagFlow']
|
deepdoc/models/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
deepdoc/models/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
deepdoc/models/det.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30a86f5731181461d08021402766601e4302a9b9b9666be8aff402696339cdff
|
3 |
+
size 4745517
|
deepdoc/models/layout.laws.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:485a7ddf6889ef15a150bded7091ec1ea5467871f50a88f5f4297c66c1ecef1e
|
3 |
+
size 12246134
|
deepdoc/models/layout.manual.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:485a7ddf6889ef15a150bded7091ec1ea5467871f50a88f5f4297c66c1ecef1e
|
3 |
+
size 12246134
|
deepdoc/models/layout.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:485a7ddf6889ef15a150bded7091ec1ea5467871f50a88f5f4297c66c1ecef1e
|
3 |
+
size 12246134
|
deepdoc/models/layout.paper.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:485a7ddf6889ef15a150bded7091ec1ea5467871f50a88f5f4297c66c1ecef1e
|
3 |
+
size 12246134
|
deepdoc/models/ocr.res
ADDED
@@ -0,0 +1,6623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'
|
2 |
+
疗
|
3 |
+
绚
|
4 |
+
诚
|
5 |
+
娇
|
6 |
+
溜
|
7 |
+
题
|
8 |
+
贿
|
9 |
+
者
|
10 |
+
廖
|
11 |
+
更
|
12 |
+
纳
|
13 |
+
加
|
14 |
+
奉
|
15 |
+
公
|
16 |
+
一
|
17 |
+
就
|
18 |
+
汴
|
19 |
+
计
|
20 |
+
与
|
21 |
+
路
|
22 |
+
房
|
23 |
+
原
|
24 |
+
妇
|
25 |
+
2
|
26 |
+
0
|
27 |
+
8
|
28 |
+
-
|
29 |
+
7
|
30 |
+
其
|
31 |
+
>
|
32 |
+
:
|
33 |
+
]
|
34 |
+
,
|
35 |
+
,
|
36 |
+
骑
|
37 |
+
刈
|
38 |
+
全
|
39 |
+
消
|
40 |
+
昏
|
41 |
+
傈
|
42 |
+
安
|
43 |
+
久
|
44 |
+
钟
|
45 |
+
嗅
|
46 |
+
不
|
47 |
+
影
|
48 |
+
处
|
49 |
+
驽
|
50 |
+
蜿
|
51 |
+
资
|
52 |
+
关
|
53 |
+
椤
|
54 |
+
地
|
55 |
+
瘸
|
56 |
+
专
|
57 |
+
问
|
58 |
+
忖
|
59 |
+
票
|
60 |
+
嫉
|
61 |
+
炎
|
62 |
+
韵
|
63 |
+
要
|
64 |
+
月
|
65 |
+
田
|
66 |
+
节
|
67 |
+
陂
|
68 |
+
鄙
|
69 |
+
捌
|
70 |
+
备
|
71 |
+
拳
|
72 |
+
伺
|
73 |
+
眼
|
74 |
+
网
|
75 |
+
盎
|
76 |
+
大
|
77 |
+
傍
|
78 |
+
心
|
79 |
+
东
|
80 |
+
愉
|
81 |
+
汇
|
82 |
+
蹿
|
83 |
+
科
|
84 |
+
每
|
85 |
+
业
|
86 |
+
里
|
87 |
+
航
|
88 |
+
晏
|
89 |
+
字
|
90 |
+
平
|
91 |
+
录
|
92 |
+
先
|
93 |
+
1
|
94 |
+
3
|
95 |
+
彤
|
96 |
+
鲶
|
97 |
+
产
|
98 |
+
稍
|
99 |
+
督
|
100 |
+
腴
|
101 |
+
有
|
102 |
+
象
|
103 |
+
岳
|
104 |
+
注
|
105 |
+
绍
|
106 |
+
在
|
107 |
+
泺
|
108 |
+
文
|
109 |
+
定
|
110 |
+
核
|
111 |
+
名
|
112 |
+
水
|
113 |
+
过
|
114 |
+
理
|
115 |
+
让
|
116 |
+
偷
|
117 |
+
率
|
118 |
+
等
|
119 |
+
这
|
120 |
+
发
|
121 |
+
”
|
122 |
+
为
|
123 |
+
含
|
124 |
+
肥
|
125 |
+
酉
|
126 |
+
相
|
127 |
+
鄱
|
128 |
+
七
|
129 |
+
编
|
130 |
+
猥
|
131 |
+
锛
|
132 |
+
日
|
133 |
+
镀
|
134 |
+
蒂
|
135 |
+
掰
|
136 |
+
倒
|
137 |
+
辆
|
138 |
+
栾
|
139 |
+
栗
|
140 |
+
综
|
141 |
+
涩
|
142 |
+
州
|
143 |
+
雌
|
144 |
+
滑
|
145 |
+
馀
|
146 |
+
了
|
147 |
+
机
|
148 |
+
块
|
149 |
+
司
|
150 |
+
宰
|
151 |
+
甙
|
152 |
+
兴
|
153 |
+
矽
|
154 |
+
抚
|
155 |
+
保
|
156 |
+
用
|
157 |
+
沧
|
158 |
+
秩
|
159 |
+
如
|
160 |
+
收
|
161 |
+
息
|
162 |
+
滥
|
163 |
+
页
|
164 |
+
疑
|
165 |
+
埠
|
166 |
+
!
|
167 |
+
!
|
168 |
+
姥
|
169 |
+
异
|
170 |
+
橹
|
171 |
+
钇
|
172 |
+
向
|
173 |
+
下
|
174 |
+
跄
|
175 |
+
的
|
176 |
+
椴
|
177 |
+
沫
|
178 |
+
国
|
179 |
+
绥
|
180 |
+
獠
|
181 |
+
报
|
182 |
+
开
|
183 |
+
民
|
184 |
+
蜇
|
185 |
+
何
|
186 |
+
分
|
187 |
+
凇
|
188 |
+
长
|
189 |
+
讥
|
190 |
+
藏
|
191 |
+
掏
|
192 |
+
施
|
193 |
+
羽
|
194 |
+
中
|
195 |
+
讲
|
196 |
+
派
|
197 |
+
嘟
|
198 |
+
人
|
199 |
+
提
|
200 |
+
浼
|
201 |
+
间
|
202 |
+
世
|
203 |
+
而
|
204 |
+
古
|
205 |
+
多
|
206 |
+
倪
|
207 |
+
唇
|
208 |
+
饯
|
209 |
+
控
|
210 |
+
庚
|
211 |
+
首
|
212 |
+
赛
|
213 |
+
蜓
|
214 |
+
味
|
215 |
+
断
|
216 |
+
制
|
217 |
+
觉
|
218 |
+
技
|
219 |
+
替
|
220 |
+
艰
|
221 |
+
溢
|
222 |
+
潮
|
223 |
+
夕
|
224 |
+
钺
|
225 |
+
外
|
226 |
+
摘
|
227 |
+
枋
|
228 |
+
动
|
229 |
+
双
|
230 |
+
单
|
231 |
+
啮
|
232 |
+
户
|
233 |
+
枇
|
234 |
+
确
|
235 |
+
锦
|
236 |
+
曜
|
237 |
+
杜
|
238 |
+
或
|
239 |
+
能
|
240 |
+
效
|
241 |
+
霜
|
242 |
+
盒
|
243 |
+
然
|
244 |
+
侗
|
245 |
+
电
|
246 |
+
晁
|
247 |
+
放
|
248 |
+
步
|
249 |
+
鹃
|
250 |
+
新
|
251 |
+
杖
|
252 |
+
蜂
|
253 |
+
吒
|
254 |
+
濂
|
255 |
+
瞬
|
256 |
+
评
|
257 |
+
总
|
258 |
+
隍
|
259 |
+
对
|
260 |
+
独
|
261 |
+
合
|
262 |
+
也
|
263 |
+
是
|
264 |
+
府
|
265 |
+
青
|
266 |
+
天
|
267 |
+
诲
|
268 |
+
墙
|
269 |
+
组
|
270 |
+
滴
|
271 |
+
级
|
272 |
+
邀
|
273 |
+
帘
|
274 |
+
示
|
275 |
+
已
|
276 |
+
时
|
277 |
+
骸
|
278 |
+
仄
|
279 |
+
泅
|
280 |
+
和
|
281 |
+
遨
|
282 |
+
店
|
283 |
+
雇
|
284 |
+
疫
|
285 |
+
持
|
286 |
+
巍
|
287 |
+
踮
|
288 |
+
境
|
289 |
+
只
|
290 |
+
亨
|
291 |
+
目
|
292 |
+
鉴
|
293 |
+
崤
|
294 |
+
闲
|
295 |
+
体
|
296 |
+
泄
|
297 |
+
杂
|
298 |
+
作
|
299 |
+
般
|
300 |
+
轰
|
301 |
+
化
|
302 |
+
解
|
303 |
+
迂
|
304 |
+
诿
|
305 |
+
蛭
|
306 |
+
璀
|
307 |
+
腾
|
308 |
+
告
|
309 |
+
版
|
310 |
+
服
|
311 |
+
省
|
312 |
+
师
|
313 |
+
小
|
314 |
+
规
|
315 |
+
程
|
316 |
+
线
|
317 |
+
海
|
318 |
+
办
|
319 |
+
引
|
320 |
+
二
|
321 |
+
桧
|
322 |
+
牌
|
323 |
+
砺
|
324 |
+
洄
|
325 |
+
裴
|
326 |
+
修
|
327 |
+
图
|
328 |
+
痫
|
329 |
+
胡
|
330 |
+
许
|
331 |
+
犊
|
332 |
+
事
|
333 |
+
郛
|
334 |
+
基
|
335 |
+
柴
|
336 |
+
呼
|
337 |
+
食
|
338 |
+
研
|
339 |
+
奶
|
340 |
+
律
|
341 |
+
蛋
|
342 |
+
因
|
343 |
+
葆
|
344 |
+
察
|
345 |
+
戏
|
346 |
+
褒
|
347 |
+
戒
|
348 |
+
再
|
349 |
+
李
|
350 |
+
骁
|
351 |
+
工
|
352 |
+
貂
|
353 |
+
油
|
354 |
+
鹅
|
355 |
+
章
|
356 |
+
啄
|
357 |
+
休
|
358 |
+
场
|
359 |
+
给
|
360 |
+
睡
|
361 |
+
纷
|
362 |
+
豆
|
363 |
+
器
|
364 |
+
捎
|
365 |
+
说
|
366 |
+
敏
|
367 |
+
学
|
368 |
+
会
|
369 |
+
浒
|
370 |
+
设
|
371 |
+
诊
|
372 |
+
格
|
373 |
+
廓
|
374 |
+
查
|
375 |
+
来
|
376 |
+
霓
|
377 |
+
室
|
378 |
+
溆
|
379 |
+
¢
|
380 |
+
诡
|
381 |
+
寥
|
382 |
+
焕
|
383 |
+
舜
|
384 |
+
柒
|
385 |
+
狐
|
386 |
+
回
|
387 |
+
戟
|
388 |
+
砾
|
389 |
+
厄
|
390 |
+
实
|
391 |
+
翩
|
392 |
+
尿
|
393 |
+
五
|
394 |
+
入
|
395 |
+
径
|
396 |
+
惭
|
397 |
+
喹
|
398 |
+
股
|
399 |
+
宇
|
400 |
+
篝
|
401 |
+
|
|
402 |
+
;
|
403 |
+
美
|
404 |
+
期
|
405 |
+
云
|
406 |
+
九
|
407 |
+
祺
|
408 |
+
扮
|
409 |
+
靠
|
410 |
+
锝
|
411 |
+
槌
|
412 |
+
系
|
413 |
+
企
|
414 |
+
酰
|
415 |
+
阊
|
416 |
+
暂
|
417 |
+
蚕
|
418 |
+
忻
|
419 |
+
豁
|
420 |
+
本
|
421 |
+
羹
|
422 |
+
执
|
423 |
+
条
|
424 |
+
钦
|
425 |
+
H
|
426 |
+
獒
|
427 |
+
限
|
428 |
+
进
|
429 |
+
季
|
430 |
+
楦
|
431 |
+
于
|
432 |
+
芘
|
433 |
+
玖
|
434 |
+
铋
|
435 |
+
茯
|
436 |
+
未
|
437 |
+
答
|
438 |
+
粘
|
439 |
+
括
|
440 |
+
样
|
441 |
+
精
|
442 |
+
欠
|
443 |
+
矢
|
444 |
+
甥
|
445 |
+
帷
|
446 |
+
嵩
|
447 |
+
扣
|
448 |
+
令
|
449 |
+
仔
|
450 |
+
风
|
451 |
+
皈
|
452 |
+
行
|
453 |
+
支
|
454 |
+
部
|
455 |
+
蓉
|
456 |
+
刮
|
457 |
+
站
|
458 |
+
蜡
|
459 |
+
救
|
460 |
+
钊
|
461 |
+
汗
|
462 |
+
松
|
463 |
+
嫌
|
464 |
+
成
|
465 |
+
可
|
466 |
+
.
|
467 |
+
鹤
|
468 |
+
院
|
469 |
+
从
|
470 |
+
交
|
471 |
+
政
|
472 |
+
怕
|
473 |
+
活
|
474 |
+
调
|
475 |
+
球
|
476 |
+
局
|
477 |
+
验
|
478 |
+
髌
|
479 |
+
第
|
480 |
+
韫
|
481 |
+
谗
|
482 |
+
串
|
483 |
+
到
|
484 |
+
圆
|
485 |
+
年
|
486 |
+
米
|
487 |
+
/
|
488 |
+
*
|
489 |
+
友
|
490 |
+
忿
|
491 |
+
检
|
492 |
+
区
|
493 |
+
看
|
494 |
+
自
|
495 |
+
敢
|
496 |
+
刃
|
497 |
+
个
|
498 |
+
兹
|
499 |
+
弄
|
500 |
+
流
|
501 |
+
留
|
502 |
+
同
|
503 |
+
没
|
504 |
+
齿
|
505 |
+
星
|
506 |
+
聆
|
507 |
+
轼
|
508 |
+
湖
|
509 |
+
什
|
510 |
+
三
|
511 |
+
建
|
512 |
+
蛔
|
513 |
+
儿
|
514 |
+
椋
|
515 |
+
汕
|
516 |
+
震
|
517 |
+
颧
|
518 |
+
鲤
|
519 |
+
跟
|
520 |
+
力
|
521 |
+
情
|
522 |
+
璺
|
523 |
+
铨
|
524 |
+
陪
|
525 |
+
务
|
526 |
+
指
|
527 |
+
族
|
528 |
+
训
|
529 |
+
滦
|
530 |
+
鄣
|
531 |
+
濮
|
532 |
+
扒
|
533 |
+
商
|
534 |
+
箱
|
535 |
+
十
|
536 |
+
召
|
537 |
+
慷
|
538 |
+
辗
|
539 |
+
所
|
540 |
+
莞
|
541 |
+
管
|
542 |
+
护
|
543 |
+
臭
|
544 |
+
横
|
545 |
+
硒
|
546 |
+
嗓
|
547 |
+
接
|
548 |
+
侦
|
549 |
+
六
|
550 |
+
露
|
551 |
+
党
|
552 |
+
馋
|
553 |
+
驾
|
554 |
+
剖
|
555 |
+
高
|
556 |
+
侬
|
557 |
+
妪
|
558 |
+
幂
|
559 |
+
猗
|
560 |
+
绺
|
561 |
+
骐
|
562 |
+
央
|
563 |
+
酐
|
564 |
+
孝
|
565 |
+
筝
|
566 |
+
课
|
567 |
+
徇
|
568 |
+
缰
|
569 |
+
门
|
570 |
+
男
|
571 |
+
西
|
572 |
+
项
|
573 |
+
句
|
574 |
+
谙
|
575 |
+
瞒
|
576 |
+
秃
|
577 |
+
篇
|
578 |
+
教
|
579 |
+
碲
|
580 |
+
罚
|
581 |
+
声
|
582 |
+
呐
|
583 |
+
景
|
584 |
+
前
|
585 |
+
富
|
586 |
+
嘴
|
587 |
+
鳌
|
588 |
+
稀
|
589 |
+
免
|
590 |
+
朋
|
591 |
+
啬
|
592 |
+
睐
|
593 |
+
去
|
594 |
+
赈
|
595 |
+
鱼
|
596 |
+
住
|
597 |
+
肩
|
598 |
+
愕
|
599 |
+
速
|
600 |
+
旁
|
601 |
+
波
|
602 |
+
厅
|
603 |
+
健
|
604 |
+
茼
|
605 |
+
厥
|
606 |
+
鲟
|
607 |
+
谅
|
608 |
+
投
|
609 |
+
攸
|
610 |
+
炔
|
611 |
+
数
|
612 |
+
方
|
613 |
+
击
|
614 |
+
呋
|
615 |
+
谈
|
616 |
+
绩
|
617 |
+
别
|
618 |
+
愫
|
619 |
+
僚
|
620 |
+
躬
|
621 |
+
鹧
|
622 |
+
胪
|
623 |
+
炳
|
624 |
+
招
|
625 |
+
喇
|
626 |
+
膨
|
627 |
+
泵
|
628 |
+
蹦
|
629 |
+
毛
|
630 |
+
结
|
631 |
+
5
|
632 |
+
4
|
633 |
+
谱
|
634 |
+
识
|
635 |
+
陕
|
636 |
+
粽
|
637 |
+
婚
|
638 |
+
拟
|
639 |
+
构
|
640 |
+
且
|
641 |
+
搜
|
642 |
+
任
|
643 |
+
潘
|
644 |
+
比
|
645 |
+
郢
|
646 |
+
妨
|
647 |
+
醪
|
648 |
+
陀
|
649 |
+
桔
|
650 |
+
碘
|
651 |
+
扎
|
652 |
+
选
|
653 |
+
哈
|
654 |
+
骷
|
655 |
+
楷
|
656 |
+
亿
|
657 |
+
明
|
658 |
+
缆
|
659 |
+
脯
|
660 |
+
监
|
661 |
+
睫
|
662 |
+
逻
|
663 |
+
婵
|
664 |
+
共
|
665 |
+
赴
|
666 |
+
淝
|
667 |
+
凡
|
668 |
+
惦
|
669 |
+
及
|
670 |
+
达
|
671 |
+
揖
|
672 |
+
谩
|
673 |
+
澹
|
674 |
+
减
|
675 |
+
焰
|
676 |
+
蛹
|
677 |
+
番
|
678 |
+
祁
|
679 |
+
柏
|
680 |
+
员
|
681 |
+
禄
|
682 |
+
怡
|
683 |
+
峤
|
684 |
+
龙
|
685 |
+
白
|
686 |
+
叽
|
687 |
+
生
|
688 |
+
闯
|
689 |
+
起
|
690 |
+
细
|
691 |
+
装
|
692 |
+
谕
|
693 |
+
竟
|
694 |
+
聚
|
695 |
+
钙
|
696 |
+
上
|
697 |
+
导
|
698 |
+
渊
|
699 |
+
按
|
700 |
+
艾
|
701 |
+
辘
|
702 |
+
挡
|
703 |
+
耒
|
704 |
+
盹
|
705 |
+
饪
|
706 |
+
臀
|
707 |
+
记
|
708 |
+
邮
|
709 |
+
蕙
|
710 |
+
受
|
711 |
+
各
|
712 |
+
医
|
713 |
+
搂
|
714 |
+
普
|
715 |
+
滇
|
716 |
+
朗
|
717 |
+
茸
|
718 |
+
带
|
719 |
+
翻
|
720 |
+
酚
|
721 |
+
(
|
722 |
+
光
|
723 |
+
堤
|
724 |
+
墟
|
725 |
+
蔷
|
726 |
+
万
|
727 |
+
幻
|
728 |
+
〓
|
729 |
+
瑙
|
730 |
+
辈
|
731 |
+
昧
|
732 |
+
盏
|
733 |
+
亘
|
734 |
+
蛀
|
735 |
+
吉
|
736 |
+
铰
|
737 |
+
请
|
738 |
+
子
|
739 |
+
假
|
740 |
+
闻
|
741 |
+
税
|
742 |
+
井
|
743 |
+
诩
|
744 |
+
哨
|
745 |
+
嫂
|
746 |
+
好
|
747 |
+
面
|
748 |
+
琐
|
749 |
+
校
|
750 |
+
馊
|
751 |
+
鬣
|
752 |
+
缂
|
753 |
+
营
|
754 |
+
访
|
755 |
+
炖
|
756 |
+
占
|
757 |
+
农
|
758 |
+
缀
|
759 |
+
否
|
760 |
+
经
|
761 |
+
钚
|
762 |
+
棵
|
763 |
+
趟
|
764 |
+
张
|
765 |
+
亟
|
766 |
+
吏
|
767 |
+
茶
|
768 |
+
谨
|
769 |
+
捻
|
770 |
+
论
|
771 |
+
迸
|
772 |
+
堂
|
773 |
+
玉
|
774 |
+
信
|
775 |
+
吧
|
776 |
+
瞠
|
777 |
+
乡
|
778 |
+
姬
|
779 |
+
寺
|
780 |
+
咬
|
781 |
+
溏
|
782 |
+
苄
|
783 |
+
皿
|
784 |
+
意
|
785 |
+
赉
|
786 |
+
宝
|
787 |
+
尔
|
788 |
+
钰
|
789 |
+
艺
|
790 |
+
特
|
791 |
+
唳
|
792 |
+
踉
|
793 |
+
都
|
794 |
+
荣
|
795 |
+
倚
|
796 |
+
登
|
797 |
+
荐
|
798 |
+
丧
|
799 |
+
奇
|
800 |
+
涵
|
801 |
+
批
|
802 |
+
炭
|
803 |
+
近
|
804 |
+
符
|
805 |
+
傩
|
806 |
+
感
|
807 |
+
道
|
808 |
+
着
|
809 |
+
菊
|
810 |
+
虹
|
811 |
+
仲
|
812 |
+
众
|
813 |
+
懈
|
814 |
+
濯
|
815 |
+
颞
|
816 |
+
眺
|
817 |
+
南
|
818 |
+
释
|
819 |
+
北
|
820 |
+
缝
|
821 |
+
标
|
822 |
+
既
|
823 |
+
茗
|
824 |
+
整
|
825 |
+
撼
|
826 |
+
迤
|
827 |
+
贲
|
828 |
+
挎
|
829 |
+
耱
|
830 |
+
拒
|
831 |
+
某
|
832 |
+
妍
|
833 |
+
卫
|
834 |
+
哇
|
835 |
+
英
|
836 |
+
矶
|
837 |
+
藩
|
838 |
+
治
|
839 |
+
他
|
840 |
+
元
|
841 |
+
领
|
842 |
+
膜
|
843 |
+
遮
|
844 |
+
穗
|
845 |
+
蛾
|
846 |
+
飞
|
847 |
+
荒
|
848 |
+
棺
|
849 |
+
劫
|
850 |
+
么
|
851 |
+
市
|
852 |
+
火
|
853 |
+
温
|
854 |
+
拈
|
855 |
+
棚
|
856 |
+
洼
|
857 |
+
转
|
858 |
+
果
|
859 |
+
奕
|
860 |
+
卸
|
861 |
+
迪
|
862 |
+
伸
|
863 |
+
泳
|
864 |
+
斗
|
865 |
+
邡
|
866 |
+
侄
|
867 |
+
涨
|
868 |
+
屯
|
869 |
+
萋
|
870 |
+
胭
|
871 |
+
氡
|
872 |
+
崮
|
873 |
+
枞
|
874 |
+
惧
|
875 |
+
冒
|
876 |
+
彩
|
877 |
+
斜
|
878 |
+
手
|
879 |
+
豚
|
880 |
+
随
|
881 |
+
旭
|
882 |
+
淑
|
883 |
+
妞
|
884 |
+
形
|
885 |
+
菌
|
886 |
+
吲
|
887 |
+
沱
|
888 |
+
争
|
889 |
+
驯
|
890 |
+
歹
|
891 |
+
挟
|
892 |
+
兆
|
893 |
+
柱
|
894 |
+
传
|
895 |
+
至
|
896 |
+
包
|
897 |
+
内
|
898 |
+
响
|
899 |
+
临
|
900 |
+
红
|
901 |
+
功
|
902 |
+
弩
|
903 |
+
衡
|
904 |
+
寂
|
905 |
+
禁
|
906 |
+
老
|
907 |
+
棍
|
908 |
+
耆
|
909 |
+
渍
|
910 |
+
织
|
911 |
+
害
|
912 |
+
氵
|
913 |
+
渑
|
914 |
+
布
|
915 |
+
载
|
916 |
+
靥
|
917 |
+
嗬
|
918 |
+
虽
|
919 |
+
苹
|
920 |
+
咨
|
921 |
+
娄
|
922 |
+
库
|
923 |
+
雉
|
924 |
+
榜
|
925 |
+
帜
|
926 |
+
嘲
|
927 |
+
套
|
928 |
+
瑚
|
929 |
+
亲
|
930 |
+
簸
|
931 |
+
欧
|
932 |
+
边
|
933 |
+
6
|
934 |
+
腿
|
935 |
+
旮
|
936 |
+
抛
|
937 |
+
吹
|
938 |
+
瞳
|
939 |
+
得
|
940 |
+
镓
|
941 |
+
梗
|
942 |
+
厨
|
943 |
+
继
|
944 |
+
漾
|
945 |
+
愣
|
946 |
+
憨
|
947 |
+
士
|
948 |
+
策
|
949 |
+
窑
|
950 |
+
抑
|
951 |
+
躯
|
952 |
+
襟
|
953 |
+
脏
|
954 |
+
参
|
955 |
+
贸
|
956 |
+
言
|
957 |
+
干
|
958 |
+
绸
|
959 |
+
鳄
|
960 |
+
穷
|
961 |
+
藜
|
962 |
+
音
|
963 |
+
折
|
964 |
+
详
|
965 |
+
)
|
966 |
+
举
|
967 |
+
悍
|
968 |
+
甸
|
969 |
+
癌
|
970 |
+
黎
|
971 |
+
谴
|
972 |
+
死
|
973 |
+
罩
|
974 |
+
迁
|
975 |
+
寒
|
976 |
+
驷
|
977 |
+
袖
|
978 |
+
媒
|
979 |
+
蒋
|
980 |
+
掘
|
981 |
+
模
|
982 |
+
纠
|
983 |
+
恣
|
984 |
+
观
|
985 |
+
祖
|
986 |
+
蛆
|
987 |
+
碍
|
988 |
+
位
|
989 |
+
稿
|
990 |
+
主
|
991 |
+
澧
|
992 |
+
跌
|
993 |
+
筏
|
994 |
+
京
|
995 |
+
锏
|
996 |
+
帝
|
997 |
+
贴
|
998 |
+
证
|
999 |
+
糠
|
1000 |
+
才
|
1001 |
+
黄
|
1002 |
+
鲸
|
1003 |
+
略
|
1004 |
+
炯
|
1005 |
+
饱
|
1006 |
+
四
|
1007 |
+
出
|
1008 |
+
园
|
1009 |
+
犀
|
1010 |
+
牧
|
1011 |
+
容
|
1012 |
+
汉
|
1013 |
+
杆
|
1014 |
+
浈
|
1015 |
+
汰
|
1016 |
+
瑷
|
1017 |
+
造
|
1018 |
+
虫
|
1019 |
+
瘩
|
1020 |
+
怪
|
1021 |
+
驴
|
1022 |
+
济
|
1023 |
+
应
|
1024 |
+
花
|
1025 |
+
沣
|
1026 |
+
谔
|
1027 |
+
夙
|
1028 |
+
旅
|
1029 |
+
价
|
1030 |
+
矿
|
1031 |
+
以
|
1032 |
+
考
|
1033 |
+
s
|
1034 |
+
u
|
1035 |
+
呦
|
1036 |
+
晒
|
1037 |
+
巡
|
1038 |
+
茅
|
1039 |
+
准
|
1040 |
+
肟
|
1041 |
+
瓴
|
1042 |
+
詹
|
1043 |
+
仟
|
1044 |
+
褂
|
1045 |
+
译
|
1046 |
+
桌
|
1047 |
+
混
|
1048 |
+
宁
|
1049 |
+
怦
|
1050 |
+
郑
|
1051 |
+
抿
|
1052 |
+
些
|
1053 |
+
余
|
1054 |
+
鄂
|
1055 |
+
饴
|
1056 |
+
攒
|
1057 |
+
珑
|
1058 |
+
群
|
1059 |
+
阖
|
1060 |
+
岔
|
1061 |
+
琨
|
1062 |
+
藓
|
1063 |
+
预
|
1064 |
+
环
|
1065 |
+
洮
|
1066 |
+
岌
|
1067 |
+
宀
|
1068 |
+
杲
|
1069 |
+
瀵
|
1070 |
+
最
|
1071 |
+
常
|
1072 |
+
囡
|
1073 |
+
周
|
1074 |
+
踊
|
1075 |
+
女
|
1076 |
+
鼓
|
1077 |
+
袭
|
1078 |
+
喉
|
1079 |
+
简
|
1080 |
+
范
|
1081 |
+
薯
|
1082 |
+
遐
|
1083 |
+
疏
|
1084 |
+
粱
|
1085 |
+
黜
|
1086 |
+
禧
|
1087 |
+
法
|
1088 |
+
箔
|
1089 |
+
斤
|
1090 |
+
遥
|
1091 |
+
汝
|
1092 |
+
奥
|
1093 |
+
直
|
1094 |
+
贞
|
1095 |
+
撑
|
1096 |
+
置
|
1097 |
+
绱
|
1098 |
+
集
|
1099 |
+
她
|
1100 |
+
馅
|
1101 |
+
逗
|
1102 |
+
钧
|
1103 |
+
橱
|
1104 |
+
魉
|
1105 |
+
[
|
1106 |
+
恙
|
1107 |
+
躁
|
1108 |
+
唤
|
1109 |
+
9
|
1110 |
+
旺
|
1111 |
+
膘
|
1112 |
+
待
|
1113 |
+
脾
|
1114 |
+
惫
|
1115 |
+
购
|
1116 |
+
吗
|
1117 |
+
依
|
1118 |
+
盲
|
1119 |
+
度
|
1120 |
+
瘿
|
1121 |
+
蠖
|
1122 |
+
俾
|
1123 |
+
之
|
1124 |
+
镗
|
1125 |
+
拇
|
1126 |
+
鲵
|
1127 |
+
厝
|
1128 |
+
簧
|
1129 |
+
续
|
1130 |
+
款
|
1131 |
+
展
|
1132 |
+
啃
|
1133 |
+
表
|
1134 |
+
剔
|
1135 |
+
品
|
1136 |
+
钻
|
1137 |
+
腭
|
1138 |
+
损
|
1139 |
+
清
|
1140 |
+
锶
|
1141 |
+
统
|
1142 |
+
涌
|
1143 |
+
寸
|
1144 |
+
滨
|
1145 |
+
贪
|
1146 |
+
链
|
1147 |
+
吠
|
1148 |
+
冈
|
1149 |
+
伎
|
1150 |
+
迥
|
1151 |
+
咏
|
1152 |
+
吁
|
1153 |
+
览
|
1154 |
+
防
|
1155 |
+
迅
|
1156 |
+
失
|
1157 |
+
汾
|
1158 |
+
阔
|
1159 |
+
逵
|
1160 |
+
绀
|
1161 |
+
蔑
|
1162 |
+
列
|
1163 |
+
川
|
1164 |
+
凭
|
1165 |
+
努
|
1166 |
+
熨
|
1167 |
+
揪
|
1168 |
+
利
|
1169 |
+
俱
|
1170 |
+
绉
|
1171 |
+
抢
|
1172 |
+
鸨
|
1173 |
+
我
|
1174 |
+
即
|
1175 |
+
责
|
1176 |
+
膦
|
1177 |
+
易
|
1178 |
+
毓
|
1179 |
+
鹊
|
1180 |
+
刹
|
1181 |
+
玷
|
1182 |
+
岿
|
1183 |
+
空
|
1184 |
+
嘞
|
1185 |
+
绊
|
1186 |
+
排
|
1187 |
+
术
|
1188 |
+
估
|
1189 |
+
锷
|
1190 |
+
违
|
1191 |
+
们
|
1192 |
+
苟
|
1193 |
+
铜
|
1194 |
+
播
|
1195 |
+
肘
|
1196 |
+
件
|
1197 |
+
烫
|
1198 |
+
审
|
1199 |
+
鲂
|
1200 |
+
广
|
1201 |
+
像
|
1202 |
+
铌
|
1203 |
+
惰
|
1204 |
+
铟
|
1205 |
+
巳
|
1206 |
+
胍
|
1207 |
+
鲍
|
1208 |
+
康
|
1209 |
+
憧
|
1210 |
+
色
|
1211 |
+
恢
|
1212 |
+
想
|
1213 |
+
拷
|
1214 |
+
尤
|
1215 |
+
疳
|
1216 |
+
知
|
1217 |
+
S
|
1218 |
+
Y
|
1219 |
+
F
|
1220 |
+
D
|
1221 |
+
A
|
1222 |
+
峄
|
1223 |
+
裕
|
1224 |
+
帮
|
1225 |
+
握
|
1226 |
+
搔
|
1227 |
+
氐
|
1228 |
+
氘
|
1229 |
+
难
|
1230 |
+
墒
|
1231 |
+
沮
|
1232 |
+
雨
|
1233 |
+
叁
|
1234 |
+
缥
|
1235 |
+
悴
|
1236 |
+
藐
|
1237 |
+
湫
|
1238 |
+
娟
|
1239 |
+
苑
|
1240 |
+
稠
|
1241 |
+
颛
|
1242 |
+
簇
|
1243 |
+
后
|
1244 |
+
阕
|
1245 |
+
闭
|
1246 |
+
蕤
|
1247 |
+
缚
|
1248 |
+
怎
|
1249 |
+
佞
|
1250 |
+
码
|
1251 |
+
嘤
|
1252 |
+
蔡
|
1253 |
+
痊
|
1254 |
+
舱
|
1255 |
+
螯
|
1256 |
+
帕
|
1257 |
+
赫
|
1258 |
+
昵
|
1259 |
+
升
|
1260 |
+
烬
|
1261 |
+
岫
|
1262 |
+
、
|
1263 |
+
疵
|
1264 |
+
蜻
|
1265 |
+
髁
|
1266 |
+
蕨
|
1267 |
+
隶
|
1268 |
+
烛
|
1269 |
+
械
|
1270 |
+
丑
|
1271 |
+
盂
|
1272 |
+
梁
|
1273 |
+
强
|
1274 |
+
鲛
|
1275 |
+
由
|
1276 |
+
拘
|
1277 |
+
揉
|
1278 |
+
劭
|
1279 |
+
龟
|
1280 |
+
撤
|
1281 |
+
钩
|
1282 |
+
呕
|
1283 |
+
孛
|
1284 |
+
费
|
1285 |
+
妻
|
1286 |
+
漂
|
1287 |
+
求
|
1288 |
+
阑
|
1289 |
+
崖
|
1290 |
+
秤
|
1291 |
+
甘
|
1292 |
+
通
|
1293 |
+
深
|
1294 |
+
补
|
1295 |
+
赃
|
1296 |
+
坎
|
1297 |
+
床
|
1298 |
+
啪
|
1299 |
+
承
|
1300 |
+
吼
|
1301 |
+
量
|
1302 |
+
暇
|
1303 |
+
钼
|
1304 |
+
烨
|
1305 |
+
阂
|
1306 |
+
擎
|
1307 |
+
脱
|
1308 |
+
逮
|
1309 |
+
称
|
1310 |
+
P
|
1311 |
+
神
|
1312 |
+
属
|
1313 |
+
矗
|
1314 |
+
华
|
1315 |
+
届
|
1316 |
+
狍
|
1317 |
+
葑
|
1318 |
+
汹
|
1319 |
+
育
|
1320 |
+
患
|
1321 |
+
窒
|
1322 |
+
蛰
|
1323 |
+
佼
|
1324 |
+
静
|
1325 |
+
槎
|
1326 |
+
运
|
1327 |
+
鳗
|
1328 |
+
庆
|
1329 |
+
逝
|
1330 |
+
曼
|
1331 |
+
疱
|
1332 |
+
克
|
1333 |
+
代
|
1334 |
+
官
|
1335 |
+
此
|
1336 |
+
麸
|
1337 |
+
耧
|
1338 |
+
蚌
|
1339 |
+
晟
|
1340 |
+
例
|
1341 |
+
础
|
1342 |
+
榛
|
1343 |
+
副
|
1344 |
+
测
|
1345 |
+
唰
|
1346 |
+
缢
|
1347 |
+
迹
|
1348 |
+
灬
|
1349 |
+
霁
|
1350 |
+
身
|
1351 |
+
岁
|
1352 |
+
赭
|
1353 |
+
扛
|
1354 |
+
又
|
1355 |
+
菡
|
1356 |
+
乜
|
1357 |
+
雾
|
1358 |
+
板
|
1359 |
+
读
|
1360 |
+
陷
|
1361 |
+
徉
|
1362 |
+
贯
|
1363 |
+
郁
|
1364 |
+
虑
|
1365 |
+
变
|
1366 |
+
钓
|
1367 |
+
菜
|
1368 |
+
圾
|
1369 |
+
现
|
1370 |
+
琢
|
1371 |
+
式
|
1372 |
+
乐
|
1373 |
+
维
|
1374 |
+
渔
|
1375 |
+
浜
|
1376 |
+
左
|
1377 |
+
吾
|
1378 |
+
脑
|
1379 |
+
钡
|
1380 |
+
警
|
1381 |
+
T
|
1382 |
+
啵
|
1383 |
+
拴
|
1384 |
+
偌
|
1385 |
+
漱
|
1386 |
+
湿
|
1387 |
+
硕
|
1388 |
+
止
|
1389 |
+
骼
|
1390 |
+
魄
|
1391 |
+
积
|
1392 |
+
燥
|
1393 |
+
联
|
1394 |
+
踢
|
1395 |
+
玛
|
1396 |
+
则
|
1397 |
+
窿
|
1398 |
+
见
|
1399 |
+
振
|
1400 |
+
畿
|
1401 |
+
送
|
1402 |
+
班
|
1403 |
+
钽
|
1404 |
+
您
|
1405 |
+
赵
|
1406 |
+
刨
|
1407 |
+
印
|
1408 |
+
讨
|
1409 |
+
踝
|
1410 |
+
籍
|
1411 |
+
谡
|
1412 |
+
舌
|
1413 |
+
崧
|
1414 |
+
汽
|
1415 |
+
蔽
|
1416 |
+
沪
|
1417 |
+
酥
|
1418 |
+
绒
|
1419 |
+
怖
|
1420 |
+
财
|
1421 |
+
帖
|
1422 |
+
肱
|
1423 |
+
私
|
1424 |
+
莎
|
1425 |
+
勋
|
1426 |
+
羔
|
1427 |
+
霸
|
1428 |
+
励
|
1429 |
+
哼
|
1430 |
+
帐
|
1431 |
+
将
|
1432 |
+
帅
|
1433 |
+
渠
|
1434 |
+
纪
|
1435 |
+
婴
|
1436 |
+
娩
|
1437 |
+
岭
|
1438 |
+
厘
|
1439 |
+
滕
|
1440 |
+
吻
|
1441 |
+
伤
|
1442 |
+
坝
|
1443 |
+
冠
|
1444 |
+
戊
|
1445 |
+
隆
|
1446 |
+
瘁
|
1447 |
+
介
|
1448 |
+
涧
|
1449 |
+
物
|
1450 |
+
黍
|
1451 |
+
并
|
1452 |
+
姗
|
1453 |
+
奢
|
1454 |
+
蹑
|
1455 |
+
掣
|
1456 |
+
垸
|
1457 |
+
锴
|
1458 |
+
命
|
1459 |
+
箍
|
1460 |
+
捉
|
1461 |
+
病
|
1462 |
+
辖
|
1463 |
+
琰
|
1464 |
+
眭
|
1465 |
+
迩
|
1466 |
+
艘
|
1467 |
+
绌
|
1468 |
+
繁
|
1469 |
+
寅
|
1470 |
+
若
|
1471 |
+
毋
|
1472 |
+
思
|
1473 |
+
诉
|
1474 |
+
类
|
1475 |
+
诈
|
1476 |
+
燮
|
1477 |
+
轲
|
1478 |
+
酮
|
1479 |
+
狂
|
1480 |
+
重
|
1481 |
+
反
|
1482 |
+
职
|
1483 |
+
筱
|
1484 |
+
县
|
1485 |
+
委
|
1486 |
+
磕
|
1487 |
+
绣
|
1488 |
+
奖
|
1489 |
+
晋
|
1490 |
+
濉
|
1491 |
+
志
|
1492 |
+
徽
|
1493 |
+
肠
|
1494 |
+
呈
|
1495 |
+
獐
|
1496 |
+
坻
|
1497 |
+
口
|
1498 |
+
片
|
1499 |
+
碰
|
1500 |
+
几
|
1501 |
+
村
|
1502 |
+
柿
|
1503 |
+
劳
|
1504 |
+
料
|
1505 |
+
获
|
1506 |
+
亩
|
1507 |
+
惕
|
1508 |
+
晕
|
1509 |
+
厌
|
1510 |
+
号
|
1511 |
+
罢
|
1512 |
+
池
|
1513 |
+
正
|
1514 |
+
鏖
|
1515 |
+
煨
|
1516 |
+
家
|
1517 |
+
棕
|
1518 |
+
复
|
1519 |
+
尝
|
1520 |
+
懋
|
1521 |
+
蜥
|
1522 |
+
锅
|
1523 |
+
岛
|
1524 |
+
扰
|
1525 |
+
队
|
1526 |
+
坠
|
1527 |
+
瘾
|
1528 |
+
钬
|
1529 |
+
@
|
1530 |
+
卧
|
1531 |
+
疣
|
1532 |
+
镇
|
1533 |
+
譬
|
1534 |
+
冰
|
1535 |
+
彷
|
1536 |
+
频
|
1537 |
+
黯
|
1538 |
+
据
|
1539 |
+
垄
|
1540 |
+
采
|
1541 |
+
八
|
1542 |
+
缪
|
1543 |
+
瘫
|
1544 |
+
型
|
1545 |
+
熹
|
1546 |
+
砰
|
1547 |
+
楠
|
1548 |
+
襁
|
1549 |
+
箐
|
1550 |
+
但
|
1551 |
+
嘶
|
1552 |
+
绳
|
1553 |
+
啤
|
1554 |
+
拍
|
1555 |
+
盥
|
1556 |
+
穆
|
1557 |
+
傲
|
1558 |
+
洗
|
1559 |
+
盯
|
1560 |
+
塘
|
1561 |
+
怔
|
1562 |
+
筛
|
1563 |
+
丿
|
1564 |
+
台
|
1565 |
+
恒
|
1566 |
+
喂
|
1567 |
+
葛
|
1568 |
+
永
|
1569 |
+
¥
|
1570 |
+
烟
|
1571 |
+
酒
|
1572 |
+
桦
|
1573 |
+
书
|
1574 |
+
砂
|
1575 |
+
蚝
|
1576 |
+
缉
|
1577 |
+
态
|
1578 |
+
瀚
|
1579 |
+
袄
|
1580 |
+
圳
|
1581 |
+
轻
|
1582 |
+
蛛
|
1583 |
+
超
|
1584 |
+
榧
|
1585 |
+
遛
|
1586 |
+
姒
|
1587 |
+
奘
|
1588 |
+
铮
|
1589 |
+
右
|
1590 |
+
荽
|
1591 |
+
望
|
1592 |
+
偻
|
1593 |
+
卡
|
1594 |
+
丶
|
1595 |
+
氰
|
1596 |
+
附
|
1597 |
+
做
|
1598 |
+
革
|
1599 |
+
索
|
1600 |
+
戚
|
1601 |
+
坨
|
1602 |
+
桷
|
1603 |
+
唁
|
1604 |
+
垅
|
1605 |
+
榻
|
1606 |
+
岐
|
1607 |
+
偎
|
1608 |
+
坛
|
1609 |
+
莨
|
1610 |
+
山
|
1611 |
+
殊
|
1612 |
+
微
|
1613 |
+
骇
|
1614 |
+
陈
|
1615 |
+
爨
|
1616 |
+
推
|
1617 |
+
嗝
|
1618 |
+
驹
|
1619 |
+
澡
|
1620 |
+
藁
|
1621 |
+
呤
|
1622 |
+
卤
|
1623 |
+
嘻
|
1624 |
+
糅
|
1625 |
+
逛
|
1626 |
+
侵
|
1627 |
+
郓
|
1628 |
+
酌
|
1629 |
+
德
|
1630 |
+
摇
|
1631 |
+
※
|
1632 |
+
鬃
|
1633 |
+
被
|
1634 |
+
慨
|
1635 |
+
殡
|
1636 |
+
羸
|
1637 |
+
昌
|
1638 |
+
泡
|
1639 |
+
戛
|
1640 |
+
鞋
|
1641 |
+
河
|
1642 |
+
宪
|
1643 |
+
沿
|
1644 |
+
玲
|
1645 |
+
鲨
|
1646 |
+
翅
|
1647 |
+
哽
|
1648 |
+
源
|
1649 |
+
铅
|
1650 |
+
语
|
1651 |
+
照
|
1652 |
+
邯
|
1653 |
+
址
|
1654 |
+
荃
|
1655 |
+
佬
|
1656 |
+
顺
|
1657 |
+
鸳
|
1658 |
+
町
|
1659 |
+
霭
|
1660 |
+
睾
|
1661 |
+
瓢
|
1662 |
+
夸
|
1663 |
+
椁
|
1664 |
+
晓
|
1665 |
+
酿
|
1666 |
+
痈
|
1667 |
+
咔
|
1668 |
+
侏
|
1669 |
+
券
|
1670 |
+
噎
|
1671 |
+
湍
|
1672 |
+
签
|
1673 |
+
嚷
|
1674 |
+
离
|
1675 |
+
午
|
1676 |
+
尚
|
1677 |
+
社
|
1678 |
+
锤
|
1679 |
+
背
|
1680 |
+
孟
|
1681 |
+
使
|
1682 |
+
浪
|
1683 |
+
缦
|
1684 |
+
潍
|
1685 |
+
鞅
|
1686 |
+
军
|
1687 |
+
姹
|
1688 |
+
驶
|
1689 |
+
笑
|
1690 |
+
鳟
|
1691 |
+
鲁
|
1692 |
+
》
|
1693 |
+
孽
|
1694 |
+
钜
|
1695 |
+
绿
|
1696 |
+
洱
|
1697 |
+
礴
|
1698 |
+
焯
|
1699 |
+
椰
|
1700 |
+
颖
|
1701 |
+
囔
|
1702 |
+
乌
|
1703 |
+
孔
|
1704 |
+
巴
|
1705 |
+
互
|
1706 |
+
性
|
1707 |
+
椽
|
1708 |
+
哞
|
1709 |
+
聘
|
1710 |
+
昨
|
1711 |
+
早
|
1712 |
+
暮
|
1713 |
+
胶
|
1714 |
+
炀
|
1715 |
+
隧
|
1716 |
+
低
|
1717 |
+
彗
|
1718 |
+
昝
|
1719 |
+
铁
|
1720 |
+
呓
|
1721 |
+
氽
|
1722 |
+
藉
|
1723 |
+
喔
|
1724 |
+
癖
|
1725 |
+
瑗
|
1726 |
+
姨
|
1727 |
+
权
|
1728 |
+
胱
|
1729 |
+
韦
|
1730 |
+
堑
|
1731 |
+
蜜
|
1732 |
+
酋
|
1733 |
+
楝
|
1734 |
+
砝
|
1735 |
+
毁
|
1736 |
+
靓
|
1737 |
+
歙
|
1738 |
+
锲
|
1739 |
+
究
|
1740 |
+
屋
|
1741 |
+
喳
|
1742 |
+
骨
|
1743 |
+
辨
|
1744 |
+
碑
|
1745 |
+
武
|
1746 |
+
鸠
|
1747 |
+
宫
|
1748 |
+
辜
|
1749 |
+
烊
|
1750 |
+
适
|
1751 |
+
坡
|
1752 |
+
殃
|
1753 |
+
培
|
1754 |
+
佩
|
1755 |
+
供
|
1756 |
+
走
|
1757 |
+
蜈
|
1758 |
+
迟
|
1759 |
+
翼
|
1760 |
+
况
|
1761 |
+
姣
|
1762 |
+
凛
|
1763 |
+
浔
|
1764 |
+
吃
|
1765 |
+
飘
|
1766 |
+
债
|
1767 |
+
犟
|
1768 |
+
金
|
1769 |
+
促
|
1770 |
+
苛
|
1771 |
+
崇
|
1772 |
+
坂
|
1773 |
+
莳
|
1774 |
+
畔
|
1775 |
+
绂
|
1776 |
+
兵
|
1777 |
+
蠕
|
1778 |
+
斋
|
1779 |
+
根
|
1780 |
+
砍
|
1781 |
+
亢
|
1782 |
+
欢
|
1783 |
+
恬
|
1784 |
+
崔
|
1785 |
+
剁
|
1786 |
+
餐
|
1787 |
+
榫
|
1788 |
+
快
|
1789 |
+
扶
|
1790 |
+
‖
|
1791 |
+
濒
|
1792 |
+
缠
|
1793 |
+
鳜
|
1794 |
+
当
|
1795 |
+
彭
|
1796 |
+
驭
|
1797 |
+
浦
|
1798 |
+
篮
|
1799 |
+
昀
|
1800 |
+
锆
|
1801 |
+
秸
|
1802 |
+
钳
|
1803 |
+
弋
|
1804 |
+
娣
|
1805 |
+
瞑
|
1806 |
+
夷
|
1807 |
+
龛
|
1808 |
+
苫
|
1809 |
+
拱
|
1810 |
+
致
|
1811 |
+
%
|
1812 |
+
嵊
|
1813 |
+
障
|
1814 |
+
隐
|
1815 |
+
弑
|
1816 |
+
初
|
1817 |
+
娓
|
1818 |
+
抉
|
1819 |
+
汩
|
1820 |
+
累
|
1821 |
+
蓖
|
1822 |
+
"
|
1823 |
+
唬
|
1824 |
+
助
|
1825 |
+
苓
|
1826 |
+
昙
|
1827 |
+
押
|
1828 |
+
毙
|
1829 |
+
破
|
1830 |
+
城
|
1831 |
+
郧
|
1832 |
+
逢
|
1833 |
+
嚏
|
1834 |
+
獭
|
1835 |
+
瞻
|
1836 |
+
溱
|
1837 |
+
婿
|
1838 |
+
赊
|
1839 |
+
跨
|
1840 |
+
恼
|
1841 |
+
璧
|
1842 |
+
萃
|
1843 |
+
姻
|
1844 |
+
貉
|
1845 |
+
灵
|
1846 |
+
炉
|
1847 |
+
密
|
1848 |
+
氛
|
1849 |
+
陶
|
1850 |
+
砸
|
1851 |
+
谬
|
1852 |
+
衔
|
1853 |
+
点
|
1854 |
+
琛
|
1855 |
+
沛
|
1856 |
+
枳
|
1857 |
+
层
|
1858 |
+
岱
|
1859 |
+
诺
|
1860 |
+
脍
|
1861 |
+
榈
|
1862 |
+
埂
|
1863 |
+
征
|
1864 |
+
冷
|
1865 |
+
裁
|
1866 |
+
打
|
1867 |
+
蹴
|
1868 |
+
素
|
1869 |
+
瘘
|
1870 |
+
逞
|
1871 |
+
蛐
|
1872 |
+
聊
|
1873 |
+
激
|
1874 |
+
腱
|
1875 |
+
萘
|
1876 |
+
踵
|
1877 |
+
飒
|
1878 |
+
蓟
|
1879 |
+
吆
|
1880 |
+
取
|
1881 |
+
咙
|
1882 |
+
簋
|
1883 |
+
涓
|
1884 |
+
矩
|
1885 |
+
曝
|
1886 |
+
挺
|
1887 |
+
揣
|
1888 |
+
座
|
1889 |
+
你
|
1890 |
+
史
|
1891 |
+
舵
|
1892 |
+
焱
|
1893 |
+
尘
|
1894 |
+
苏
|
1895 |
+
笈
|
1896 |
+
脚
|
1897 |
+
溉
|
1898 |
+
榨
|
1899 |
+
诵
|
1900 |
+
樊
|
1901 |
+
邓
|
1902 |
+
焊
|
1903 |
+
义
|
1904 |
+
庶
|
1905 |
+
儋
|
1906 |
+
蟋
|
1907 |
+
蒲
|
1908 |
+
赦
|
1909 |
+
呷
|
1910 |
+
杞
|
1911 |
+
诠
|
1912 |
+
豪
|
1913 |
+
还
|
1914 |
+
试
|
1915 |
+
颓
|
1916 |
+
茉
|
1917 |
+
太
|
1918 |
+
除
|
1919 |
+
紫
|
1920 |
+
逃
|
1921 |
+
痴
|
1922 |
+
草
|
1923 |
+
充
|
1924 |
+
鳕
|
1925 |
+
珉
|
1926 |
+
祗
|
1927 |
+
墨
|
1928 |
+
渭
|
1929 |
+
烩
|
1930 |
+
蘸
|
1931 |
+
慕
|
1932 |
+
璇
|
1933 |
+
镶
|
1934 |
+
穴
|
1935 |
+
嵘
|
1936 |
+
恶
|
1937 |
+
骂
|
1938 |
+
险
|
1939 |
+
绋
|
1940 |
+
幕
|
1941 |
+
碉
|
1942 |
+
肺
|
1943 |
+
戳
|
1944 |
+
刘
|
1945 |
+
潞
|
1946 |
+
秣
|
1947 |
+
纾
|
1948 |
+
潜
|
1949 |
+
銮
|
1950 |
+
洛
|
1951 |
+
须
|
1952 |
+
罘
|
1953 |
+
销
|
1954 |
+
瘪
|
1955 |
+
汞
|
1956 |
+
兮
|
1957 |
+
屉
|
1958 |
+
r
|
1959 |
+
林
|
1960 |
+
厕
|
1961 |
+
质
|
1962 |
+
探
|
1963 |
+
划
|
1964 |
+
狸
|
1965 |
+
殚
|
1966 |
+
善
|
1967 |
+
煊
|
1968 |
+
烹
|
1969 |
+
〒
|
1970 |
+
锈
|
1971 |
+
逯
|
1972 |
+
宸
|
1973 |
+
辍
|
1974 |
+
泱
|
1975 |
+
柚
|
1976 |
+
袍
|
1977 |
+
远
|
1978 |
+
蹋
|
1979 |
+
嶙
|
1980 |
+
绝
|
1981 |
+
峥
|
1982 |
+
娥
|
1983 |
+
缍
|
1984 |
+
雀
|
1985 |
+
徵
|
1986 |
+
认
|
1987 |
+
镱
|
1988 |
+
谷
|
1989 |
+
=
|
1990 |
+
贩
|
1991 |
+
勉
|
1992 |
+
撩
|
1993 |
+
鄯
|
1994 |
+
斐
|
1995 |
+
洋
|
1996 |
+
非
|
1997 |
+
祚
|
1998 |
+
泾
|
1999 |
+
诒
|
2000 |
+
饿
|
2001 |
+
撬
|
2002 |
+
威
|
2003 |
+
晷
|
2004 |
+
搭
|
2005 |
+
芍
|
2006 |
+
锥
|
2007 |
+
笺
|
2008 |
+
蓦
|
2009 |
+
候
|
2010 |
+
琊
|
2011 |
+
档
|
2012 |
+
礁
|
2013 |
+
沼
|
2014 |
+
卵
|
2015 |
+
荠
|
2016 |
+
忑
|
2017 |
+
朝
|
2018 |
+
凹
|
2019 |
+
瑞
|
2020 |
+
头
|
2021 |
+
仪
|
2022 |
+
弧
|
2023 |
+
孵
|
2024 |
+
畏
|
2025 |
+
铆
|
2026 |
+
突
|
2027 |
+
衲
|
2028 |
+
车
|
2029 |
+
浩
|
2030 |
+
气
|
2031 |
+
茂
|
2032 |
+
悖
|
2033 |
+
厢
|
2034 |
+
枕
|
2035 |
+
酝
|
2036 |
+
戴
|
2037 |
+
湾
|
2038 |
+
邹
|
2039 |
+
飚
|
2040 |
+
攘
|
2041 |
+
锂
|
2042 |
+
写
|
2043 |
+
宵
|
2044 |
+
翁
|
2045 |
+
岷
|
2046 |
+
无
|
2047 |
+
喜
|
2048 |
+
丈
|
2049 |
+
挑
|
2050 |
+
嗟
|
2051 |
+
绛
|
2052 |
+
殉
|
2053 |
+
议
|
2054 |
+
槽
|
2055 |
+
具
|
2056 |
+
醇
|
2057 |
+
淞
|
2058 |
+
笃
|
2059 |
+
郴
|
2060 |
+
阅
|
2061 |
+
饼
|
2062 |
+
底
|
2063 |
+
壕
|
2064 |
+
砚
|
2065 |
+
弈
|
2066 |
+
询
|
2067 |
+
缕
|
2068 |
+
庹
|
2069 |
+
翟
|
2070 |
+
零
|
2071 |
+
筷
|
2072 |
+
暨
|
2073 |
+
舟
|
2074 |
+
闺
|
2075 |
+
甯
|
2076 |
+
撞
|
2077 |
+
麂
|
2078 |
+
茌
|
2079 |
+
蔼
|
2080 |
+
很
|
2081 |
+
珲
|
2082 |
+
捕
|
2083 |
+
棠
|
2084 |
+
角
|
2085 |
+
阉
|
2086 |
+
媛
|
2087 |
+
娲
|
2088 |
+
诽
|
2089 |
+
剿
|
2090 |
+
尉
|
2091 |
+
爵
|
2092 |
+
睬
|
2093 |
+
韩
|
2094 |
+
诰
|
2095 |
+
匣
|
2096 |
+
危
|
2097 |
+
糍
|
2098 |
+
镯
|
2099 |
+
立
|
2100 |
+
浏
|
2101 |
+
阳
|
2102 |
+
少
|
2103 |
+
盆
|
2104 |
+
舔
|
2105 |
+
擘
|
2106 |
+
匪
|
2107 |
+
申
|
2108 |
+
尬
|
2109 |
+
铣
|
2110 |
+
旯
|
2111 |
+
抖
|
2112 |
+
赘
|
2113 |
+
瓯
|
2114 |
+
居
|
2115 |
+
ˇ
|
2116 |
+
哮
|
2117 |
+
游
|
2118 |
+
锭
|
2119 |
+
茏
|
2120 |
+
歌
|
2121 |
+
坏
|
2122 |
+
甚
|
2123 |
+
秒
|
2124 |
+
舞
|
2125 |
+
沙
|
2126 |
+
仗
|
2127 |
+
劲
|
2128 |
+
潺
|
2129 |
+
阿
|
2130 |
+
燧
|
2131 |
+
郭
|
2132 |
+
嗖
|
2133 |
+
霏
|
2134 |
+
忠
|
2135 |
+
材
|
2136 |
+
奂
|
2137 |
+
耐
|
2138 |
+
跺
|
2139 |
+
砀
|
2140 |
+
输
|
2141 |
+
岖
|
2142 |
+
媳
|
2143 |
+
氟
|
2144 |
+
极
|
2145 |
+
摆
|
2146 |
+
灿
|
2147 |
+
今
|
2148 |
+
扔
|
2149 |
+
腻
|
2150 |
+
枝
|
2151 |
+
奎
|
2152 |
+
药
|
2153 |
+
熄
|
2154 |
+
吨
|
2155 |
+
话
|
2156 |
+
q
|
2157 |
+
额
|
2158 |
+
慑
|
2159 |
+
嘌
|
2160 |
+
协
|
2161 |
+
喀
|
2162 |
+
壳
|
2163 |
+
埭
|
2164 |
+
视
|
2165 |
+
著
|
2166 |
+
於
|
2167 |
+
愧
|
2168 |
+
陲
|
2169 |
+
翌
|
2170 |
+
峁
|
2171 |
+
颅
|
2172 |
+
佛
|
2173 |
+
腹
|
2174 |
+
聋
|
2175 |
+
侯
|
2176 |
+
咎
|
2177 |
+
叟
|
2178 |
+
秀
|
2179 |
+
颇
|
2180 |
+
存
|
2181 |
+
较
|
2182 |
+
罪
|
2183 |
+
哄
|
2184 |
+
岗
|
2185 |
+
扫
|
2186 |
+
栏
|
2187 |
+
钾
|
2188 |
+
羌
|
2189 |
+
己
|
2190 |
+
璨
|
2191 |
+
枭
|
2192 |
+
霉
|
2193 |
+
煌
|
2194 |
+
涸
|
2195 |
+
衿
|
2196 |
+
键
|
2197 |
+
镝
|
2198 |
+
益
|
2199 |
+
岢
|
2200 |
+
奏
|
2201 |
+
连
|
2202 |
+
夯
|
2203 |
+
睿
|
2204 |
+
冥
|
2205 |
+
均
|
2206 |
+
糖
|
2207 |
+
狞
|
2208 |
+
蹊
|
2209 |
+
稻
|
2210 |
+
爸
|
2211 |
+
刿
|
2212 |
+
胥
|
2213 |
+
煜
|
2214 |
+
丽
|
2215 |
+
肿
|
2216 |
+
璃
|
2217 |
+
掸
|
2218 |
+
跚
|
2219 |
+
灾
|
2220 |
+
垂
|
2221 |
+
樾
|
2222 |
+
濑
|
2223 |
+
乎
|
2224 |
+
莲
|
2225 |
+
窄
|
2226 |
+
犹
|
2227 |
+
撮
|
2228 |
+
战
|
2229 |
+
馄
|
2230 |
+
软
|
2231 |
+
络
|
2232 |
+
显
|
2233 |
+
鸢
|
2234 |
+
胸
|
2235 |
+
宾
|
2236 |
+
妲
|
2237 |
+
恕
|
2238 |
+
埔
|
2239 |
+
蝌
|
2240 |
+
份
|
2241 |
+
遇
|
2242 |
+
巧
|
2243 |
+
瞟
|
2244 |
+
粒
|
2245 |
+
恰
|
2246 |
+
剥
|
2247 |
+
桡
|
2248 |
+
博
|
2249 |
+
讯
|
2250 |
+
凯
|
2251 |
+
堇
|
2252 |
+
阶
|
2253 |
+
滤
|
2254 |
+
卖
|
2255 |
+
斌
|
2256 |
+
骚
|
2257 |
+
彬
|
2258 |
+
兑
|
2259 |
+
磺
|
2260 |
+
樱
|
2261 |
+
舷
|
2262 |
+
两
|
2263 |
+
娱
|
2264 |
+
福
|
2265 |
+
仃
|
2266 |
+
差
|
2267 |
+
找
|
2268 |
+
桁
|
2269 |
+
÷
|
2270 |
+
净
|
2271 |
+
把
|
2272 |
+
阴
|
2273 |
+
污
|
2274 |
+
戬
|
2275 |
+
雷
|
2276 |
+
碓
|
2277 |
+
蕲
|
2278 |
+
楚
|
2279 |
+
罡
|
2280 |
+
焖
|
2281 |
+
抽
|
2282 |
+
妫
|
2283 |
+
咒
|
2284 |
+
仑
|
2285 |
+
闱
|
2286 |
+
尽
|
2287 |
+
邑
|
2288 |
+
菁
|
2289 |
+
爱
|
2290 |
+
贷
|
2291 |
+
沥
|
2292 |
+
鞑
|
2293 |
+
牡
|
2294 |
+
嗉
|
2295 |
+
崴
|
2296 |
+
骤
|
2297 |
+
塌
|
2298 |
+
嗦
|
2299 |
+
订
|
2300 |
+
拮
|
2301 |
+
滓
|
2302 |
+
捡
|
2303 |
+
锻
|
2304 |
+
次
|
2305 |
+
坪
|
2306 |
+
杩
|
2307 |
+
臃
|
2308 |
+
箬
|
2309 |
+
融
|
2310 |
+
珂
|
2311 |
+
鹗
|
2312 |
+
宗
|
2313 |
+
枚
|
2314 |
+
降
|
2315 |
+
鸬
|
2316 |
+
妯
|
2317 |
+
阄
|
2318 |
+
堰
|
2319 |
+
盐
|
2320 |
+
毅
|
2321 |
+
必
|
2322 |
+
杨
|
2323 |
+
崃
|
2324 |
+
俺
|
2325 |
+
甬
|
2326 |
+
状
|
2327 |
+
莘
|
2328 |
+
货
|
2329 |
+
耸
|
2330 |
+
菱
|
2331 |
+
腼
|
2332 |
+
铸
|
2333 |
+
唏
|
2334 |
+
痤
|
2335 |
+
孚
|
2336 |
+
澳
|
2337 |
+
懒
|
2338 |
+
溅
|
2339 |
+
翘
|
2340 |
+
疙
|
2341 |
+
杷
|
2342 |
+
淼
|
2343 |
+
缙
|
2344 |
+
骰
|
2345 |
+
喊
|
2346 |
+
悉
|
2347 |
+
砻
|
2348 |
+
坷
|
2349 |
+
艇
|
2350 |
+
赁
|
2351 |
+
界
|
2352 |
+
谤
|
2353 |
+
纣
|
2354 |
+
宴
|
2355 |
+
晃
|
2356 |
+
茹
|
2357 |
+
归
|
2358 |
+
饭
|
2359 |
+
梢
|
2360 |
+
铡
|
2361 |
+
街
|
2362 |
+
抄
|
2363 |
+
肼
|
2364 |
+
鬟
|
2365 |
+
苯
|
2366 |
+
颂
|
2367 |
+
撷
|
2368 |
+
戈
|
2369 |
+
炒
|
2370 |
+
咆
|
2371 |
+
茭
|
2372 |
+
瘙
|
2373 |
+
负
|
2374 |
+
仰
|
2375 |
+
客
|
2376 |
+
琉
|
2377 |
+
铢
|
2378 |
+
封
|
2379 |
+
卑
|
2380 |
+
珥
|
2381 |
+
椿
|
2382 |
+
镧
|
2383 |
+
窨
|
2384 |
+
鬲
|
2385 |
+
寿
|
2386 |
+
御
|
2387 |
+
袤
|
2388 |
+
铃
|
2389 |
+
萎
|
2390 |
+
砖
|
2391 |
+
餮
|
2392 |
+
脒
|
2393 |
+
裳
|
2394 |
+
肪
|
2395 |
+
孕
|
2396 |
+
嫣
|
2397 |
+
馗
|
2398 |
+
嵇
|
2399 |
+
恳
|
2400 |
+
氯
|
2401 |
+
江
|
2402 |
+
石
|
2403 |
+
褶
|
2404 |
+
冢
|
2405 |
+
祸
|
2406 |
+
阻
|
2407 |
+
狈
|
2408 |
+
羞
|
2409 |
+
银
|
2410 |
+
靳
|
2411 |
+
透
|
2412 |
+
咳
|
2413 |
+
叼
|
2414 |
+
敷
|
2415 |
+
芷
|
2416 |
+
啥
|
2417 |
+
它
|
2418 |
+
瓤
|
2419 |
+
兰
|
2420 |
+
痘
|
2421 |
+
懊
|
2422 |
+
逑
|
2423 |
+
肌
|
2424 |
+
往
|
2425 |
+
捺
|
2426 |
+
坊
|
2427 |
+
甩
|
2428 |
+
呻
|
2429 |
+
〃
|
2430 |
+
沦
|
2431 |
+
忘
|
2432 |
+
膻
|
2433 |
+
祟
|
2434 |
+
菅
|
2435 |
+
剧
|
2436 |
+
崆
|
2437 |
+
智
|
2438 |
+
坯
|
2439 |
+
臧
|
2440 |
+
霍
|
2441 |
+
墅
|
2442 |
+
攻
|
2443 |
+
眯
|
2444 |
+
倘
|
2445 |
+
拢
|
2446 |
+
骠
|
2447 |
+
铐
|
2448 |
+
庭
|
2449 |
+
岙
|
2450 |
+
瓠
|
2451 |
+
′
|
2452 |
+
缺
|
2453 |
+
泥
|
2454 |
+
迢
|
2455 |
+
捶
|
2456 |
+
?
|
2457 |
+
?
|
2458 |
+
郏
|
2459 |
+
喙
|
2460 |
+
掷
|
2461 |
+
沌
|
2462 |
+
纯
|
2463 |
+
秘
|
2464 |
+
种
|
2465 |
+
听
|
2466 |
+
绘
|
2467 |
+
固
|
2468 |
+
螨
|
2469 |
+
团
|
2470 |
+
香
|
2471 |
+
盗
|
2472 |
+
妒
|
2473 |
+
埚
|
2474 |
+
蓝
|
2475 |
+
拖
|
2476 |
+
旱
|
2477 |
+
荞
|
2478 |
+
铀
|
2479 |
+
血
|
2480 |
+
遏
|
2481 |
+
汲
|
2482 |
+
辰
|
2483 |
+
叩
|
2484 |
+
拽
|
2485 |
+
幅
|
2486 |
+
硬
|
2487 |
+
惶
|
2488 |
+
桀
|
2489 |
+
漠
|
2490 |
+
措
|
2491 |
+
泼
|
2492 |
+
唑
|
2493 |
+
齐
|
2494 |
+
肾
|
2495 |
+
念
|
2496 |
+
酱
|
2497 |
+
虚
|
2498 |
+
屁
|
2499 |
+
耶
|
2500 |
+
旗
|
2501 |
+
砦
|
2502 |
+
闵
|
2503 |
+
婉
|
2504 |
+
馆
|
2505 |
+
拭
|
2506 |
+
绅
|
2507 |
+
韧
|
2508 |
+
忏
|
2509 |
+
窝
|
2510 |
+
醋
|
2511 |
+
葺
|
2512 |
+
顾
|
2513 |
+
辞
|
2514 |
+
倜
|
2515 |
+
堆
|
2516 |
+
辋
|
2517 |
+
逆
|
2518 |
+
玟
|
2519 |
+
贱
|
2520 |
+
疾
|
2521 |
+
董
|
2522 |
+
惘
|
2523 |
+
倌
|
2524 |
+
锕
|
2525 |
+
淘
|
2526 |
+
嘀
|
2527 |
+
莽
|
2528 |
+
俭
|
2529 |
+
笏
|
2530 |
+
绑
|
2531 |
+
鲷
|
2532 |
+
杈
|
2533 |
+
择
|
2534 |
+
蟀
|
2535 |
+
粥
|
2536 |
+
嗯
|
2537 |
+
驰
|
2538 |
+
逾
|
2539 |
+
案
|
2540 |
+
谪
|
2541 |
+
褓
|
2542 |
+
胫
|
2543 |
+
哩
|
2544 |
+
昕
|
2545 |
+
颚
|
2546 |
+
鲢
|
2547 |
+
绠
|
2548 |
+
躺
|
2549 |
+
鹄
|
2550 |
+
崂
|
2551 |
+
儒
|
2552 |
+
俨
|
2553 |
+
丝
|
2554 |
+
尕
|
2555 |
+
泌
|
2556 |
+
啊
|
2557 |
+
萸
|
2558 |
+
彰
|
2559 |
+
幺
|
2560 |
+
吟
|
2561 |
+
骄
|
2562 |
+
苣
|
2563 |
+
弦
|
2564 |
+
脊
|
2565 |
+
瑰
|
2566 |
+
〈
|
2567 |
+
诛
|
2568 |
+
镁
|
2569 |
+
析
|
2570 |
+
闪
|
2571 |
+
剪
|
2572 |
+
侧
|
2573 |
+
哟
|
2574 |
+
框
|
2575 |
+
螃
|
2576 |
+
守
|
2577 |
+
嬗
|
2578 |
+
燕
|
2579 |
+
狭
|
2580 |
+
铈
|
2581 |
+
缮
|
2582 |
+
概
|
2583 |
+
迳
|
2584 |
+
痧
|
2585 |
+
鲲
|
2586 |
+
俯
|
2587 |
+
售
|
2588 |
+
笼
|
2589 |
+
痣
|
2590 |
+
扉
|
2591 |
+
挖
|
2592 |
+
满
|
2593 |
+
咋
|
2594 |
+
援
|
2595 |
+
邱
|
2596 |
+
扇
|
2597 |
+
歪
|
2598 |
+
便
|
2599 |
+
玑
|
2600 |
+
绦
|
2601 |
+
峡
|
2602 |
+
蛇
|
2603 |
+
叨
|
2604 |
+
〖
|
2605 |
+
泽
|
2606 |
+
胃
|
2607 |
+
斓
|
2608 |
+
喋
|
2609 |
+
怂
|
2610 |
+
坟
|
2611 |
+
猪
|
2612 |
+
该
|
2613 |
+
蚬
|
2614 |
+
炕
|
2615 |
+
弥
|
2616 |
+
赞
|
2617 |
+
棣
|
2618 |
+
晔
|
2619 |
+
娠
|
2620 |
+
挲
|
2621 |
+
狡
|
2622 |
+
创
|
2623 |
+
疖
|
2624 |
+
铕
|
2625 |
+
镭
|
2626 |
+
稷
|
2627 |
+
挫
|
2628 |
+
弭
|
2629 |
+
啾
|
2630 |
+
翔
|
2631 |
+
粉
|
2632 |
+
履
|
2633 |
+
苘
|
2634 |
+
哦
|
2635 |
+
楼
|
2636 |
+
秕
|
2637 |
+
铂
|
2638 |
+
土
|
2639 |
+
锣
|
2640 |
+
瘟
|
2641 |
+
挣
|
2642 |
+
栉
|
2643 |
+
习
|
2644 |
+
享
|
2645 |
+
桢
|
2646 |
+
袅
|
2647 |
+
磨
|
2648 |
+
桂
|
2649 |
+
谦
|
2650 |
+
延
|
2651 |
+
坚
|
2652 |
+
蔚
|
2653 |
+
噗
|
2654 |
+
署
|
2655 |
+
谟
|
2656 |
+
猬
|
2657 |
+
钎
|
2658 |
+
恐
|
2659 |
+
嬉
|
2660 |
+
雒
|
2661 |
+
倦
|
2662 |
+
衅
|
2663 |
+
亏
|
2664 |
+
璩
|
2665 |
+
睹
|
2666 |
+
刻
|
2667 |
+
殿
|
2668 |
+
王
|
2669 |
+
算
|
2670 |
+
雕
|
2671 |
+
麻
|
2672 |
+
丘
|
2673 |
+
柯
|
2674 |
+
骆
|
2675 |
+
丸
|
2676 |
+
塍
|
2677 |
+
谚
|
2678 |
+
添
|
2679 |
+
鲈
|
2680 |
+
垓
|
2681 |
+
桎
|
2682 |
+
蚯
|
2683 |
+
芥
|
2684 |
+
予
|
2685 |
+
飕
|
2686 |
+
镦
|
2687 |
+
谌
|
2688 |
+
窗
|
2689 |
+
醚
|
2690 |
+
菀
|
2691 |
+
亮
|
2692 |
+
搪
|
2693 |
+
莺
|
2694 |
+
蒿
|
2695 |
+
羁
|
2696 |
+
足
|
2697 |
+
J
|
2698 |
+
真
|
2699 |
+
轶
|
2700 |
+
悬
|
2701 |
+
衷
|
2702 |
+
靛
|
2703 |
+
翊
|
2704 |
+
掩
|
2705 |
+
哒
|
2706 |
+
炅
|
2707 |
+
掐
|
2708 |
+
冼
|
2709 |
+
妮
|
2710 |
+
l
|
2711 |
+
谐
|
2712 |
+
稚
|
2713 |
+
荆
|
2714 |
+
擒
|
2715 |
+
犯
|
2716 |
+
陵
|
2717 |
+
虏
|
2718 |
+
浓
|
2719 |
+
崽
|
2720 |
+
刍
|
2721 |
+
陌
|
2722 |
+
傻
|
2723 |
+
孜
|
2724 |
+
千
|
2725 |
+
靖
|
2726 |
+
演
|
2727 |
+
矜
|
2728 |
+
钕
|
2729 |
+
煽
|
2730 |
+
杰
|
2731 |
+
酗
|
2732 |
+
渗
|
2733 |
+
伞
|
2734 |
+
栋
|
2735 |
+
俗
|
2736 |
+
泫
|
2737 |
+
戍
|
2738 |
+
罕
|
2739 |
+
沾
|
2740 |
+
疽
|
2741 |
+
灏
|
2742 |
+
煦
|
2743 |
+
芬
|
2744 |
+
磴
|
2745 |
+
叱
|
2746 |
+
阱
|
2747 |
+
榉
|
2748 |
+
湃
|
2749 |
+
蜀
|
2750 |
+
叉
|
2751 |
+
醒
|
2752 |
+
彪
|
2753 |
+
租
|
2754 |
+
郡
|
2755 |
+
篷
|
2756 |
+
屎
|
2757 |
+
良
|
2758 |
+
垢
|
2759 |
+
隗
|
2760 |
+
弱
|
2761 |
+
陨
|
2762 |
+
峪
|
2763 |
+
砷
|
2764 |
+
掴
|
2765 |
+
颁
|
2766 |
+
胎
|
2767 |
+
雯
|
2768 |
+
绵
|
2769 |
+
贬
|
2770 |
+
沐
|
2771 |
+
撵
|
2772 |
+
隘
|
2773 |
+
篙
|
2774 |
+
暖
|
2775 |
+
曹
|
2776 |
+
陡
|
2777 |
+
栓
|
2778 |
+
填
|
2779 |
+
臼
|
2780 |
+
彦
|
2781 |
+
瓶
|
2782 |
+
琪
|
2783 |
+
潼
|
2784 |
+
哪
|
2785 |
+
鸡
|
2786 |
+
摩
|
2787 |
+
啦
|
2788 |
+
俟
|
2789 |
+
锋
|
2790 |
+
域
|
2791 |
+
耻
|
2792 |
+
蔫
|
2793 |
+
疯
|
2794 |
+
纹
|
2795 |
+
撇
|
2796 |
+
毒
|
2797 |
+
绶
|
2798 |
+
痛
|
2799 |
+
酯
|
2800 |
+
忍
|
2801 |
+
爪
|
2802 |
+
赳
|
2803 |
+
歆
|
2804 |
+
嘹
|
2805 |
+
辕
|
2806 |
+
烈
|
2807 |
+
册
|
2808 |
+
朴
|
2809 |
+
钱
|
2810 |
+
吮
|
2811 |
+
毯
|
2812 |
+
癜
|
2813 |
+
娃
|
2814 |
+
谀
|
2815 |
+
邵
|
2816 |
+
厮
|
2817 |
+
炽
|
2818 |
+
璞
|
2819 |
+
邃
|
2820 |
+
丐
|
2821 |
+
追
|
2822 |
+
词
|
2823 |
+
瓒
|
2824 |
+
忆
|
2825 |
+
轧
|
2826 |
+
芫
|
2827 |
+
谯
|
2828 |
+
喷
|
2829 |
+
弟
|
2830 |
+
半
|
2831 |
+
冕
|
2832 |
+
裙
|
2833 |
+
掖
|
2834 |
+
墉
|
2835 |
+
绮
|
2836 |
+
寝
|
2837 |
+
苔
|
2838 |
+
势
|
2839 |
+
顷
|
2840 |
+
褥
|
2841 |
+
切
|
2842 |
+
衮
|
2843 |
+
君
|
2844 |
+
佳
|
2845 |
+
嫒
|
2846 |
+
蚩
|
2847 |
+
霞
|
2848 |
+
佚
|
2849 |
+
洙
|
2850 |
+
逊
|
2851 |
+
镖
|
2852 |
+
暹
|
2853 |
+
唛
|
2854 |
+
&
|
2855 |
+
殒
|
2856 |
+
顶
|
2857 |
+
碗
|
2858 |
+
獗
|
2859 |
+
轭
|
2860 |
+
铺
|
2861 |
+
蛊
|
2862 |
+
废
|
2863 |
+
恹
|
2864 |
+
汨
|
2865 |
+
崩
|
2866 |
+
珍
|
2867 |
+
那
|
2868 |
+
杵
|
2869 |
+
曲
|
2870 |
+
纺
|
2871 |
+
夏
|
2872 |
+
薰
|
2873 |
+
傀
|
2874 |
+
闳
|
2875 |
+
淬
|
2876 |
+
姘
|
2877 |
+
舀
|
2878 |
+
拧
|
2879 |
+
卷
|
2880 |
+
楂
|
2881 |
+
恍
|
2882 |
+
讪
|
2883 |
+
厩
|
2884 |
+
寮
|
2885 |
+
篪
|
2886 |
+
赓
|
2887 |
+
乘
|
2888 |
+
灭
|
2889 |
+
盅
|
2890 |
+
鞣
|
2891 |
+
沟
|
2892 |
+
慎
|
2893 |
+
挂
|
2894 |
+
饺
|
2895 |
+
鼾
|
2896 |
+
杳
|
2897 |
+
树
|
2898 |
+
缨
|
2899 |
+
丛
|
2900 |
+
絮
|
2901 |
+
娌
|
2902 |
+
臻
|
2903 |
+
嗳
|
2904 |
+
篡
|
2905 |
+
侩
|
2906 |
+
述
|
2907 |
+
衰
|
2908 |
+
矛
|
2909 |
+
圈
|
2910 |
+
蚜
|
2911 |
+
匕
|
2912 |
+
筹
|
2913 |
+
匿
|
2914 |
+
濞
|
2915 |
+
晨
|
2916 |
+
叶
|
2917 |
+
骋
|
2918 |
+
郝
|
2919 |
+
挚
|
2920 |
+
蚴
|
2921 |
+
滞
|
2922 |
+
增
|
2923 |
+
侍
|
2924 |
+
描
|
2925 |
+
瓣
|
2926 |
+
吖
|
2927 |
+
嫦
|
2928 |
+
蟒
|
2929 |
+
匾
|
2930 |
+
圣
|
2931 |
+
赌
|
2932 |
+
毡
|
2933 |
+
癞
|
2934 |
+
恺
|
2935 |
+
百
|
2936 |
+
曳
|
2937 |
+
需
|
2938 |
+
篓
|
2939 |
+
肮
|
2940 |
+
庖
|
2941 |
+
帏
|
2942 |
+
卿
|
2943 |
+
驿
|
2944 |
+
遗
|
2945 |
+
蹬
|
2946 |
+
鬓
|
2947 |
+
骡
|
2948 |
+
歉
|
2949 |
+
芎
|
2950 |
+
胳
|
2951 |
+
屐
|
2952 |
+
禽
|
2953 |
+
烦
|
2954 |
+
晌
|
2955 |
+
寄
|
2956 |
+
媾
|
2957 |
+
狄
|
2958 |
+
翡
|
2959 |
+
苒
|
2960 |
+
船
|
2961 |
+
廉
|
2962 |
+
终
|
2963 |
+
痞
|
2964 |
+
殇
|
2965 |
+
々
|
2966 |
+
畦
|
2967 |
+
饶
|
2968 |
+
改
|
2969 |
+
拆
|
2970 |
+
悻
|
2971 |
+
萄
|
2972 |
+
£
|
2973 |
+
瓿
|
2974 |
+
乃
|
2975 |
+
訾
|
2976 |
+
桅
|
2977 |
+
匮
|
2978 |
+
溧
|
2979 |
+
拥
|
2980 |
+
纱
|
2981 |
+
铍
|
2982 |
+
骗
|
2983 |
+
蕃
|
2984 |
+
龋
|
2985 |
+
缬
|
2986 |
+
父
|
2987 |
+
佐
|
2988 |
+
疚
|
2989 |
+
栎
|
2990 |
+
醍
|
2991 |
+
掳
|
2992 |
+
蓄
|
2993 |
+
x
|
2994 |
+
惆
|
2995 |
+
颜
|
2996 |
+
鲆
|
2997 |
+
榆
|
2998 |
+
〔
|
2999 |
+
猎
|
3000 |
+
敌
|
3001 |
+
暴
|
3002 |
+
谥
|
3003 |
+
鲫
|
3004 |
+
贾
|
3005 |
+
罗
|
3006 |
+
玻
|
3007 |
+
缄
|
3008 |
+
扦
|
3009 |
+
芪
|
3010 |
+
癣
|
3011 |
+
落
|
3012 |
+
徒
|
3013 |
+
臾
|
3014 |
+
恿
|
3015 |
+
猩
|
3016 |
+
托
|
3017 |
+
邴
|
3018 |
+
肄
|
3019 |
+
牵
|
3020 |
+
春
|
3021 |
+
陛
|
3022 |
+
耀
|
3023 |
+
刊
|
3024 |
+
拓
|
3025 |
+
蓓
|
3026 |
+
邳
|
3027 |
+
堕
|
3028 |
+
寇
|
3029 |
+
枉
|
3030 |
+
淌
|
3031 |
+
啡
|
3032 |
+
湄
|
3033 |
+
兽
|
3034 |
+
酷
|
3035 |
+
萼
|
3036 |
+
碚
|
3037 |
+
濠
|
3038 |
+
萤
|
3039 |
+
夹
|
3040 |
+
旬
|
3041 |
+
戮
|
3042 |
+
梭
|
3043 |
+
琥
|
3044 |
+
椭
|
3045 |
+
昔
|
3046 |
+
勺
|
3047 |
+
蜊
|
3048 |
+
绐
|
3049 |
+
晚
|
3050 |
+
孺
|
3051 |
+
僵
|
3052 |
+
宣
|
3053 |
+
摄
|
3054 |
+
冽
|
3055 |
+
旨
|
3056 |
+
萌
|
3057 |
+
忙
|
3058 |
+
蚤
|
3059 |
+
眉
|
3060 |
+
噼
|
3061 |
+
蟑
|
3062 |
+
付
|
3063 |
+
契
|
3064 |
+
瓜
|
3065 |
+
悼
|
3066 |
+
颡
|
3067 |
+
壁
|
3068 |
+
曾
|
3069 |
+
窕
|
3070 |
+
颢
|
3071 |
+
澎
|
3072 |
+
仿
|
3073 |
+
俑
|
3074 |
+
浑
|
3075 |
+
嵌
|
3076 |
+
浣
|
3077 |
+
乍
|
3078 |
+
碌
|
3079 |
+
褪
|
3080 |
+
乱
|
3081 |
+
蔟
|
3082 |
+
隙
|
3083 |
+
玩
|
3084 |
+
剐
|
3085 |
+
葫
|
3086 |
+
箫
|
3087 |
+
纲
|
3088 |
+
围
|
3089 |
+
伐
|
3090 |
+
决
|
3091 |
+
伙
|
3092 |
+
漩
|
3093 |
+
瑟
|
3094 |
+
刑
|
3095 |
+
肓
|
3096 |
+
镳
|
3097 |
+
缓
|
3098 |
+
蹭
|
3099 |
+
氨
|
3100 |
+
皓
|
3101 |
+
典
|
3102 |
+
畲
|
3103 |
+
坍
|
3104 |
+
铑
|
3105 |
+
檐
|
3106 |
+
塑
|
3107 |
+
洞
|
3108 |
+
倬
|
3109 |
+
储
|
3110 |
+
胴
|
3111 |
+
淳
|
3112 |
+
戾
|
3113 |
+
吐
|
3114 |
+
灼
|
3115 |
+
惺
|
3116 |
+
妙
|
3117 |
+
毕
|
3118 |
+
珐
|
3119 |
+
缈
|
3120 |
+
虱
|
3121 |
+
盖
|
3122 |
+
羰
|
3123 |
+
鸿
|
3124 |
+
磅
|
3125 |
+
谓
|
3126 |
+
髅
|
3127 |
+
娴
|
3128 |
+
苴
|
3129 |
+
唷
|
3130 |
+
蚣
|
3131 |
+
霹
|
3132 |
+
抨
|
3133 |
+
贤
|
3134 |
+
唠
|
3135 |
+
犬
|
3136 |
+
誓
|
3137 |
+
逍
|
3138 |
+
庠
|
3139 |
+
逼
|
3140 |
+
麓
|
3141 |
+
籼
|
3142 |
+
釉
|
3143 |
+
呜
|
3144 |
+
碧
|
3145 |
+
秧
|
3146 |
+
氩
|
3147 |
+
摔
|
3148 |
+
霄
|
3149 |
+
穸
|
3150 |
+
纨
|
3151 |
+
辟
|
3152 |
+
妈
|
3153 |
+
映
|
3154 |
+
完
|
3155 |
+
牛
|
3156 |
+
缴
|
3157 |
+
嗷
|
3158 |
+
炊
|
3159 |
+
恩
|
3160 |
+
荔
|
3161 |
+
茆
|
3162 |
+
掉
|
3163 |
+
紊
|
3164 |
+
慌
|
3165 |
+
莓
|
3166 |
+
羟
|
3167 |
+
阙
|
3168 |
+
萁
|
3169 |
+
磐
|
3170 |
+
另
|
3171 |
+
蕹
|
3172 |
+
辱
|
3173 |
+
鳐
|
3174 |
+
湮
|
3175 |
+
吡
|
3176 |
+
吩
|
3177 |
+
唐
|
3178 |
+
睦
|
3179 |
+
垠
|
3180 |
+
舒
|
3181 |
+
圜
|
3182 |
+
冗
|
3183 |
+
瞿
|
3184 |
+
溺
|
3185 |
+
芾
|
3186 |
+
囱
|
3187 |
+
匠
|
3188 |
+
僳
|
3189 |
+
汐
|
3190 |
+
菩
|
3191 |
+
饬
|
3192 |
+
漓
|
3193 |
+
黑
|
3194 |
+
霰
|
3195 |
+
浸
|
3196 |
+
濡
|
3197 |
+
窥
|
3198 |
+
毂
|
3199 |
+
蒡
|
3200 |
+
兢
|
3201 |
+
驻
|
3202 |
+
鹉
|
3203 |
+
芮
|
3204 |
+
诙
|
3205 |
+
迫
|
3206 |
+
雳
|
3207 |
+
厂
|
3208 |
+
忐
|
3209 |
+
臆
|
3210 |
+
猴
|
3211 |
+
鸣
|
3212 |
+
蚪
|
3213 |
+
栈
|
3214 |
+
箕
|
3215 |
+
羡
|
3216 |
+
渐
|
3217 |
+
莆
|
3218 |
+
捍
|
3219 |
+
眈
|
3220 |
+
哓
|
3221 |
+
趴
|
3222 |
+
蹼
|
3223 |
+
埕
|
3224 |
+
嚣
|
3225 |
+
骛
|
3226 |
+
宏
|
3227 |
+
淄
|
3228 |
+
斑
|
3229 |
+
噜
|
3230 |
+
严
|
3231 |
+
瑛
|
3232 |
+
垃
|
3233 |
+
椎
|
3234 |
+
诱
|
3235 |
+
压
|
3236 |
+
庾
|
3237 |
+
绞
|
3238 |
+
焘
|
3239 |
+
廿
|
3240 |
+
抡
|
3241 |
+
迄
|
3242 |
+
棘
|
3243 |
+
夫
|
3244 |
+
纬
|
3245 |
+
锹
|
3246 |
+
眨
|
3247 |
+
瞌
|
3248 |
+
侠
|
3249 |
+
脐
|
3250 |
+
竞
|
3251 |
+
瀑
|
3252 |
+
孳
|
3253 |
+
骧
|
3254 |
+
遁
|
3255 |
+
姜
|
3256 |
+
颦
|
3257 |
+
荪
|
3258 |
+
滚
|
3259 |
+
萦
|
3260 |
+
伪
|
3261 |
+
逸
|
3262 |
+
粳
|
3263 |
+
爬
|
3264 |
+
锁
|
3265 |
+
矣
|
3266 |
+
役
|
3267 |
+
趣
|
3268 |
+
洒
|
3269 |
+
颔
|
3270 |
+
诏
|
3271 |
+
逐
|
3272 |
+
奸
|
3273 |
+
甭
|
3274 |
+
惠
|
3275 |
+
攀
|
3276 |
+
蹄
|
3277 |
+
泛
|
3278 |
+
尼
|
3279 |
+
拼
|
3280 |
+
阮
|
3281 |
+
鹰
|
3282 |
+
亚
|
3283 |
+
颈
|
3284 |
+
惑
|
3285 |
+
勒
|
3286 |
+
〉
|
3287 |
+
际
|
3288 |
+
肛
|
3289 |
+
爷
|
3290 |
+
刚
|
3291 |
+
钨
|
3292 |
+
丰
|
3293 |
+
养
|
3294 |
+
冶
|
3295 |
+
鲽
|
3296 |
+
辉
|
3297 |
+
蔻
|
3298 |
+
画
|
3299 |
+
覆
|
3300 |
+
皴
|
3301 |
+
妊
|
3302 |
+
麦
|
3303 |
+
返
|
3304 |
+
醉
|
3305 |
+
皂
|
3306 |
+
擀
|
3307 |
+
〗
|
3308 |
+
酶
|
3309 |
+
凑
|
3310 |
+
粹
|
3311 |
+
悟
|
3312 |
+
诀
|
3313 |
+
硖
|
3314 |
+
港
|
3315 |
+
卜
|
3316 |
+
z
|
3317 |
+
杀
|
3318 |
+
涕
|
3319 |
+
±
|
3320 |
+
舍
|
3321 |
+
铠
|
3322 |
+
抵
|
3323 |
+
弛
|
3324 |
+
段
|
3325 |
+
敝
|
3326 |
+
镐
|
3327 |
+
奠
|
3328 |
+
拂
|
3329 |
+
轴
|
3330 |
+
跛
|
3331 |
+
袱
|
3332 |
+
e
|
3333 |
+
t
|
3334 |
+
沉
|
3335 |
+
菇
|
3336 |
+
俎
|
3337 |
+
薪
|
3338 |
+
峦
|
3339 |
+
秭
|
3340 |
+
蟹
|
3341 |
+
历
|
3342 |
+
盟
|
3343 |
+
菠
|
3344 |
+
寡
|
3345 |
+
液
|
3346 |
+
肢
|
3347 |
+
喻
|
3348 |
+
染
|
3349 |
+
裱
|
3350 |
+
悱
|
3351 |
+
抱
|
3352 |
+
氙
|
3353 |
+
赤
|
3354 |
+
捅
|
3355 |
+
猛
|
3356 |
+
跑
|
3357 |
+
氮
|
3358 |
+
谣
|
3359 |
+
仁
|
3360 |
+
尺
|
3361 |
+
辊
|
3362 |
+
窍
|
3363 |
+
烙
|
3364 |
+
衍
|
3365 |
+
架
|
3366 |
+
擦
|
3367 |
+
倏
|
3368 |
+
璐
|
3369 |
+
瑁
|
3370 |
+
币
|
3371 |
+
楞
|
3372 |
+
胖
|
3373 |
+
夔
|
3374 |
+
趸
|
3375 |
+
邛
|
3376 |
+
惴
|
3377 |
+
饕
|
3378 |
+
虔
|
3379 |
+
蝎
|
3380 |
+
§
|
3381 |
+
哉
|
3382 |
+
贝
|
3383 |
+
宽
|
3384 |
+
辫
|
3385 |
+
炮
|
3386 |
+
扩
|
3387 |
+
饲
|
3388 |
+
籽
|
3389 |
+
魏
|
3390 |
+
菟
|
3391 |
+
锰
|
3392 |
+
伍
|
3393 |
+
猝
|
3394 |
+
末
|
3395 |
+
琳
|
3396 |
+
哚
|
3397 |
+
蛎
|
3398 |
+
邂
|
3399 |
+
呀
|
3400 |
+
姿
|
3401 |
+
鄞
|
3402 |
+
却
|
3403 |
+
歧
|
3404 |
+
仙
|
3405 |
+
恸
|
3406 |
+
椐
|
3407 |
+
森
|
3408 |
+
牒
|
3409 |
+
寤
|
3410 |
+
袒
|
3411 |
+
婆
|
3412 |
+
虢
|
3413 |
+
雅
|
3414 |
+
钉
|
3415 |
+
朵
|
3416 |
+
贼
|
3417 |
+
欲
|
3418 |
+
苞
|
3419 |
+
寰
|
3420 |
+
故
|
3421 |
+
龚
|
3422 |
+
坭
|
3423 |
+
嘘
|
3424 |
+
咫
|
3425 |
+
礼
|
3426 |
+
硷
|
3427 |
+
兀
|
3428 |
+
睢
|
3429 |
+
汶
|
3430 |
+
’
|
3431 |
+
铲
|
3432 |
+
烧
|
3433 |
+
绕
|
3434 |
+
诃
|
3435 |
+
浃
|
3436 |
+
钿
|
3437 |
+
哺
|
3438 |
+
柜
|
3439 |
+
讼
|
3440 |
+
颊
|
3441 |
+
璁
|
3442 |
+
腔
|
3443 |
+
洽
|
3444 |
+
咐
|
3445 |
+
脲
|
3446 |
+
簌
|
3447 |
+
筠
|
3448 |
+
镣
|
3449 |
+
玮
|
3450 |
+
鞠
|
3451 |
+
谁
|
3452 |
+
兼
|
3453 |
+
姆
|
3454 |
+
挥
|
3455 |
+
梯
|
3456 |
+
蝴
|
3457 |
+
谘
|
3458 |
+
漕
|
3459 |
+
刷
|
3460 |
+
躏
|
3461 |
+
宦
|
3462 |
+
弼
|
3463 |
+
b
|
3464 |
+
垌
|
3465 |
+
劈
|
3466 |
+
麟
|
3467 |
+
莉
|
3468 |
+
揭
|
3469 |
+
笙
|
3470 |
+
渎
|
3471 |
+
仕
|
3472 |
+
嗤
|
3473 |
+
仓
|
3474 |
+
配
|
3475 |
+
怏
|
3476 |
+
抬
|
3477 |
+
错
|
3478 |
+
泯
|
3479 |
+
镊
|
3480 |
+
孰
|
3481 |
+
猿
|
3482 |
+
邪
|
3483 |
+
仍
|
3484 |
+
秋
|
3485 |
+
鼬
|
3486 |
+
壹
|
3487 |
+
歇
|
3488 |
+
吵
|
3489 |
+
炼
|
3490 |
+
<
|
3491 |
+
尧
|
3492 |
+
射
|
3493 |
+
柬
|
3494 |
+
廷
|
3495 |
+
胧
|
3496 |
+
霾
|
3497 |
+
凳
|
3498 |
+
隋
|
3499 |
+
肚
|
3500 |
+
浮
|
3501 |
+
梦
|
3502 |
+
祥
|
3503 |
+
株
|
3504 |
+
堵
|
3505 |
+
退
|
3506 |
+
L
|
3507 |
+
鹫
|
3508 |
+
跎
|
3509 |
+
凶
|
3510 |
+
毽
|
3511 |
+
荟
|
3512 |
+
炫
|
3513 |
+
栩
|
3514 |
+
玳
|
3515 |
+
甜
|
3516 |
+
沂
|
3517 |
+
鹿
|
3518 |
+
顽
|
3519 |
+
伯
|
3520 |
+
爹
|
3521 |
+
赔
|
3522 |
+
蛴
|
3523 |
+
徐
|
3524 |
+
匡
|
3525 |
+
欣
|
3526 |
+
狰
|
3527 |
+
缸
|
3528 |
+
雹
|
3529 |
+
蟆
|
3530 |
+
疤
|
3531 |
+
默
|
3532 |
+
沤
|
3533 |
+
啜
|
3534 |
+
痂
|
3535 |
+
衣
|
3536 |
+
禅
|
3537 |
+
w
|
3538 |
+
i
|
3539 |
+
h
|
3540 |
+
辽
|
3541 |
+
葳
|
3542 |
+
黝
|
3543 |
+
钗
|
3544 |
+
停
|
3545 |
+
沽
|
3546 |
+
棒
|
3547 |
+
馨
|
3548 |
+
颌
|
3549 |
+
肉
|
3550 |
+
吴
|
3551 |
+
硫
|
3552 |
+
悯
|
3553 |
+
劾
|
3554 |
+
娈
|
3555 |
+
马
|
3556 |
+
啧
|
3557 |
+
吊
|
3558 |
+
悌
|
3559 |
+
镑
|
3560 |
+
峭
|
3561 |
+
帆
|
3562 |
+
瀣
|
3563 |
+
涉
|
3564 |
+
咸
|
3565 |
+
疸
|
3566 |
+
滋
|
3567 |
+
泣
|
3568 |
+
翦
|
3569 |
+
拙
|
3570 |
+
癸
|
3571 |
+
钥
|
3572 |
+
蜒
|
3573 |
+
+
|
3574 |
+
尾
|
3575 |
+
庄
|
3576 |
+
凝
|
3577 |
+
泉
|
3578 |
+
婢
|
3579 |
+
渴
|
3580 |
+
谊
|
3581 |
+
乞
|
3582 |
+
陆
|
3583 |
+
锉
|
3584 |
+
糊
|
3585 |
+
鸦
|
3586 |
+
淮
|
3587 |
+
I
|
3588 |
+
B
|
3589 |
+
N
|
3590 |
+
晦
|
3591 |
+
弗
|
3592 |
+
乔
|
3593 |
+
庥
|
3594 |
+
葡
|
3595 |
+
尻
|
3596 |
+
席
|
3597 |
+
橡
|
3598 |
+
傣
|
3599 |
+
渣
|
3600 |
+
拿
|
3601 |
+
惩
|
3602 |
+
麋
|
3603 |
+
斛
|
3604 |
+
缃
|
3605 |
+
矮
|
3606 |
+
蛏
|
3607 |
+
岘
|
3608 |
+
鸽
|
3609 |
+
姐
|
3610 |
+
膏
|
3611 |
+
催
|
3612 |
+
奔
|
3613 |
+
镒
|
3614 |
+
喱
|
3615 |
+
蠡
|
3616 |
+
摧
|
3617 |
+
钯
|
3618 |
+
胤
|
3619 |
+
柠
|
3620 |
+
拐
|
3621 |
+
璋
|
3622 |
+
鸥
|
3623 |
+
卢
|
3624 |
+
荡
|
3625 |
+
倾
|
3626 |
+
^
|
3627 |
+
_
|
3628 |
+
珀
|
3629 |
+
逄
|
3630 |
+
萧
|
3631 |
+
塾
|
3632 |
+
掇
|
3633 |
+
贮
|
3634 |
+
笆
|
3635 |
+
聂
|
3636 |
+
圃
|
3637 |
+
冲
|
3638 |
+
嵬
|
3639 |
+
M
|
3640 |
+
滔
|
3641 |
+
笕
|
3642 |
+
值
|
3643 |
+
炙
|
3644 |
+
偶
|
3645 |
+
蜱
|
3646 |
+
搐
|
3647 |
+
梆
|
3648 |
+
汪
|
3649 |
+
蔬
|
3650 |
+
腑
|
3651 |
+
鸯
|
3652 |
+
蹇
|
3653 |
+
敞
|
3654 |
+
绯
|
3655 |
+
仨
|
3656 |
+
祯
|
3657 |
+
谆
|
3658 |
+
梧
|
3659 |
+
糗
|
3660 |
+
鑫
|
3661 |
+
啸
|
3662 |
+
豺
|
3663 |
+
囹
|
3664 |
+
猾
|
3665 |
+
巢
|
3666 |
+
柄
|
3667 |
+
瀛
|
3668 |
+
筑
|
3669 |
+
踌
|
3670 |
+
沭
|
3671 |
+
暗
|
3672 |
+
苁
|
3673 |
+
鱿
|
3674 |
+
蹉
|
3675 |
+
脂
|
3676 |
+
蘖
|
3677 |
+
牢
|
3678 |
+
热
|
3679 |
+
木
|
3680 |
+
吸
|
3681 |
+
溃
|
3682 |
+
宠
|
3683 |
+
序
|
3684 |
+
泞
|
3685 |
+
偿
|
3686 |
+
拜
|
3687 |
+
檩
|
3688 |
+
厚
|
3689 |
+
朐
|
3690 |
+
毗
|
3691 |
+
螳
|
3692 |
+
吞
|
3693 |
+
媚
|
3694 |
+
朽
|
3695 |
+
担
|
3696 |
+
蝗
|
3697 |
+
橘
|
3698 |
+
畴
|
3699 |
+
祈
|
3700 |
+
糟
|
3701 |
+
盱
|
3702 |
+
隼
|
3703 |
+
郜
|
3704 |
+
惜
|
3705 |
+
珠
|
3706 |
+
裨
|
3707 |
+
铵
|
3708 |
+
焙
|
3709 |
+
琚
|
3710 |
+
唯
|
3711 |
+
咚
|
3712 |
+
噪
|
3713 |
+
骊
|
3714 |
+
丫
|
3715 |
+
滢
|
3716 |
+
勤
|
3717 |
+
棉
|
3718 |
+
呸
|
3719 |
+
咣
|
3720 |
+
淀
|
3721 |
+
隔
|
3722 |
+
蕾
|
3723 |
+
窈
|
3724 |
+
饨
|
3725 |
+
挨
|
3726 |
+
煅
|
3727 |
+
短
|
3728 |
+
匙
|
3729 |
+
粕
|
3730 |
+
镜
|
3731 |
+
赣
|
3732 |
+
撕
|
3733 |
+
墩
|
3734 |
+
酬
|
3735 |
+
馁
|
3736 |
+
豌
|
3737 |
+
颐
|
3738 |
+
抗
|
3739 |
+
酣
|
3740 |
+
氓
|
3741 |
+
佑
|
3742 |
+
搁
|
3743 |
+
哭
|
3744 |
+
递
|
3745 |
+
耷
|
3746 |
+
涡
|
3747 |
+
桃
|
3748 |
+
贻
|
3749 |
+
碣
|
3750 |
+
截
|
3751 |
+
瘦
|
3752 |
+
昭
|
3753 |
+
镌
|
3754 |
+
蔓
|
3755 |
+
氚
|
3756 |
+
甲
|
3757 |
+
猕
|
3758 |
+
蕴
|
3759 |
+
蓬
|
3760 |
+
散
|
3761 |
+
拾
|
3762 |
+
纛
|
3763 |
+
狼
|
3764 |
+
猷
|
3765 |
+
铎
|
3766 |
+
埋
|
3767 |
+
旖
|
3768 |
+
矾
|
3769 |
+
讳
|
3770 |
+
囊
|
3771 |
+
糜
|
3772 |
+
迈
|
3773 |
+
粟
|
3774 |
+
蚂
|
3775 |
+
紧
|
3776 |
+
鲳
|
3777 |
+
瘢
|
3778 |
+
栽
|
3779 |
+
稼
|
3780 |
+
羊
|
3781 |
+
锄
|
3782 |
+
斟
|
3783 |
+
睁
|
3784 |
+
桥
|
3785 |
+
瓮
|
3786 |
+
蹙
|
3787 |
+
祉
|
3788 |
+
醺
|
3789 |
+
鼻
|
3790 |
+
昱
|
3791 |
+
剃
|
3792 |
+
跳
|
3793 |
+
篱
|
3794 |
+
跷
|
3795 |
+
蒜
|
3796 |
+
翎
|
3797 |
+
宅
|
3798 |
+
晖
|
3799 |
+
嗑
|
3800 |
+
壑
|
3801 |
+
峻
|
3802 |
+
癫
|
3803 |
+
屏
|
3804 |
+
狠
|
3805 |
+
陋
|
3806 |
+
袜
|
3807 |
+
途
|
3808 |
+
憎
|
3809 |
+
祀
|
3810 |
+
莹
|
3811 |
+
滟
|
3812 |
+
佶
|
3813 |
+
溥
|
3814 |
+
臣
|
3815 |
+
约
|
3816 |
+
盛
|
3817 |
+
峰
|
3818 |
+
磁
|
3819 |
+
慵
|
3820 |
+
婪
|
3821 |
+
拦
|
3822 |
+
莅
|
3823 |
+
朕
|
3824 |
+
鹦
|
3825 |
+
粲
|
3826 |
+
裤
|
3827 |
+
哎
|
3828 |
+
疡
|
3829 |
+
嫖
|
3830 |
+
琵
|
3831 |
+
窟
|
3832 |
+
堪
|
3833 |
+
谛
|
3834 |
+
嘉
|
3835 |
+
儡
|
3836 |
+
鳝
|
3837 |
+
斩
|
3838 |
+
郾
|
3839 |
+
驸
|
3840 |
+
酊
|
3841 |
+
妄
|
3842 |
+
胜
|
3843 |
+
贺
|
3844 |
+
徙
|
3845 |
+
傅
|
3846 |
+
噌
|
3847 |
+
钢
|
3848 |
+
栅
|
3849 |
+
庇
|
3850 |
+
恋
|
3851 |
+
匝
|
3852 |
+
巯
|
3853 |
+
邈
|
3854 |
+
尸
|
3855 |
+
锚
|
3856 |
+
粗
|
3857 |
+
佟
|
3858 |
+
蛟
|
3859 |
+
薹
|
3860 |
+
纵
|
3861 |
+
蚊
|
3862 |
+
郅
|
3863 |
+
绢
|
3864 |
+
锐
|
3865 |
+
苗
|
3866 |
+
俞
|
3867 |
+
篆
|
3868 |
+
淆
|
3869 |
+
膀
|
3870 |
+
鲜
|
3871 |
+
煎
|
3872 |
+
诶
|
3873 |
+
秽
|
3874 |
+
寻
|
3875 |
+
涮
|
3876 |
+
刺
|
3877 |
+
怀
|
3878 |
+
噶
|
3879 |
+
巨
|
3880 |
+
褰
|
3881 |
+
魅
|
3882 |
+
灶
|
3883 |
+
灌
|
3884 |
+
桉
|
3885 |
+
藕
|
3886 |
+
谜
|
3887 |
+
舸
|
3888 |
+
薄
|
3889 |
+
搀
|
3890 |
+
恽
|
3891 |
+
借
|
3892 |
+
牯
|
3893 |
+
痉
|
3894 |
+
渥
|
3895 |
+
愿
|
3896 |
+
亓
|
3897 |
+
耘
|
3898 |
+
杠
|
3899 |
+
柩
|
3900 |
+
锔
|
3901 |
+
蚶
|
3902 |
+
钣
|
3903 |
+
珈
|
3904 |
+
喘
|
3905 |
+
蹒
|
3906 |
+
幽
|
3907 |
+
赐
|
3908 |
+
稗
|
3909 |
+
晤
|
3910 |
+
莱
|
3911 |
+
泔
|
3912 |
+
扯
|
3913 |
+
肯
|
3914 |
+
菪
|
3915 |
+
裆
|
3916 |
+
腩
|
3917 |
+
豉
|
3918 |
+
疆
|
3919 |
+
骜
|
3920 |
+
腐
|
3921 |
+
倭
|
3922 |
+
珏
|
3923 |
+
唔
|
3924 |
+
粮
|
3925 |
+
亡
|
3926 |
+
润
|
3927 |
+
慰
|
3928 |
+
伽
|
3929 |
+
橄
|
3930 |
+
玄
|
3931 |
+
誉
|
3932 |
+
醐
|
3933 |
+
胆
|
3934 |
+
龊
|
3935 |
+
粼
|
3936 |
+
塬
|
3937 |
+
陇
|
3938 |
+
彼
|
3939 |
+
削
|
3940 |
+
嗣
|
3941 |
+
绾
|
3942 |
+
芽
|
3943 |
+
妗
|
3944 |
+
垭
|
3945 |
+
瘴
|
3946 |
+
爽
|
3947 |
+
薏
|
3948 |
+
寨
|
3949 |
+
龈
|
3950 |
+
泠
|
3951 |
+
弹
|
3952 |
+
赢
|
3953 |
+
漪
|
3954 |
+
猫
|
3955 |
+
嘧
|
3956 |
+
涂
|
3957 |
+
恤
|
3958 |
+
圭
|
3959 |
+
茧
|
3960 |
+
烽
|
3961 |
+
屑
|
3962 |
+
痕
|
3963 |
+
巾
|
3964 |
+
赖
|
3965 |
+
荸
|
3966 |
+
凰
|
3967 |
+
腮
|
3968 |
+
畈
|
3969 |
+
亵
|
3970 |
+
蹲
|
3971 |
+
偃
|
3972 |
+
苇
|
3973 |
+
澜
|
3974 |
+
艮
|
3975 |
+
换
|
3976 |
+
骺
|
3977 |
+
烘
|
3978 |
+
苕
|
3979 |
+
梓
|
3980 |
+
颉
|
3981 |
+
肇
|
3982 |
+
哗
|
3983 |
+
悄
|
3984 |
+
氤
|
3985 |
+
涠
|
3986 |
+
葬
|
3987 |
+
屠
|
3988 |
+
鹭
|
3989 |
+
植
|
3990 |
+
竺
|
3991 |
+
佯
|
3992 |
+
诣
|
3993 |
+
鲇
|
3994 |
+
瘀
|
3995 |
+
鲅
|
3996 |
+
邦
|
3997 |
+
移
|
3998 |
+
滁
|
3999 |
+
冯
|
4000 |
+
耕
|
4001 |
+
癔
|
4002 |
+
戌
|
4003 |
+
茬
|
4004 |
+
沁
|
4005 |
+
巩
|
4006 |
+
悠
|
4007 |
+
湘
|
4008 |
+
洪
|
4009 |
+
痹
|
4010 |
+
锟
|
4011 |
+
循
|
4012 |
+
谋
|
4013 |
+
腕
|
4014 |
+
鳃
|
4015 |
+
钠
|
4016 |
+
捞
|
4017 |
+
焉
|
4018 |
+
迎
|
4019 |
+
碱
|
4020 |
+
伫
|
4021 |
+
急
|
4022 |
+
榷
|
4023 |
+
奈
|
4024 |
+
邝
|
4025 |
+
卯
|
4026 |
+
辄
|
4027 |
+
皲
|
4028 |
+
卟
|
4029 |
+
醛
|
4030 |
+
畹
|
4031 |
+
忧
|
4032 |
+
稳
|
4033 |
+
雄
|
4034 |
+
昼
|
4035 |
+
缩
|
4036 |
+
阈
|
4037 |
+
睑
|
4038 |
+
扌
|
4039 |
+
耗
|
4040 |
+
曦
|
4041 |
+
涅
|
4042 |
+
捏
|
4043 |
+
瞧
|
4044 |
+
邕
|
4045 |
+
淖
|
4046 |
+
漉
|
4047 |
+
铝
|
4048 |
+
耦
|
4049 |
+
禹
|
4050 |
+
湛
|
4051 |
+
喽
|
4052 |
+
莼
|
4053 |
+
琅
|
4054 |
+
诸
|
4055 |
+
苎
|
4056 |
+
纂
|
4057 |
+
硅
|
4058 |
+
始
|
4059 |
+
嗨
|
4060 |
+
傥
|
4061 |
+
燃
|
4062 |
+
臂
|
4063 |
+
赅
|
4064 |
+
嘈
|
4065 |
+
呆
|
4066 |
+
贵
|
4067 |
+
屹
|
4068 |
+
壮
|
4069 |
+
肋
|
4070 |
+
亍
|
4071 |
+
蚀
|
4072 |
+
卅
|
4073 |
+
豹
|
4074 |
+
腆
|
4075 |
+
邬
|
4076 |
+
迭
|
4077 |
+
浊
|
4078 |
+
}
|
4079 |
+
童
|
4080 |
+
螂
|
4081 |
+
捐
|
4082 |
+
圩
|
4083 |
+
勐
|
4084 |
+
触
|
4085 |
+
寞
|
4086 |
+
汊
|
4087 |
+
壤
|
4088 |
+
荫
|
4089 |
+
膺
|
4090 |
+
渌
|
4091 |
+
芳
|
4092 |
+
懿
|
4093 |
+
遴
|
4094 |
+
螈
|
4095 |
+
泰
|
4096 |
+
蓼
|
4097 |
+
蛤
|
4098 |
+
茜
|
4099 |
+
舅
|
4100 |
+
枫
|
4101 |
+
朔
|
4102 |
+
膝
|
4103 |
+
眙
|
4104 |
+
避
|
4105 |
+
梅
|
4106 |
+
判
|
4107 |
+
鹜
|
4108 |
+
璜
|
4109 |
+
牍
|
4110 |
+
缅
|
4111 |
+
垫
|
4112 |
+
藻
|
4113 |
+
黔
|
4114 |
+
侥
|
4115 |
+
惚
|
4116 |
+
懂
|
4117 |
+
踩
|
4118 |
+
腰
|
4119 |
+
腈
|
4120 |
+
札
|
4121 |
+
丞
|
4122 |
+
唾
|
4123 |
+
慈
|
4124 |
+
顿
|
4125 |
+
摹
|
4126 |
+
荻
|
4127 |
+
琬
|
4128 |
+
~
|
4129 |
+
斧
|
4130 |
+
沈
|
4131 |
+
滂
|
4132 |
+
胁
|
4133 |
+
胀
|
4134 |
+
幄
|
4135 |
+
莜
|
4136 |
+
Z
|
4137 |
+
匀
|
4138 |
+
鄄
|
4139 |
+
掌
|
4140 |
+
绰
|
4141 |
+
茎
|
4142 |
+
焚
|
4143 |
+
赋
|
4144 |
+
萱
|
4145 |
+
谑
|
4146 |
+
汁
|
4147 |
+
铒
|
4148 |
+
瞎
|
4149 |
+
夺
|
4150 |
+
蜗
|
4151 |
+
野
|
4152 |
+
娆
|
4153 |
+
冀
|
4154 |
+
弯
|
4155 |
+
篁
|
4156 |
+
懵
|
4157 |
+
灞
|
4158 |
+
隽
|
4159 |
+
芡
|
4160 |
+
脘
|
4161 |
+
俐
|
4162 |
+
辩
|
4163 |
+
芯
|
4164 |
+
掺
|
4165 |
+
喏
|
4166 |
+
膈
|
4167 |
+
蝈
|
4168 |
+
觐
|
4169 |
+
悚
|
4170 |
+
踹
|
4171 |
+
蔗
|
4172 |
+
熠
|
4173 |
+
鼠
|
4174 |
+
呵
|
4175 |
+
抓
|
4176 |
+
橼
|
4177 |
+
峨
|
4178 |
+
畜
|
4179 |
+
缔
|
4180 |
+
禾
|
4181 |
+
崭
|
4182 |
+
弃
|
4183 |
+
熊
|
4184 |
+
摒
|
4185 |
+
凸
|
4186 |
+
拗
|
4187 |
+
穹
|
4188 |
+
蒙
|
4189 |
+
抒
|
4190 |
+
祛
|
4191 |
+
劝
|
4192 |
+
闫
|
4193 |
+
扳
|
4194 |
+
阵
|
4195 |
+
醌
|
4196 |
+
踪
|
4197 |
+
喵
|
4198 |
+
侣
|
4199 |
+
搬
|
4200 |
+
仅
|
4201 |
+
荧
|
4202 |
+
赎
|
4203 |
+
蝾
|
4204 |
+
琦
|
4205 |
+
买
|
4206 |
+
婧
|
4207 |
+
瞄
|
4208 |
+
寓
|
4209 |
+
皎
|
4210 |
+
冻
|
4211 |
+
赝
|
4212 |
+
箩
|
4213 |
+
莫
|
4214 |
+
瞰
|
4215 |
+
郊
|
4216 |
+
笫
|
4217 |
+
姝
|
4218 |
+
筒
|
4219 |
+
枪
|
4220 |
+
遣
|
4221 |
+
煸
|
4222 |
+
袋
|
4223 |
+
舆
|
4224 |
+
痱
|
4225 |
+
涛
|
4226 |
+
母
|
4227 |
+
〇
|
4228 |
+
启
|
4229 |
+
践
|
4230 |
+
耙
|
4231 |
+
绲
|
4232 |
+
盘
|
4233 |
+
遂
|
4234 |
+
昊
|
4235 |
+
搞
|
4236 |
+
槿
|
4237 |
+
诬
|
4238 |
+
纰
|
4239 |
+
泓
|
4240 |
+
惨
|
4241 |
+
檬
|
4242 |
+
亻
|
4243 |
+
越
|
4244 |
+
C
|
4245 |
+
o
|
4246 |
+
憩
|
4247 |
+
熵
|
4248 |
+
祷
|
4249 |
+
钒
|
4250 |
+
暧
|
4251 |
+
塔
|
4252 |
+
阗
|
4253 |
+
胰
|
4254 |
+
咄
|
4255 |
+
娶
|
4256 |
+
魔
|
4257 |
+
琶
|
4258 |
+
钞
|
4259 |
+
邻
|
4260 |
+
扬
|
4261 |
+
杉
|
4262 |
+
殴
|
4263 |
+
咽
|
4264 |
+
弓
|
4265 |
+
〆
|
4266 |
+
髻
|
4267 |
+
】
|
4268 |
+
吭
|
4269 |
+
揽
|
4270 |
+
霆
|
4271 |
+
拄
|
4272 |
+
殖
|
4273 |
+
脆
|
4274 |
+
彻
|
4275 |
+
岩
|
4276 |
+
芝
|
4277 |
+
勃
|
4278 |
+
辣
|
4279 |
+
剌
|
4280 |
+
钝
|
4281 |
+
嘎
|
4282 |
+
甄
|
4283 |
+
佘
|
4284 |
+
皖
|
4285 |
+
伦
|
4286 |
+
授
|
4287 |
+
徕
|
4288 |
+
憔
|
4289 |
+
挪
|
4290 |
+
皇
|
4291 |
+
庞
|
4292 |
+
稔
|
4293 |
+
芜
|
4294 |
+
踏
|
4295 |
+
溴
|
4296 |
+
兖
|
4297 |
+
卒
|
4298 |
+
擢
|
4299 |
+
饥
|
4300 |
+
鳞
|
4301 |
+
煲
|
4302 |
+
‰
|
4303 |
+
账
|
4304 |
+
颗
|
4305 |
+
叻
|
4306 |
+
斯
|
4307 |
+
捧
|
4308 |
+
鳍
|
4309 |
+
琮
|
4310 |
+
讹
|
4311 |
+
蛙
|
4312 |
+
纽
|
4313 |
+
谭
|
4314 |
+
酸
|
4315 |
+
兔
|
4316 |
+
莒
|
4317 |
+
睇
|
4318 |
+
伟
|
4319 |
+
觑
|
4320 |
+
羲
|
4321 |
+
嗜
|
4322 |
+
宜
|
4323 |
+
褐
|
4324 |
+
旎
|
4325 |
+
辛
|
4326 |
+
卦
|
4327 |
+
诘
|
4328 |
+
筋
|
4329 |
+
鎏
|
4330 |
+
溪
|
4331 |
+
挛
|
4332 |
+
熔
|
4333 |
+
阜
|
4334 |
+
晰
|
4335 |
+
鳅
|
4336 |
+
丢
|
4337 |
+
奚
|
4338 |
+
灸
|
4339 |
+
呱
|
4340 |
+
献
|
4341 |
+
陉
|
4342 |
+
黛
|
4343 |
+
鸪
|
4344 |
+
甾
|
4345 |
+
萨
|
4346 |
+
疮
|
4347 |
+
拯
|
4348 |
+
洲
|
4349 |
+
疹
|
4350 |
+
辑
|
4351 |
+
叙
|
4352 |
+
恻
|
4353 |
+
谒
|
4354 |
+
允
|
4355 |
+
柔
|
4356 |
+
烂
|
4357 |
+
氏
|
4358 |
+
逅
|
4359 |
+
漆
|
4360 |
+
拎
|
4361 |
+
惋
|
4362 |
+
扈
|
4363 |
+
湟
|
4364 |
+
纭
|
4365 |
+
啕
|
4366 |
+
掬
|
4367 |
+
擞
|
4368 |
+
哥
|
4369 |
+
忽
|
4370 |
+
涤
|
4371 |
+
鸵
|
4372 |
+
靡
|
4373 |
+
郗
|
4374 |
+
瓷
|
4375 |
+
扁
|
4376 |
+
廊
|
4377 |
+
怨
|
4378 |
+
雏
|
4379 |
+
钮
|
4380 |
+
敦
|
4381 |
+
E
|
4382 |
+
懦
|
4383 |
+
憋
|
4384 |
+
汀
|
4385 |
+
拚
|
4386 |
+
啉
|
4387 |
+
腌
|
4388 |
+
岸
|
4389 |
+
f
|
4390 |
+
痼
|
4391 |
+
瞅
|
4392 |
+
尊
|
4393 |
+
咀
|
4394 |
+
眩
|
4395 |
+
飙
|
4396 |
+
忌
|
4397 |
+
仝
|
4398 |
+
迦
|
4399 |
+
熬
|
4400 |
+
毫
|
4401 |
+
胯
|
4402 |
+
篑
|
4403 |
+
茄
|
4404 |
+
腺
|
4405 |
+
凄
|
4406 |
+
舛
|
4407 |
+
碴
|
4408 |
+
锵
|
4409 |
+
诧
|
4410 |
+
羯
|
4411 |
+
後
|
4412 |
+
漏
|
4413 |
+
汤
|
4414 |
+
宓
|
4415 |
+
仞
|
4416 |
+
蚁
|
4417 |
+
壶
|
4418 |
+
谰
|
4419 |
+
皑
|
4420 |
+
铄
|
4421 |
+
棰
|
4422 |
+
罔
|
4423 |
+
辅
|
4424 |
+
晶
|
4425 |
+
苦
|
4426 |
+
牟
|
4427 |
+
闽
|
4428 |
+
\
|
4429 |
+
烃
|
4430 |
+
饮
|
4431 |
+
聿
|
4432 |
+
丙
|
4433 |
+
蛳
|
4434 |
+
朱
|
4435 |
+
煤
|
4436 |
+
涔
|
4437 |
+
鳖
|
4438 |
+
犁
|
4439 |
+
罐
|
4440 |
+
荼
|
4441 |
+
砒
|
4442 |
+
淦
|
4443 |
+
妤
|
4444 |
+
黏
|
4445 |
+
戎
|
4446 |
+
孑
|
4447 |
+
婕
|
4448 |
+
瑾
|
4449 |
+
戢
|
4450 |
+
钵
|
4451 |
+
枣
|
4452 |
+
捋
|
4453 |
+
砥
|
4454 |
+
衩
|
4455 |
+
狙
|
4456 |
+
桠
|
4457 |
+
稣
|
4458 |
+
阎
|
4459 |
+
肃
|
4460 |
+
梏
|
4461 |
+
诫
|
4462 |
+
孪
|
4463 |
+
昶
|
4464 |
+
婊
|
4465 |
+
衫
|
4466 |
+
嗔
|
4467 |
+
侃
|
4468 |
+
塞
|
4469 |
+
蜃
|
4470 |
+
樵
|
4471 |
+
峒
|
4472 |
+
貌
|
4473 |
+
屿
|
4474 |
+
欺
|
4475 |
+
缫
|
4476 |
+
阐
|
4477 |
+
栖
|
4478 |
+
诟
|
4479 |
+
珞
|
4480 |
+
荭
|
4481 |
+
吝
|
4482 |
+
萍
|
4483 |
+
嗽
|
4484 |
+
恂
|
4485 |
+
啻
|
4486 |
+
蜴
|
4487 |
+
磬
|
4488 |
+
峋
|
4489 |
+
俸
|
4490 |
+
豫
|
4491 |
+
谎
|
4492 |
+
徊
|
4493 |
+
镍
|
4494 |
+
韬
|
4495 |
+
魇
|
4496 |
+
晴
|
4497 |
+
U
|
4498 |
+
囟
|
4499 |
+
猜
|
4500 |
+
蛮
|
4501 |
+
坐
|
4502 |
+
囿
|
4503 |
+
伴
|
4504 |
+
亭
|
4505 |
+
肝
|
4506 |
+
佗
|
4507 |
+
蝠
|
4508 |
+
妃
|
4509 |
+
胞
|
4510 |
+
滩
|
4511 |
+
榴
|
4512 |
+
氖
|
4513 |
+
垩
|
4514 |
+
苋
|
4515 |
+
砣
|
4516 |
+
扪
|
4517 |
+
馏
|
4518 |
+
姓
|
4519 |
+
轩
|
4520 |
+
厉
|
4521 |
+
夥
|
4522 |
+
侈
|
4523 |
+
禀
|
4524 |
+
垒
|
4525 |
+
岑
|
4526 |
+
赏
|
4527 |
+
钛
|
4528 |
+
辐
|
4529 |
+
痔
|
4530 |
+
披
|
4531 |
+
纸
|
4532 |
+
碳
|
4533 |
+
“
|
4534 |
+
坞
|
4535 |
+
蠓
|
4536 |
+
挤
|
4537 |
+
荥
|
4538 |
+
沅
|
4539 |
+
悔
|
4540 |
+
铧
|
4541 |
+
帼
|
4542 |
+
蒌
|
4543 |
+
蝇
|
4544 |
+
a
|
4545 |
+
p
|
4546 |
+
y
|
4547 |
+
n
|
4548 |
+
g
|
4549 |
+
哀
|
4550 |
+
浆
|
4551 |
+
瑶
|
4552 |
+
凿
|
4553 |
+
桶
|
4554 |
+
馈
|
4555 |
+
皮
|
4556 |
+
奴
|
4557 |
+
苜
|
4558 |
+
佤
|
4559 |
+
伶
|
4560 |
+
晗
|
4561 |
+
铱
|
4562 |
+
炬
|
4563 |
+
优
|
4564 |
+
弊
|
4565 |
+
氢
|
4566 |
+
恃
|
4567 |
+
甫
|
4568 |
+
攥
|
4569 |
+
端
|
4570 |
+
锌
|
4571 |
+
灰
|
4572 |
+
稹
|
4573 |
+
炝
|
4574 |
+
曙
|
4575 |
+
邋
|
4576 |
+
亥
|
4577 |
+
眶
|
4578 |
+
碾
|
4579 |
+
拉
|
4580 |
+
萝
|
4581 |
+
绔
|
4582 |
+
捷
|
4583 |
+
浍
|
4584 |
+
腋
|
4585 |
+
姑
|
4586 |
+
菖
|
4587 |
+
凌
|
4588 |
+
涞
|
4589 |
+
麽
|
4590 |
+
锢
|
4591 |
+
桨
|
4592 |
+
潢
|
4593 |
+
绎
|
4594 |
+
镰
|
4595 |
+
殆
|
4596 |
+
锑
|
4597 |
+
渝
|
4598 |
+
铬
|
4599 |
+
困
|
4600 |
+
绽
|
4601 |
+
觎
|
4602 |
+
匈
|
4603 |
+
糙
|
4604 |
+
暑
|
4605 |
+
裹
|
4606 |
+
鸟
|
4607 |
+
盔
|
4608 |
+
肽
|
4609 |
+
迷
|
4610 |
+
綦
|
4611 |
+
『
|
4612 |
+
亳
|
4613 |
+
佝
|
4614 |
+
俘
|
4615 |
+
钴
|
4616 |
+
觇
|
4617 |
+
骥
|
4618 |
+
仆
|
4619 |
+
疝
|
4620 |
+
跪
|
4621 |
+
婶
|
4622 |
+
郯
|
4623 |
+
瀹
|
4624 |
+
唉
|
4625 |
+
脖
|
4626 |
+
踞
|
4627 |
+
针
|
4628 |
+
晾
|
4629 |
+
忒
|
4630 |
+
扼
|
4631 |
+
瞩
|
4632 |
+
叛
|
4633 |
+
椒
|
4634 |
+
疟
|
4635 |
+
嗡
|
4636 |
+
邗
|
4637 |
+
肆
|
4638 |
+
跆
|
4639 |
+
玫
|
4640 |
+
忡
|
4641 |
+
捣
|
4642 |
+
咧
|
4643 |
+
唆
|
4644 |
+
艄
|
4645 |
+
蘑
|
4646 |
+
潦
|
4647 |
+
笛
|
4648 |
+
阚
|
4649 |
+
沸
|
4650 |
+
泻
|
4651 |
+
掊
|
4652 |
+
菽
|
4653 |
+
贫
|
4654 |
+
斥
|
4655 |
+
髂
|
4656 |
+
孢
|
4657 |
+
镂
|
4658 |
+
赂
|
4659 |
+
麝
|
4660 |
+
鸾
|
4661 |
+
屡
|
4662 |
+
衬
|
4663 |
+
苷
|
4664 |
+
恪
|
4665 |
+
叠
|
4666 |
+
希
|
4667 |
+
粤
|
4668 |
+
爻
|
4669 |
+
喝
|
4670 |
+
茫
|
4671 |
+
惬
|
4672 |
+
郸
|
4673 |
+
绻
|
4674 |
+
庸
|
4675 |
+
撅
|
4676 |
+
碟
|
4677 |
+
宄
|
4678 |
+
妹
|
4679 |
+
膛
|
4680 |
+
叮
|
4681 |
+
饵
|
4682 |
+
崛
|
4683 |
+
嗲
|
4684 |
+
椅
|
4685 |
+
冤
|
4686 |
+
搅
|
4687 |
+
咕
|
4688 |
+
敛
|
4689 |
+
尹
|
4690 |
+
垦
|
4691 |
+
闷
|
4692 |
+
蝉
|
4693 |
+
霎
|
4694 |
+
勰
|
4695 |
+
败
|
4696 |
+
蓑
|
4697 |
+
泸
|
4698 |
+
肤
|
4699 |
+
鹌
|
4700 |
+
幌
|
4701 |
+
焦
|
4702 |
+
浠
|
4703 |
+
鞍
|
4704 |
+
刁
|
4705 |
+
舰
|
4706 |
+
乙
|
4707 |
+
竿
|
4708 |
+
裔
|
4709 |
+
。
|
4710 |
+
茵
|
4711 |
+
函
|
4712 |
+
伊
|
4713 |
+
兄
|
4714 |
+
丨
|
4715 |
+
娜
|
4716 |
+
匍
|
4717 |
+
謇
|
4718 |
+
莪
|
4719 |
+
宥
|
4720 |
+
似
|
4721 |
+
蝽
|
4722 |
+
翳
|
4723 |
+
酪
|
4724 |
+
翠
|
4725 |
+
粑
|
4726 |
+
薇
|
4727 |
+
祢
|
4728 |
+
骏
|
4729 |
+
赠
|
4730 |
+
叫
|
4731 |
+
Q
|
4732 |
+
噤
|
4733 |
+
噻
|
4734 |
+
竖
|
4735 |
+
芗
|
4736 |
+
莠
|
4737 |
+
潭
|
4738 |
+
俊
|
4739 |
+
羿
|
4740 |
+
耜
|
4741 |
+
O
|
4742 |
+
郫
|
4743 |
+
趁
|
4744 |
+
嗪
|
4745 |
+
囚
|
4746 |
+
蹶
|
4747 |
+
芒
|
4748 |
+
洁
|
4749 |
+
笋
|
4750 |
+
鹑
|
4751 |
+
敲
|
4752 |
+
硝
|
4753 |
+
啶
|
4754 |
+
堡
|
4755 |
+
渲
|
4756 |
+
揩
|
4757 |
+
』
|
4758 |
+
携
|
4759 |
+
宿
|
4760 |
+
遒
|
4761 |
+
颍
|
4762 |
+
扭
|
4763 |
+
棱
|
4764 |
+
割
|
4765 |
+
萜
|
4766 |
+
蔸
|
4767 |
+
葵
|
4768 |
+
琴
|
4769 |
+
捂
|
4770 |
+
饰
|
4771 |
+
衙
|
4772 |
+
耿
|
4773 |
+
掠
|
4774 |
+
募
|
4775 |
+
岂
|
4776 |
+
窖
|
4777 |
+
涟
|
4778 |
+
蔺
|
4779 |
+
瘤
|
4780 |
+
柞
|
4781 |
+
瞪
|
4782 |
+
怜
|
4783 |
+
匹
|
4784 |
+
距
|
4785 |
+
楔
|
4786 |
+
炜
|
4787 |
+
哆
|
4788 |
+
秦
|
4789 |
+
缎
|
4790 |
+
幼
|
4791 |
+
茁
|
4792 |
+
绪
|
4793 |
+
痨
|
4794 |
+
恨
|
4795 |
+
楸
|
4796 |
+
娅
|
4797 |
+
瓦
|
4798 |
+
桩
|
4799 |
+
雪
|
4800 |
+
嬴
|
4801 |
+
伏
|
4802 |
+
榔
|
4803 |
+
妥
|
4804 |
+
铿
|
4805 |
+
拌
|
4806 |
+
眠
|
4807 |
+
雍
|
4808 |
+
缇
|
4809 |
+
‘
|
4810 |
+
卓
|
4811 |
+
搓
|
4812 |
+
哌
|
4813 |
+
觞
|
4814 |
+
噩
|
4815 |
+
屈
|
4816 |
+
哧
|
4817 |
+
髓
|
4818 |
+
咦
|
4819 |
+
巅
|
4820 |
+
娑
|
4821 |
+
侑
|
4822 |
+
淫
|
4823 |
+
膳
|
4824 |
+
祝
|
4825 |
+
勾
|
4826 |
+
姊
|
4827 |
+
莴
|
4828 |
+
胄
|
4829 |
+
疃
|
4830 |
+
薛
|
4831 |
+
蜷
|
4832 |
+
胛
|
4833 |
+
巷
|
4834 |
+
芙
|
4835 |
+
芋
|
4836 |
+
熙
|
4837 |
+
闰
|
4838 |
+
勿
|
4839 |
+
窃
|
4840 |
+
狱
|
4841 |
+
剩
|
4842 |
+
钏
|
4843 |
+
幢
|
4844 |
+
陟
|
4845 |
+
铛
|
4846 |
+
慧
|
4847 |
+
靴
|
4848 |
+
耍
|
4849 |
+
k
|
4850 |
+
浙
|
4851 |
+
浇
|
4852 |
+
飨
|
4853 |
+
惟
|
4854 |
+
绗
|
4855 |
+
祜
|
4856 |
+
澈
|
4857 |
+
啼
|
4858 |
+
咪
|
4859 |
+
磷
|
4860 |
+
摞
|
4861 |
+
诅
|
4862 |
+
郦
|
4863 |
+
抹
|
4864 |
+
跃
|
4865 |
+
壬
|
4866 |
+
吕
|
4867 |
+
肖
|
4868 |
+
琏
|
4869 |
+
颤
|
4870 |
+
尴
|
4871 |
+
剡
|
4872 |
+
抠
|
4873 |
+
凋
|
4874 |
+
赚
|
4875 |
+
泊
|
4876 |
+
津
|
4877 |
+
宕
|
4878 |
+
殷
|
4879 |
+
倔
|
4880 |
+
氲
|
4881 |
+
漫
|
4882 |
+
邺
|
4883 |
+
涎
|
4884 |
+
怠
|
4885 |
+
$
|
4886 |
+
垮
|
4887 |
+
荬
|
4888 |
+
遵
|
4889 |
+
俏
|
4890 |
+
叹
|
4891 |
+
噢
|
4892 |
+
饽
|
4893 |
+
蜘
|
4894 |
+
孙
|
4895 |
+
筵
|
4896 |
+
疼
|
4897 |
+
鞭
|
4898 |
+
羧
|
4899 |
+
牦
|
4900 |
+
箭
|
4901 |
+
潴
|
4902 |
+
c
|
4903 |
+
眸
|
4904 |
+
祭
|
4905 |
+
髯
|
4906 |
+
啖
|
4907 |
+
坳
|
4908 |
+
愁
|
4909 |
+
芩
|
4910 |
+
驮
|
4911 |
+
倡
|
4912 |
+
巽
|
4913 |
+
穰
|
4914 |
+
沃
|
4915 |
+
胚
|
4916 |
+
怒
|
4917 |
+
凤
|
4918 |
+
槛
|
4919 |
+
剂
|
4920 |
+
趵
|
4921 |
+
嫁
|
4922 |
+
v
|
4923 |
+
邢
|
4924 |
+
灯
|
4925 |
+
鄢
|
4926 |
+
桐
|
4927 |
+
睽
|
4928 |
+
檗
|
4929 |
+
锯
|
4930 |
+
槟
|
4931 |
+
婷
|
4932 |
+
嵋
|
4933 |
+
圻
|
4934 |
+
诗
|
4935 |
+
蕈
|
4936 |
+
颠
|
4937 |
+
遭
|
4938 |
+
痢
|
4939 |
+
芸
|
4940 |
+
怯
|
4941 |
+
馥
|
4942 |
+
竭
|
4943 |
+
锗
|
4944 |
+
徜
|
4945 |
+
恭
|
4946 |
+
遍
|
4947 |
+
籁
|
4948 |
+
剑
|
4949 |
+
嘱
|
4950 |
+
苡
|
4951 |
+
龄
|
4952 |
+
僧
|
4953 |
+
桑
|
4954 |
+
潸
|
4955 |
+
弘
|
4956 |
+
澶
|
4957 |
+
楹
|
4958 |
+
悲
|
4959 |
+
讫
|
4960 |
+
愤
|
4961 |
+
腥
|
4962 |
+
悸
|
4963 |
+
谍
|
4964 |
+
椹
|
4965 |
+
呢
|
4966 |
+
桓
|
4967 |
+
葭
|
4968 |
+
攫
|
4969 |
+
阀
|
4970 |
+
翰
|
4971 |
+
躲
|
4972 |
+
敖
|
4973 |
+
柑
|
4974 |
+
郎
|
4975 |
+
笨
|
4976 |
+
橇
|
4977 |
+
呃
|
4978 |
+
魁
|
4979 |
+
燎
|
4980 |
+
脓
|
4981 |
+
葩
|
4982 |
+
磋
|
4983 |
+
垛
|
4984 |
+
玺
|
4985 |
+
狮
|
4986 |
+
沓
|
4987 |
+
砜
|
4988 |
+
蕊
|
4989 |
+
锺
|
4990 |
+
罹
|
4991 |
+
蕉
|
4992 |
+
翱
|
4993 |
+
虐
|
4994 |
+
闾
|
4995 |
+
巫
|
4996 |
+
旦
|
4997 |
+
茱
|
4998 |
+
嬷
|
4999 |
+
枯
|
5000 |
+
鹏
|
5001 |
+
贡
|
5002 |
+
芹
|
5003 |
+
汛
|
5004 |
+
矫
|
5005 |
+
绁
|
5006 |
+
拣
|
5007 |
+
禺
|
5008 |
+
佃
|
5009 |
+
讣
|
5010 |
+
舫
|
5011 |
+
惯
|
5012 |
+
乳
|
5013 |
+
趋
|
5014 |
+
疲
|
5015 |
+
挽
|
5016 |
+
岚
|
5017 |
+
虾
|
5018 |
+
衾
|
5019 |
+
蠹
|
5020 |
+
蹂
|
5021 |
+
飓
|
5022 |
+
氦
|
5023 |
+
铖
|
5024 |
+
孩
|
5025 |
+
稞
|
5026 |
+
瑜
|
5027 |
+
壅
|
5028 |
+
掀
|
5029 |
+
勘
|
5030 |
+
妓
|
5031 |
+
畅
|
5032 |
+
髋
|
5033 |
+
W
|
5034 |
+
庐
|
5035 |
+
牲
|
5036 |
+
蓿
|
5037 |
+
榕
|
5038 |
+
练
|
5039 |
+
垣
|
5040 |
+
唱
|
5041 |
+
邸
|
5042 |
+
菲
|
5043 |
+
昆
|
5044 |
+
婺
|
5045 |
+
穿
|
5046 |
+
绡
|
5047 |
+
麒
|
5048 |
+
蚱
|
5049 |
+
掂
|
5050 |
+
愚
|
5051 |
+
泷
|
5052 |
+
涪
|
5053 |
+
漳
|
5054 |
+
妩
|
5055 |
+
娉
|
5056 |
+
榄
|
5057 |
+
讷
|
5058 |
+
觅
|
5059 |
+
旧
|
5060 |
+
藤
|
5061 |
+
煮
|
5062 |
+
呛
|
5063 |
+
柳
|
5064 |
+
腓
|
5065 |
+
叭
|
5066 |
+
庵
|
5067 |
+
烷
|
5068 |
+
阡
|
5069 |
+
罂
|
5070 |
+
蜕
|
5071 |
+
擂
|
5072 |
+
猖
|
5073 |
+
咿
|
5074 |
+
媲
|
5075 |
+
脉
|
5076 |
+
【
|
5077 |
+
沏
|
5078 |
+
貅
|
5079 |
+
黠
|
5080 |
+
熏
|
5081 |
+
哲
|
5082 |
+
烁
|
5083 |
+
坦
|
5084 |
+
酵
|
5085 |
+
兜
|
5086 |
+
×
|
5087 |
+
潇
|
5088 |
+
撒
|
5089 |
+
剽
|
5090 |
+
珩
|
5091 |
+
圹
|
5092 |
+
乾
|
5093 |
+
摸
|
5094 |
+
樟
|
5095 |
+
帽
|
5096 |
+
嗒
|
5097 |
+
襄
|
5098 |
+
魂
|
5099 |
+
轿
|
5100 |
+
憬
|
5101 |
+
锡
|
5102 |
+
〕
|
5103 |
+
喃
|
5104 |
+
皆
|
5105 |
+
咖
|
5106 |
+
隅
|
5107 |
+
脸
|
5108 |
+
残
|
5109 |
+
泮
|
5110 |
+
袂
|
5111 |
+
鹂
|
5112 |
+
珊
|
5113 |
+
囤
|
5114 |
+
捆
|
5115 |
+
咤
|
5116 |
+
误
|
5117 |
+
徨
|
5118 |
+
闹
|
5119 |
+
淙
|
5120 |
+
芊
|
5121 |
+
淋
|
5122 |
+
怆
|
5123 |
+
囗
|
5124 |
+
拨
|
5125 |
+
梳
|
5126 |
+
渤
|
5127 |
+
R
|
5128 |
+
G
|
5129 |
+
绨
|
5130 |
+
蚓
|
5131 |
+
婀
|
5132 |
+
幡
|
5133 |
+
狩
|
5134 |
+
麾
|
5135 |
+
谢
|
5136 |
+
唢
|
5137 |
+
裸
|
5138 |
+
旌
|
5139 |
+
伉
|
5140 |
+
纶
|
5141 |
+
裂
|
5142 |
+
驳
|
5143 |
+
砼
|
5144 |
+
咛
|
5145 |
+
澄
|
5146 |
+
樨
|
5147 |
+
蹈
|
5148 |
+
宙
|
5149 |
+
澍
|
5150 |
+
倍
|
5151 |
+
貔
|
5152 |
+
操
|
5153 |
+
勇
|
5154 |
+
蟠
|
5155 |
+
摈
|
5156 |
+
砧
|
5157 |
+
虬
|
5158 |
+
够
|
5159 |
+
缁
|
5160 |
+
悦
|
5161 |
+
藿
|
5162 |
+
撸
|
5163 |
+
艹
|
5164 |
+
摁
|
5165 |
+
淹
|
5166 |
+
豇
|
5167 |
+
虎
|
5168 |
+
榭
|
5169 |
+
ˉ
|
5170 |
+
吱
|
5171 |
+
d
|
5172 |
+
°
|
5173 |
+
喧
|
5174 |
+
荀
|
5175 |
+
踱
|
5176 |
+
侮
|
5177 |
+
奋
|
5178 |
+
偕
|
5179 |
+
饷
|
5180 |
+
犍
|
5181 |
+
惮
|
5182 |
+
坑
|
5183 |
+
璎
|
5184 |
+
徘
|
5185 |
+
宛
|
5186 |
+
妆
|
5187 |
+
袈
|
5188 |
+
倩
|
5189 |
+
窦
|
5190 |
+
昂
|
5191 |
+
荏
|
5192 |
+
乖
|
5193 |
+
K
|
5194 |
+
怅
|
5195 |
+
撰
|
5196 |
+
鳙
|
5197 |
+
牙
|
5198 |
+
袁
|
5199 |
+
酞
|
5200 |
+
X
|
5201 |
+
痿
|
5202 |
+
琼
|
5203 |
+
闸
|
5204 |
+
雁
|
5205 |
+
趾
|
5206 |
+
荚
|
5207 |
+
虻
|
5208 |
+
涝
|
5209 |
+
《
|
5210 |
+
杏
|
5211 |
+
韭
|
5212 |
+
偈
|
5213 |
+
烤
|
5214 |
+
绫
|
5215 |
+
鞘
|
5216 |
+
卉
|
5217 |
+
症
|
5218 |
+
遢
|
5219 |
+
蓥
|
5220 |
+
诋
|
5221 |
+
杭
|
5222 |
+
荨
|
5223 |
+
匆
|
5224 |
+
竣
|
5225 |
+
簪
|
5226 |
+
辙
|
5227 |
+
敕
|
5228 |
+
虞
|
5229 |
+
丹
|
5230 |
+
缭
|
5231 |
+
咩
|
5232 |
+
黟
|
5233 |
+
m
|
5234 |
+
淤
|
5235 |
+
瑕
|
5236 |
+
咂
|
5237 |
+
铉
|
5238 |
+
硼
|
5239 |
+
茨
|
5240 |
+
嶂
|
5241 |
+
痒
|
5242 |
+
畸
|
5243 |
+
敬
|
5244 |
+
涿
|
5245 |
+
粪
|
5246 |
+
窘
|
5247 |
+
熟
|
5248 |
+
叔
|
5249 |
+
嫔
|
5250 |
+
盾
|
5251 |
+
忱
|
5252 |
+
裘
|
5253 |
+
憾
|
5254 |
+
梵
|
5255 |
+
赡
|
5256 |
+
珙
|
5257 |
+
咯
|
5258 |
+
娘
|
5259 |
+
庙
|
5260 |
+
溯
|
5261 |
+
胺
|
5262 |
+
葱
|
5263 |
+
痪
|
5264 |
+
摊
|
5265 |
+
荷
|
5266 |
+
卞
|
5267 |
+
乒
|
5268 |
+
髦
|
5269 |
+
寐
|
5270 |
+
铭
|
5271 |
+
坩
|
5272 |
+
胗
|
5273 |
+
枷
|
5274 |
+
爆
|
5275 |
+
溟
|
5276 |
+
嚼
|
5277 |
+
羚
|
5278 |
+
砬
|
5279 |
+
轨
|
5280 |
+
惊
|
5281 |
+
挠
|
5282 |
+
罄
|
5283 |
+
竽
|
5284 |
+
菏
|
5285 |
+
氧
|
5286 |
+
浅
|
5287 |
+
楣
|
5288 |
+
盼
|
5289 |
+
枢
|
5290 |
+
炸
|
5291 |
+
阆
|
5292 |
+
杯
|
5293 |
+
谏
|
5294 |
+
噬
|
5295 |
+
淇
|
5296 |
+
渺
|
5297 |
+
俪
|
5298 |
+
秆
|
5299 |
+
墓
|
5300 |
+
泪
|
5301 |
+
跻
|
5302 |
+
砌
|
5303 |
+
痰
|
5304 |
+
垡
|
5305 |
+
渡
|
5306 |
+
耽
|
5307 |
+
釜
|
5308 |
+
讶
|
5309 |
+
鳎
|
5310 |
+
煞
|
5311 |
+
呗
|
5312 |
+
韶
|
5313 |
+
舶
|
5314 |
+
绷
|
5315 |
+
鹳
|
5316 |
+
缜
|
5317 |
+
旷
|
5318 |
+
铊
|
5319 |
+
皱
|
5320 |
+
龌
|
5321 |
+
檀
|
5322 |
+
霖
|
5323 |
+
奄
|
5324 |
+
槐
|
5325 |
+
艳
|
5326 |
+
蝶
|
5327 |
+
旋
|
5328 |
+
哝
|
5329 |
+
赶
|
5330 |
+
骞
|
5331 |
+
蚧
|
5332 |
+
腊
|
5333 |
+
盈
|
5334 |
+
丁
|
5335 |
+
`
|
5336 |
+
蜚
|
5337 |
+
矸
|
5338 |
+
蝙
|
5339 |
+
睨
|
5340 |
+
嚓
|
5341 |
+
僻
|
5342 |
+
鬼
|
5343 |
+
醴
|
5344 |
+
夜
|
5345 |
+
彝
|
5346 |
+
磊
|
5347 |
+
笔
|
5348 |
+
拔
|
5349 |
+
栀
|
5350 |
+
糕
|
5351 |
+
厦
|
5352 |
+
邰
|
5353 |
+
纫
|
5354 |
+
逭
|
5355 |
+
纤
|
5356 |
+
眦
|
5357 |
+
膊
|
5358 |
+
馍
|
5359 |
+
躇
|
5360 |
+
烯
|
5361 |
+
蘼
|
5362 |
+
冬
|
5363 |
+
诤
|
5364 |
+
暄
|
5365 |
+
骶
|
5366 |
+
哑
|
5367 |
+
瘠
|
5368 |
+
」
|
5369 |
+
臊
|
5370 |
+
丕
|
5371 |
+
愈
|
5372 |
+
咱
|
5373 |
+
螺
|
5374 |
+
擅
|
5375 |
+
跋
|
5376 |
+
搏
|
5377 |
+
硪
|
5378 |
+
谄
|
5379 |
+
笠
|
5380 |
+
淡
|
5381 |
+
嘿
|
5382 |
+
骅
|
5383 |
+
谧
|
5384 |
+
鼎
|
5385 |
+
皋
|
5386 |
+
姚
|
5387 |
+
歼
|
5388 |
+
蠢
|
5389 |
+
驼
|
5390 |
+
耳
|
5391 |
+
胬
|
5392 |
+
挝
|
5393 |
+
涯
|
5394 |
+
狗
|
5395 |
+
蒽
|
5396 |
+
孓
|
5397 |
+
犷
|
5398 |
+
凉
|
5399 |
+
芦
|
5400 |
+
箴
|
5401 |
+
铤
|
5402 |
+
孤
|
5403 |
+
嘛
|
5404 |
+
坤
|
5405 |
+
V
|
5406 |
+
茴
|
5407 |
+
朦
|
5408 |
+
挞
|
5409 |
+
尖
|
5410 |
+
橙
|
5411 |
+
诞
|
5412 |
+
搴
|
5413 |
+
碇
|
5414 |
+
洵
|
5415 |
+
浚
|
5416 |
+
帚
|
5417 |
+
蜍
|
5418 |
+
漯
|
5419 |
+
柘
|
5420 |
+
嚎
|
5421 |
+
讽
|
5422 |
+
芭
|
5423 |
+
荤
|
5424 |
+
咻
|
5425 |
+
祠
|
5426 |
+
秉
|
5427 |
+
跖
|
5428 |
+
埃
|
5429 |
+
吓
|
5430 |
+
糯
|
5431 |
+
眷
|
5432 |
+
馒
|
5433 |
+
惹
|
5434 |
+
娼
|
5435 |
+
鲑
|
5436 |
+
嫩
|
5437 |
+
讴
|
5438 |
+
轮
|
5439 |
+
瞥
|
5440 |
+
靶
|
5441 |
+
褚
|
5442 |
+
乏
|
5443 |
+
缤
|
5444 |
+
宋
|
5445 |
+
帧
|
5446 |
+
删
|
5447 |
+
驱
|
5448 |
+
碎
|
5449 |
+
扑
|
5450 |
+
俩
|
5451 |
+
俄
|
5452 |
+
偏
|
5453 |
+
涣
|
5454 |
+
竹
|
5455 |
+
噱
|
5456 |
+
皙
|
5457 |
+
佰
|
5458 |
+
渚
|
5459 |
+
唧
|
5460 |
+
斡
|
5461 |
+
#
|
5462 |
+
镉
|
5463 |
+
刀
|
5464 |
+
崎
|
5465 |
+
筐
|
5466 |
+
佣
|
5467 |
+
夭
|
5468 |
+
贰
|
5469 |
+
肴
|
5470 |
+
峙
|
5471 |
+
哔
|
5472 |
+
艿
|
5473 |
+
匐
|
5474 |
+
牺
|
5475 |
+
镛
|
5476 |
+
缘
|
5477 |
+
仡
|
5478 |
+
嫡
|
5479 |
+
劣
|
5480 |
+
枸
|
5481 |
+
堀
|
5482 |
+
梨
|
5483 |
+
簿
|
5484 |
+
鸭
|
5485 |
+
蒸
|
5486 |
+
亦
|
5487 |
+
稽
|
5488 |
+
浴
|
5489 |
+
{
|
5490 |
+
衢
|
5491 |
+
束
|
5492 |
+
槲
|
5493 |
+
j
|
5494 |
+
阁
|
5495 |
+
揍
|
5496 |
+
疥
|
5497 |
+
棋
|
5498 |
+
潋
|
5499 |
+
聪
|
5500 |
+
窜
|
5501 |
+
乓
|
5502 |
+
睛
|
5503 |
+
插
|
5504 |
+
冉
|
5505 |
+
阪
|
5506 |
+
苍
|
5507 |
+
搽
|
5508 |
+
「
|
5509 |
+
蟾
|
5510 |
+
螟
|
5511 |
+
幸
|
5512 |
+
仇
|
5513 |
+
樽
|
5514 |
+
撂
|
5515 |
+
慢
|
5516 |
+
跤
|
5517 |
+
幔
|
5518 |
+
俚
|
5519 |
+
淅
|
5520 |
+
覃
|
5521 |
+
觊
|
5522 |
+
溶
|
5523 |
+
妖
|
5524 |
+
帛
|
5525 |
+
侨
|
5526 |
+
曰
|
5527 |
+
妾
|
5528 |
+
泗
|
5529 |
+
·
|
5530 |
+
:
|
5531 |
+
瀘
|
5532 |
+
風
|
5533 |
+
Ë
|
5534 |
+
(
|
5535 |
+
)
|
5536 |
+
∶
|
5537 |
+
紅
|
5538 |
+
紗
|
5539 |
+
瑭
|
5540 |
+
雲
|
5541 |
+
頭
|
5542 |
+
鶏
|
5543 |
+
財
|
5544 |
+
許
|
5545 |
+
•
|
5546 |
+
¥
|
5547 |
+
樂
|
5548 |
+
焗
|
5549 |
+
麗
|
5550 |
+
—
|
5551 |
+
;
|
5552 |
+
滙
|
5553 |
+
東
|
5554 |
+
榮
|
5555 |
+
繪
|
5556 |
+
興
|
5557 |
+
…
|
5558 |
+
門
|
5559 |
+
業
|
5560 |
+
π
|
5561 |
+
楊
|
5562 |
+
國
|
5563 |
+
顧
|
5564 |
+
é
|
5565 |
+
盤
|
5566 |
+
寳
|
5567 |
+
Λ
|
5568 |
+
龍
|
5569 |
+
鳳
|
5570 |
+
島
|
5571 |
+
誌
|
5572 |
+
緣
|
5573 |
+
結
|
5574 |
+
銭
|
5575 |
+
萬
|
5576 |
+
勝
|
5577 |
+
祎
|
5578 |
+
璟
|
5579 |
+
優
|
5580 |
+
歡
|
5581 |
+
臨
|
5582 |
+
時
|
5583 |
+
購
|
5584 |
+
=
|
5585 |
+
★
|
5586 |
+
藍
|
5587 |
+
昇
|
5588 |
+
鐵
|
5589 |
+
觀
|
5590 |
+
勅
|
5591 |
+
農
|
5592 |
+
聲
|
5593 |
+
畫
|
5594 |
+
兿
|
5595 |
+
術
|
5596 |
+
發
|
5597 |
+
劉
|
5598 |
+
記
|
5599 |
+
專
|
5600 |
+
耑
|
5601 |
+
園
|
5602 |
+
書
|
5603 |
+
壴
|
5604 |
+
種
|
5605 |
+
Ο
|
5606 |
+
●
|
5607 |
+
褀
|
5608 |
+
號
|
5609 |
+
銀
|
5610 |
+
匯
|
5611 |
+
敟
|
5612 |
+
锘
|
5613 |
+
葉
|
5614 |
+
橪
|
5615 |
+
廣
|
5616 |
+
進
|
5617 |
+
蒄
|
5618 |
+
鑽
|
5619 |
+
阝
|
5620 |
+
祙
|
5621 |
+
貢
|
5622 |
+
鍋
|
5623 |
+
豊
|
5624 |
+
夬
|
5625 |
+
喆
|
5626 |
+
團
|
5627 |
+
閣
|
5628 |
+
開
|
5629 |
+
燁
|
5630 |
+
賓
|
5631 |
+
館
|
5632 |
+
酡
|
5633 |
+
沔
|
5634 |
+
順
|
5635 |
+
+
|
5636 |
+
硚
|
5637 |
+
劵
|
5638 |
+
饸
|
5639 |
+
陽
|
5640 |
+
車
|
5641 |
+
湓
|
5642 |
+
復
|
5643 |
+
萊
|
5644 |
+
氣
|
5645 |
+
軒
|
5646 |
+
華
|
5647 |
+
堃
|
5648 |
+
迮
|
5649 |
+
纟
|
5650 |
+
戶
|
5651 |
+
馬
|
5652 |
+
學
|
5653 |
+
裡
|
5654 |
+
電
|
5655 |
+
嶽
|
5656 |
+
獨
|
5657 |
+
マ
|
5658 |
+
シ
|
5659 |
+
サ
|
5660 |
+
ジ
|
5661 |
+
燘
|
5662 |
+
袪
|
5663 |
+
環
|
5664 |
+
❤
|
5665 |
+
臺
|
5666 |
+
灣
|
5667 |
+
専
|
5668 |
+
賣
|
5669 |
+
孖
|
5670 |
+
聖
|
5671 |
+
攝
|
5672 |
+
線
|
5673 |
+
▪
|
5674 |
+
α
|
5675 |
+
傢
|
5676 |
+
俬
|
5677 |
+
夢
|
5678 |
+
達
|
5679 |
+
莊
|
5680 |
+
喬
|
5681 |
+
貝
|
5682 |
+
薩
|
5683 |
+
劍
|
5684 |
+
羅
|
5685 |
+
壓
|
5686 |
+
棛
|
5687 |
+
饦
|
5688 |
+
尃
|
5689 |
+
璈
|
5690 |
+
囍
|
5691 |
+
醫
|
5692 |
+
G
|
5693 |
+
I
|
5694 |
+
A
|
5695 |
+
#
|
5696 |
+
N
|
5697 |
+
鷄
|
5698 |
+
髙
|
5699 |
+
嬰
|
5700 |
+
啓
|
5701 |
+
約
|
5702 |
+
隹
|
5703 |
+
潔
|
5704 |
+
賴
|
5705 |
+
藝
|
5706 |
+
~
|
5707 |
+
寶
|
5708 |
+
籣
|
5709 |
+
麺
|
5710 |
+
|
5711 |
+
嶺
|
5712 |
+
√
|
5713 |
+
義
|
5714 |
+
網
|
5715 |
+
峩
|
5716 |
+
長
|
5717 |
+
∧
|
5718 |
+
魚
|
5719 |
+
機
|
5720 |
+
構
|
5721 |
+
②
|
5722 |
+
鳯
|
5723 |
+
偉
|
5724 |
+
L
|
5725 |
+
B
|
5726 |
+
㙟
|
5727 |
+
畵
|
5728 |
+
鴿
|
5729 |
+
'
|
5730 |
+
詩
|
5731 |
+
溝
|
5732 |
+
嚞
|
5733 |
+
屌
|
5734 |
+
藔
|
5735 |
+
佧
|
5736 |
+
玥
|
5737 |
+
蘭
|
5738 |
+
織
|
5739 |
+
1
|
5740 |
+
3
|
5741 |
+
9
|
5742 |
+
0
|
5743 |
+
7
|
5744 |
+
點
|
5745 |
+
砭
|
5746 |
+
鴨
|
5747 |
+
鋪
|
5748 |
+
銘
|
5749 |
+
廳
|
5750 |
+
弍
|
5751 |
+
‧
|
5752 |
+
創
|
5753 |
+
湯
|
5754 |
+
坶
|
5755 |
+
℃
|
5756 |
+
卩
|
5757 |
+
骝
|
5758 |
+
&
|
5759 |
+
烜
|
5760 |
+
荘
|
5761 |
+
當
|
5762 |
+
潤
|
5763 |
+
扞
|
5764 |
+
係
|
5765 |
+
懷
|
5766 |
+
碶
|
5767 |
+
钅
|
5768 |
+
蚨
|
5769 |
+
讠
|
5770 |
+
☆
|
5771 |
+
叢
|
5772 |
+
爲
|
5773 |
+
埗
|
5774 |
+
涫
|
5775 |
+
塗
|
5776 |
+
→
|
5777 |
+
楽
|
5778 |
+
現
|
5779 |
+
鯨
|
5780 |
+
愛
|
5781 |
+
瑪
|
5782 |
+
鈺
|
5783 |
+
忄
|
5784 |
+
悶
|
5785 |
+
藥
|
5786 |
+
飾
|
5787 |
+
樓
|
5788 |
+
視
|
5789 |
+
孬
|
5790 |
+
ㆍ
|
5791 |
+
燚
|
5792 |
+
苪
|
5793 |
+
師
|
5794 |
+
①
|
5795 |
+
丼
|
5796 |
+
锽
|
5797 |
+
│
|
5798 |
+
韓
|
5799 |
+
標
|
5800 |
+
è
|
5801 |
+
兒
|
5802 |
+
閏
|
5803 |
+
匋
|
5804 |
+
張
|
5805 |
+
漢
|
5806 |
+
Ü
|
5807 |
+
髪
|
5808 |
+
會
|
5809 |
+
閑
|
5810 |
+
檔
|
5811 |
+
習
|
5812 |
+
裝
|
5813 |
+
の
|
5814 |
+
峯
|
5815 |
+
菘
|
5816 |
+
輝
|
5817 |
+
И
|
5818 |
+
雞
|
5819 |
+
釣
|
5820 |
+
億
|
5821 |
+
浐
|
5822 |
+
K
|
5823 |
+
O
|
5824 |
+
R
|
5825 |
+
8
|
5826 |
+
H
|
5827 |
+
E
|
5828 |
+
P
|
5829 |
+
T
|
5830 |
+
W
|
5831 |
+
D
|
5832 |
+
S
|
5833 |
+
C
|
5834 |
+
M
|
5835 |
+
F
|
5836 |
+
姌
|
5837 |
+
饹
|
5838 |
+
»
|
5839 |
+
晞
|
5840 |
+
廰
|
5841 |
+
ä
|
5842 |
+
嵯
|
5843 |
+
鷹
|
5844 |
+
負
|
5845 |
+
飲
|
5846 |
+
絲
|
5847 |
+
冚
|
5848 |
+
楗
|
5849 |
+
澤
|
5850 |
+
綫
|
5851 |
+
區
|
5852 |
+
❋
|
5853 |
+
←
|
5854 |
+
質
|
5855 |
+
靑
|
5856 |
+
揚
|
5857 |
+
③
|
5858 |
+
滬
|
5859 |
+
統
|
5860 |
+
産
|
5861 |
+
協
|
5862 |
+
﹑
|
5863 |
+
乸
|
5864 |
+
畐
|
5865 |
+
經
|
5866 |
+
運
|
5867 |
+
際
|
5868 |
+
洺
|
5869 |
+
岽
|
5870 |
+
為
|
5871 |
+
粵
|
5872 |
+
諾
|
5873 |
+
崋
|
5874 |
+
豐
|
5875 |
+
碁
|
5876 |
+
ɔ
|
5877 |
+
V
|
5878 |
+
2
|
5879 |
+
6
|
5880 |
+
齋
|
5881 |
+
誠
|
5882 |
+
訂
|
5883 |
+
´
|
5884 |
+
勑
|
5885 |
+
雙
|
5886 |
+
陳
|
5887 |
+
無
|
5888 |
+
í
|
5889 |
+
泩
|
5890 |
+
媄
|
5891 |
+
夌
|
5892 |
+
刂
|
5893 |
+
i
|
5894 |
+
c
|
5895 |
+
t
|
5896 |
+
o
|
5897 |
+
r
|
5898 |
+
a
|
5899 |
+
嘢
|
5900 |
+
耄
|
5901 |
+
燴
|
5902 |
+
暃
|
5903 |
+
壽
|
5904 |
+
媽
|
5905 |
+
靈
|
5906 |
+
抻
|
5907 |
+
體
|
5908 |
+
唻
|
5909 |
+
É
|
5910 |
+
冮
|
5911 |
+
甹
|
5912 |
+
鎮
|
5913 |
+
錦
|
5914 |
+
ʌ
|
5915 |
+
蜛
|
5916 |
+
蠄
|
5917 |
+
尓
|
5918 |
+
駕
|
5919 |
+
戀
|
5920 |
+
飬
|
5921 |
+
逹
|
5922 |
+
倫
|
5923 |
+
貴
|
5924 |
+
極
|
5925 |
+
Я
|
5926 |
+
Й
|
5927 |
+
寬
|
5928 |
+
磚
|
5929 |
+
嶪
|
5930 |
+
郎
|
5931 |
+
職
|
5932 |
+
|
|
5933 |
+
間
|
5934 |
+
n
|
5935 |
+
d
|
5936 |
+
剎
|
5937 |
+
伈
|
5938 |
+
課
|
5939 |
+
飛
|
5940 |
+
橋
|
5941 |
+
瘊
|
5942 |
+
№
|
5943 |
+
譜
|
5944 |
+
骓
|
5945 |
+
圗
|
5946 |
+
滘
|
5947 |
+
縣
|
5948 |
+
粿
|
5949 |
+
咅
|
5950 |
+
養
|
5951 |
+
濤
|
5952 |
+
彳
|
5953 |
+
®
|
5954 |
+
%
|
5955 |
+
Ⅱ
|
5956 |
+
啰
|
5957 |
+
㴪
|
5958 |
+
見
|
5959 |
+
矞
|
5960 |
+
薬
|
5961 |
+
糁
|
5962 |
+
邨
|
5963 |
+
鲮
|
5964 |
+
顔
|
5965 |
+
罱
|
5966 |
+
З
|
5967 |
+
選
|
5968 |
+
話
|
5969 |
+
贏
|
5970 |
+
氪
|
5971 |
+
俵
|
5972 |
+
競
|
5973 |
+
瑩
|
5974 |
+
繡
|
5975 |
+
枱
|
5976 |
+
β
|
5977 |
+
綉
|
5978 |
+
á
|
5979 |
+
獅
|
5980 |
+
爾
|
5981 |
+
™
|
5982 |
+
麵
|
5983 |
+
戋
|
5984 |
+
淩
|
5985 |
+
徳
|
5986 |
+
個
|
5987 |
+
劇
|
5988 |
+
場
|
5989 |
+
務
|
5990 |
+
簡
|
5991 |
+
寵
|
5992 |
+
h
|
5993 |
+
實
|
5994 |
+
膠
|
5995 |
+
轱
|
5996 |
+
圖
|
5997 |
+
築
|
5998 |
+
嘣
|
5999 |
+
樹
|
6000 |
+
㸃
|
6001 |
+
營
|
6002 |
+
耵
|
6003 |
+
孫
|
6004 |
+
饃
|
6005 |
+
鄺
|
6006 |
+
飯
|
6007 |
+
麯
|
6008 |
+
遠
|
6009 |
+
輸
|
6010 |
+
坫
|
6011 |
+
孃
|
6012 |
+
乚
|
6013 |
+
閃
|
6014 |
+
鏢
|
6015 |
+
㎡
|
6016 |
+
題
|
6017 |
+
廠
|
6018 |
+
關
|
6019 |
+
↑
|
6020 |
+
爺
|
6021 |
+
將
|
6022 |
+
軍
|
6023 |
+
連
|
6024 |
+
篦
|
6025 |
+
覌
|
6026 |
+
參
|
6027 |
+
箸
|
6028 |
+
-
|
6029 |
+
窠
|
6030 |
+
棽
|
6031 |
+
寕
|
6032 |
+
夀
|
6033 |
+
爰
|
6034 |
+
歐
|
6035 |
+
呙
|
6036 |
+
閥
|
6037 |
+
頡
|
6038 |
+
熱
|
6039 |
+
雎
|
6040 |
+
垟
|
6041 |
+
裟
|
6042 |
+
凬
|
6043 |
+
勁
|
6044 |
+
帑
|
6045 |
+
馕
|
6046 |
+
夆
|
6047 |
+
疌
|
6048 |
+
枼
|
6049 |
+
馮
|
6050 |
+
貨
|
6051 |
+
蒤
|
6052 |
+
樸
|
6053 |
+
彧
|
6054 |
+
旸
|
6055 |
+
靜
|
6056 |
+
龢
|
6057 |
+
暢
|
6058 |
+
㐱
|
6059 |
+
鳥
|
6060 |
+
珺
|
6061 |
+
鏡
|
6062 |
+
灡
|
6063 |
+
爭
|
6064 |
+
堷
|
6065 |
+
廚
|
6066 |
+
Ó
|
6067 |
+
騰
|
6068 |
+
診
|
6069 |
+
┅
|
6070 |
+
蘇
|
6071 |
+
褔
|
6072 |
+
凱
|
6073 |
+
頂
|
6074 |
+
豕
|
6075 |
+
亞
|
6076 |
+
帥
|
6077 |
+
嘬
|
6078 |
+
⊥
|
6079 |
+
仺
|
6080 |
+
桖
|
6081 |
+
複
|
6082 |
+
饣
|
6083 |
+
絡
|
6084 |
+
穂
|
6085 |
+
顏
|
6086 |
+
棟
|
6087 |
+
納
|
6088 |
+
▏
|
6089 |
+
濟
|
6090 |
+
親
|
6091 |
+
設
|
6092 |
+
計
|
6093 |
+
攵
|
6094 |
+
埌
|
6095 |
+
烺
|
6096 |
+
ò
|
6097 |
+
頤
|
6098 |
+
燦
|
6099 |
+
蓮
|
6100 |
+
撻
|
6101 |
+
節
|
6102 |
+
講
|
6103 |
+
濱
|
6104 |
+
濃
|
6105 |
+
娽
|
6106 |
+
洳
|
6107 |
+
朿
|
6108 |
+
燈
|
6109 |
+
鈴
|
6110 |
+
護
|
6111 |
+
膚
|
6112 |
+
铔
|
6113 |
+
過
|
6114 |
+
補
|
6115 |
+
Z
|
6116 |
+
U
|
6117 |
+
5
|
6118 |
+
4
|
6119 |
+
坋
|
6120 |
+
闿
|
6121 |
+
䖝
|
6122 |
+
餘
|
6123 |
+
缐
|
6124 |
+
铞
|
6125 |
+
貿
|
6126 |
+
铪
|
6127 |
+
桼
|
6128 |
+
趙
|
6129 |
+
鍊
|
6130 |
+
[
|
6131 |
+
㐂
|
6132 |
+
垚
|
6133 |
+
菓
|
6134 |
+
揸
|
6135 |
+
捲
|
6136 |
+
鐘
|
6137 |
+
滏
|
6138 |
+
𣇉
|
6139 |
+
爍
|
6140 |
+
輪
|
6141 |
+
燜
|
6142 |
+
鴻
|
6143 |
+
鮮
|
6144 |
+
動
|
6145 |
+
鹞
|
6146 |
+
鷗
|
6147 |
+
丄
|
6148 |
+
慶
|
6149 |
+
鉌
|
6150 |
+
翥
|
6151 |
+
飮
|
6152 |
+
腸
|
6153 |
+
⇋
|
6154 |
+
漁
|
6155 |
+
覺
|
6156 |
+
來
|
6157 |
+
熘
|
6158 |
+
昴
|
6159 |
+
翏
|
6160 |
+
鲱
|
6161 |
+
圧
|
6162 |
+
鄉
|
6163 |
+
萭
|
6164 |
+
頔
|
6165 |
+
爐
|
6166 |
+
嫚
|
6167 |
+
г
|
6168 |
+
貭
|
6169 |
+
類
|
6170 |
+
聯
|
6171 |
+
幛
|
6172 |
+
輕
|
6173 |
+
訓
|
6174 |
+
鑒
|
6175 |
+
夋
|
6176 |
+
锨
|
6177 |
+
芃
|
6178 |
+
珣
|
6179 |
+
䝉
|
6180 |
+
扙
|
6181 |
+
嵐
|
6182 |
+
銷
|
6183 |
+
處
|
6184 |
+
ㄱ
|
6185 |
+
���
|
6186 |
+
誘
|
6187 |
+
苝
|
6188 |
+
歸
|
6189 |
+
儀
|
6190 |
+
燒
|
6191 |
+
楿
|
6192 |
+
內
|
6193 |
+
粢
|
6194 |
+
葒
|
6195 |
+
奧
|
6196 |
+
麥
|
6197 |
+
礻
|
6198 |
+
滿
|
6199 |
+
蠔
|
6200 |
+
穵
|
6201 |
+
瞭
|
6202 |
+
態
|
6203 |
+
鱬
|
6204 |
+
榞
|
6205 |
+
硂
|
6206 |
+
鄭
|
6207 |
+
黃
|
6208 |
+
煙
|
6209 |
+
祐
|
6210 |
+
奓
|
6211 |
+
逺
|
6212 |
+
*
|
6213 |
+
瑄
|
6214 |
+
獲
|
6215 |
+
聞
|
6216 |
+
薦
|
6217 |
+
讀
|
6218 |
+
這
|
6219 |
+
樣
|
6220 |
+
決
|
6221 |
+
問
|
6222 |
+
啟
|
6223 |
+
們
|
6224 |
+
執
|
6225 |
+
説
|
6226 |
+
轉
|
6227 |
+
單
|
6228 |
+
隨
|
6229 |
+
唘
|
6230 |
+
帶
|
6231 |
+
倉
|
6232 |
+
庫
|
6233 |
+
還
|
6234 |
+
贈
|
6235 |
+
尙
|
6236 |
+
皺
|
6237 |
+
■
|
6238 |
+
餅
|
6239 |
+
產
|
6240 |
+
○
|
6241 |
+
∈
|
6242 |
+
報
|
6243 |
+
狀
|
6244 |
+
楓
|
6245 |
+
賠
|
6246 |
+
琯
|
6247 |
+
嗮
|
6248 |
+
禮
|
6249 |
+
`
|
6250 |
+
傳
|
6251 |
+
>
|
6252 |
+
≤
|
6253 |
+
嗞
|
6254 |
+
Φ
|
6255 |
+
≥
|
6256 |
+
換
|
6257 |
+
咭
|
6258 |
+
∣
|
6259 |
+
↓
|
6260 |
+
曬
|
6261 |
+
ε
|
6262 |
+
応
|
6263 |
+
寫
|
6264 |
+
″
|
6265 |
+
終
|
6266 |
+
様
|
6267 |
+
純
|
6268 |
+
費
|
6269 |
+
療
|
6270 |
+
聨
|
6271 |
+
凍
|
6272 |
+
壐
|
6273 |
+
郵
|
6274 |
+
ü
|
6275 |
+
黒
|
6276 |
+
∫
|
6277 |
+
製
|
6278 |
+
塊
|
6279 |
+
調
|
6280 |
+
軽
|
6281 |
+
確
|
6282 |
+
撃
|
6283 |
+
級
|
6284 |
+
馴
|
6285 |
+
Ⅲ
|
6286 |
+
涇
|
6287 |
+
繹
|
6288 |
+
數
|
6289 |
+
碼
|
6290 |
+
證
|
6291 |
+
狒
|
6292 |
+
処
|
6293 |
+
劑
|
6294 |
+
<
|
6295 |
+
晧
|
6296 |
+
賀
|
6297 |
+
衆
|
6298 |
+
]
|
6299 |
+
櫥
|
6300 |
+
兩
|
6301 |
+
陰
|
6302 |
+
絶
|
6303 |
+
對
|
6304 |
+
鯉
|
6305 |
+
憶
|
6306 |
+
◎
|
6307 |
+
p
|
6308 |
+
e
|
6309 |
+
Y
|
6310 |
+
蕒
|
6311 |
+
煖
|
6312 |
+
頓
|
6313 |
+
測
|
6314 |
+
試
|
6315 |
+
鼽
|
6316 |
+
僑
|
6317 |
+
碩
|
6318 |
+
妝
|
6319 |
+
帯
|
6320 |
+
≈
|
6321 |
+
鐡
|
6322 |
+
舖
|
6323 |
+
權
|
6324 |
+
喫
|
6325 |
+
倆
|
6326 |
+
ˋ
|
6327 |
+
該
|
6328 |
+
悅
|
6329 |
+
ā
|
6330 |
+
俫
|
6331 |
+
.
|
6332 |
+
f
|
6333 |
+
s
|
6334 |
+
b
|
6335 |
+
m
|
6336 |
+
k
|
6337 |
+
g
|
6338 |
+
u
|
6339 |
+
j
|
6340 |
+
貼
|
6341 |
+
淨
|
6342 |
+
濕
|
6343 |
+
針
|
6344 |
+
適
|
6345 |
+
備
|
6346 |
+
l
|
6347 |
+
/
|
6348 |
+
給
|
6349 |
+
謢
|
6350 |
+
強
|
6351 |
+
觸
|
6352 |
+
衛
|
6353 |
+
與
|
6354 |
+
⊙
|
6355 |
+
$
|
6356 |
+
緯
|
6357 |
+
變
|
6358 |
+
⑴
|
6359 |
+
⑵
|
6360 |
+
⑶
|
6361 |
+
㎏
|
6362 |
+
殺
|
6363 |
+
∩
|
6364 |
+
幚
|
6365 |
+
─
|
6366 |
+
價
|
6367 |
+
▲
|
6368 |
+
離
|
6369 |
+
ú
|
6370 |
+
ó
|
6371 |
+
飄
|
6372 |
+
烏
|
6373 |
+
関
|
6374 |
+
閟
|
6375 |
+
﹝
|
6376 |
+
﹞
|
6377 |
+
邏
|
6378 |
+
輯
|
6379 |
+
鍵
|
6380 |
+
驗
|
6381 |
+
訣
|
6382 |
+
導
|
6383 |
+
歷
|
6384 |
+
屆
|
6385 |
+
層
|
6386 |
+
▼
|
6387 |
+
儱
|
6388 |
+
錄
|
6389 |
+
熳
|
6390 |
+
ē
|
6391 |
+
艦
|
6392 |
+
吋
|
6393 |
+
錶
|
6394 |
+
辧
|
6395 |
+
飼
|
6396 |
+
顯
|
6397 |
+
④
|
6398 |
+
禦
|
6399 |
+
販
|
6400 |
+
気
|
6401 |
+
対
|
6402 |
+
枰
|
6403 |
+
閩
|
6404 |
+
紀
|
6405 |
+
幹
|
6406 |
+
瞓
|
6407 |
+
貊
|
6408 |
+
淚
|
6409 |
+
△
|
6410 |
+
眞
|
6411 |
+
墊
|
6412 |
+
Ω
|
6413 |
+
獻
|
6414 |
+
褲
|
6415 |
+
縫
|
6416 |
+
緑
|
6417 |
+
亜
|
6418 |
+
鉅
|
6419 |
+
餠
|
6420 |
+
{
|
6421 |
+
}
|
6422 |
+
◆
|
6423 |
+
蘆
|
6424 |
+
薈
|
6425 |
+
█
|
6426 |
+
◇
|
6427 |
+
溫
|
6428 |
+
彈
|
6429 |
+
晳
|
6430 |
+
粧
|
6431 |
+
犸
|
6432 |
+
穩
|
6433 |
+
訊
|
6434 |
+
崬
|
6435 |
+
凖
|
6436 |
+
熥
|
6437 |
+
П
|
6438 |
+
舊
|
6439 |
+
條
|
6440 |
+
紋
|
6441 |
+
圍
|
6442 |
+
Ⅳ
|
6443 |
+
筆
|
6444 |
+
尷
|
6445 |
+
難
|
6446 |
+
雜
|
6447 |
+
錯
|
6448 |
+
綁
|
6449 |
+
識
|
6450 |
+
頰
|
6451 |
+
鎖
|
6452 |
+
艶
|
6453 |
+
□
|
6454 |
+
殁
|
6455 |
+
殼
|
6456 |
+
⑧
|
6457 |
+
├
|
6458 |
+
▕
|
6459 |
+
鵬
|
6460 |
+
ǐ
|
6461 |
+
ō
|
6462 |
+
ǒ
|
6463 |
+
糝
|
6464 |
+
綱
|
6465 |
+
▎
|
6466 |
+
μ
|
6467 |
+
盜
|
6468 |
+
饅
|
6469 |
+
醬
|
6470 |
+
籤
|
6471 |
+
蓋
|
6472 |
+
釀
|
6473 |
+
鹽
|
6474 |
+
據
|
6475 |
+
à
|
6476 |
+
ɡ
|
6477 |
+
辦
|
6478 |
+
◥
|
6479 |
+
彐
|
6480 |
+
┌
|
6481 |
+
婦
|
6482 |
+
獸
|
6483 |
+
鲩
|
6484 |
+
伱
|
6485 |
+
ī
|
6486 |
+
蒟
|
6487 |
+
蒻
|
6488 |
+
齊
|
6489 |
+
袆
|
6490 |
+
腦
|
6491 |
+
寧
|
6492 |
+
凈
|
6493 |
+
妳
|
6494 |
+
煥
|
6495 |
+
詢
|
6496 |
+
偽
|
6497 |
+
謹
|
6498 |
+
啫
|
6499 |
+
鯽
|
6500 |
+
騷
|
6501 |
+
鱸
|
6502 |
+
損
|
6503 |
+
傷
|
6504 |
+
鎻
|
6505 |
+
髮
|
6506 |
+
買
|
6507 |
+
冏
|
6508 |
+
儥
|
6509 |
+
両
|
6510 |
+
﹢
|
6511 |
+
∞
|
6512 |
+
載
|
6513 |
+
喰
|
6514 |
+
z
|
6515 |
+
羙
|
6516 |
+
悵
|
6517 |
+
燙
|
6518 |
+
曉
|
6519 |
+
員
|
6520 |
+
組
|
6521 |
+
徹
|
6522 |
+
艷
|
6523 |
+
痠
|
6524 |
+
鋼
|
6525 |
+
鼙
|
6526 |
+
縮
|
6527 |
+
細
|
6528 |
+
嚒
|
6529 |
+
爯
|
6530 |
+
≠
|
6531 |
+
維
|
6532 |
+
"
|
6533 |
+
鱻
|
6534 |
+
壇
|
6535 |
+
厍
|
6536 |
+
帰
|
6537 |
+
浥
|
6538 |
+
犇
|
6539 |
+
薡
|
6540 |
+
軎
|
6541 |
+
²
|
6542 |
+
應
|
6543 |
+
醜
|
6544 |
+
刪
|
6545 |
+
緻
|
6546 |
+
鶴
|
6547 |
+
賜
|
6548 |
+
噁
|
6549 |
+
軌
|
6550 |
+
尨
|
6551 |
+
镔
|
6552 |
+
鷺
|
6553 |
+
槗
|
6554 |
+
彌
|
6555 |
+
葚
|
6556 |
+
濛
|
6557 |
+
請
|
6558 |
+
溇
|
6559 |
+
緹
|
6560 |
+
賢
|
6561 |
+
訪
|
6562 |
+
獴
|
6563 |
+
瑅
|
6564 |
+
資
|
6565 |
+
縤
|
6566 |
+
陣
|
6567 |
+
蕟
|
6568 |
+
栢
|
6569 |
+
韻
|
6570 |
+
祼
|
6571 |
+
恁
|
6572 |
+
伢
|
6573 |
+
謝
|
6574 |
+
劃
|
6575 |
+
涑
|
6576 |
+
總
|
6577 |
+
衖
|
6578 |
+
踺
|
6579 |
+
砋
|
6580 |
+
凉
|
6581 |
+
籃
|
6582 |
+
駿
|
6583 |
+
苼
|
6584 |
+
瘋
|
6585 |
+
昽
|
6586 |
+
紡
|
6587 |
+
驊
|
6588 |
+
腎
|
6589 |
+
﹗
|
6590 |
+
響
|
6591 |
+
杋
|
6592 |
+
剛
|
6593 |
+
嚴
|
6594 |
+
禪
|
6595 |
+
歓
|
6596 |
+
槍
|
6597 |
+
傘
|
6598 |
+
檸
|
6599 |
+
檫
|
6600 |
+
炣
|
6601 |
+
勢
|
6602 |
+
鏜
|
6603 |
+
鎢
|
6604 |
+
銑
|
6605 |
+
尐
|
6606 |
+
減
|
6607 |
+
奪
|
6608 |
+
惡
|
6609 |
+
θ
|
6610 |
+
僮
|
6611 |
+
婭
|
6612 |
+
臘
|
6613 |
+
ū
|
6614 |
+
ì
|
6615 |
+
殻
|
6616 |
+
鉄
|
6617 |
+
∑
|
6618 |
+
蛲
|
6619 |
+
焼
|
6620 |
+
緖
|
6621 |
+
續
|
6622 |
+
紹
|
6623 |
+
懮
|
deepdoc/models/rec.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c7cf60de2afd728d512f4190cf37455092b45f06175365c6fc58d8cd7e2a68b
|
3 |
+
size 10826336
|
deepdoc/models/tsr.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04c14c3e41802450a1f437a3865ce1a3186046262ea4d75c8975289687a43223
|
3 |
+
size 12243020
|
deepdoc/vision/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .ragFlow import RagFlow
|
2 |
+
|
3 |
+
__all__ = ['ragFlow']
|
deepdoc/vision/ocr.res
ADDED
@@ -0,0 +1,6623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'
|
2 |
+
疗
|
3 |
+
绚
|
4 |
+
诚
|
5 |
+
娇
|
6 |
+
溜
|
7 |
+
题
|
8 |
+
贿
|
9 |
+
者
|
10 |
+
廖
|
11 |
+
更
|
12 |
+
纳
|
13 |
+
加
|
14 |
+
奉
|
15 |
+
公
|
16 |
+
一
|
17 |
+
就
|
18 |
+
汴
|
19 |
+
计
|
20 |
+
与
|
21 |
+
路
|
22 |
+
房
|
23 |
+
原
|
24 |
+
妇
|
25 |
+
2
|
26 |
+
0
|
27 |
+
8
|
28 |
+
-
|
29 |
+
7
|
30 |
+
其
|
31 |
+
>
|
32 |
+
:
|
33 |
+
]
|
34 |
+
,
|
35 |
+
,
|
36 |
+
骑
|
37 |
+
刈
|
38 |
+
全
|
39 |
+
消
|
40 |
+
昏
|
41 |
+
傈
|
42 |
+
安
|
43 |
+
久
|
44 |
+
钟
|
45 |
+
嗅
|
46 |
+
不
|
47 |
+
影
|
48 |
+
处
|
49 |
+
驽
|
50 |
+
蜿
|
51 |
+
资
|
52 |
+
关
|
53 |
+
椤
|
54 |
+
地
|
55 |
+
瘸
|
56 |
+
专
|
57 |
+
问
|
58 |
+
忖
|
59 |
+
票
|
60 |
+
嫉
|
61 |
+
炎
|
62 |
+
韵
|
63 |
+
要
|
64 |
+
月
|
65 |
+
田
|
66 |
+
节
|
67 |
+
陂
|
68 |
+
鄙
|
69 |
+
捌
|
70 |
+
备
|
71 |
+
拳
|
72 |
+
伺
|
73 |
+
眼
|
74 |
+
网
|
75 |
+
盎
|
76 |
+
大
|
77 |
+
傍
|
78 |
+
心
|
79 |
+
东
|
80 |
+
愉
|
81 |
+
汇
|
82 |
+
蹿
|
83 |
+
科
|
84 |
+
每
|
85 |
+
业
|
86 |
+
里
|
87 |
+
航
|
88 |
+
晏
|
89 |
+
字
|
90 |
+
平
|
91 |
+
录
|
92 |
+
先
|
93 |
+
1
|
94 |
+
3
|
95 |
+
彤
|
96 |
+
鲶
|
97 |
+
产
|
98 |
+
稍
|
99 |
+
督
|
100 |
+
腴
|
101 |
+
有
|
102 |
+
象
|
103 |
+
岳
|
104 |
+
注
|
105 |
+
绍
|
106 |
+
在
|
107 |
+
泺
|
108 |
+
文
|
109 |
+
定
|
110 |
+
核
|
111 |
+
名
|
112 |
+
水
|
113 |
+
过
|
114 |
+
理
|
115 |
+
让
|
116 |
+
偷
|
117 |
+
率
|
118 |
+
等
|
119 |
+
这
|
120 |
+
发
|
121 |
+
”
|
122 |
+
为
|
123 |
+
含
|
124 |
+
肥
|
125 |
+
酉
|
126 |
+
相
|
127 |
+
鄱
|
128 |
+
七
|
129 |
+
编
|
130 |
+
猥
|
131 |
+
锛
|
132 |
+
日
|
133 |
+
镀
|
134 |
+
蒂
|
135 |
+
掰
|
136 |
+
倒
|
137 |
+
辆
|
138 |
+
栾
|
139 |
+
栗
|
140 |
+
综
|
141 |
+
涩
|
142 |
+
州
|
143 |
+
雌
|
144 |
+
滑
|
145 |
+
馀
|
146 |
+
了
|
147 |
+
机
|
148 |
+
块
|
149 |
+
司
|
150 |
+
宰
|
151 |
+
甙
|
152 |
+
兴
|
153 |
+
矽
|
154 |
+
抚
|
155 |
+
保
|
156 |
+
用
|
157 |
+
沧
|
158 |
+
秩
|
159 |
+
如
|
160 |
+
收
|
161 |
+
息
|
162 |
+
滥
|
163 |
+
页
|
164 |
+
疑
|
165 |
+
埠
|
166 |
+
!
|
167 |
+
!
|
168 |
+
姥
|
169 |
+
异
|
170 |
+
橹
|
171 |
+
钇
|
172 |
+
向
|
173 |
+
下
|
174 |
+
跄
|
175 |
+
的
|
176 |
+
椴
|
177 |
+
沫
|
178 |
+
国
|
179 |
+
绥
|
180 |
+
獠
|
181 |
+
报
|
182 |
+
开
|
183 |
+
民
|
184 |
+
蜇
|
185 |
+
何
|
186 |
+
分
|
187 |
+
凇
|
188 |
+
长
|
189 |
+
讥
|
190 |
+
藏
|
191 |
+
掏
|
192 |
+
施
|
193 |
+
羽
|
194 |
+
中
|
195 |
+
讲
|
196 |
+
派
|
197 |
+
嘟
|
198 |
+
人
|
199 |
+
提
|
200 |
+
浼
|
201 |
+
间
|
202 |
+
世
|
203 |
+
而
|
204 |
+
古
|
205 |
+
多
|
206 |
+
倪
|
207 |
+
唇
|
208 |
+
饯
|
209 |
+
控
|
210 |
+
庚
|
211 |
+
首
|
212 |
+
赛
|
213 |
+
蜓
|
214 |
+
味
|
215 |
+
断
|
216 |
+
制
|
217 |
+
觉
|
218 |
+
技
|
219 |
+
替
|
220 |
+
艰
|
221 |
+
溢
|
222 |
+
潮
|
223 |
+
夕
|
224 |
+
钺
|
225 |
+
外
|
226 |
+
摘
|
227 |
+
枋
|
228 |
+
动
|
229 |
+
双
|
230 |
+
单
|
231 |
+
啮
|
232 |
+
户
|
233 |
+
枇
|
234 |
+
确
|
235 |
+
锦
|
236 |
+
曜
|
237 |
+
杜
|
238 |
+
或
|
239 |
+
能
|
240 |
+
效
|
241 |
+
霜
|
242 |
+
盒
|
243 |
+
然
|
244 |
+
侗
|
245 |
+
电
|
246 |
+
晁
|
247 |
+
放
|
248 |
+
步
|
249 |
+
鹃
|
250 |
+
新
|
251 |
+
杖
|
252 |
+
蜂
|
253 |
+
吒
|
254 |
+
濂
|
255 |
+
瞬
|
256 |
+
评
|
257 |
+
总
|
258 |
+
隍
|
259 |
+
对
|
260 |
+
独
|
261 |
+
合
|
262 |
+
也
|
263 |
+
是
|
264 |
+
府
|
265 |
+
青
|
266 |
+
天
|
267 |
+
诲
|
268 |
+
墙
|
269 |
+
组
|
270 |
+
滴
|
271 |
+
级
|
272 |
+
邀
|
273 |
+
帘
|
274 |
+
示
|
275 |
+
已
|
276 |
+
时
|
277 |
+
骸
|
278 |
+
仄
|
279 |
+
泅
|
280 |
+
和
|
281 |
+
遨
|
282 |
+
店
|
283 |
+
雇
|
284 |
+
疫
|
285 |
+
持
|
286 |
+
巍
|
287 |
+
踮
|
288 |
+
境
|
289 |
+
只
|
290 |
+
亨
|
291 |
+
目
|
292 |
+
鉴
|
293 |
+
崤
|
294 |
+
闲
|
295 |
+
体
|
296 |
+
泄
|
297 |
+
杂
|
298 |
+
作
|
299 |
+
般
|
300 |
+
轰
|
301 |
+
化
|
302 |
+
解
|
303 |
+
迂
|
304 |
+
诿
|
305 |
+
蛭
|
306 |
+
璀
|
307 |
+
腾
|
308 |
+
告
|
309 |
+
版
|
310 |
+
服
|
311 |
+
省
|
312 |
+
师
|
313 |
+
小
|
314 |
+
规
|
315 |
+
程
|
316 |
+
线
|
317 |
+
海
|
318 |
+
办
|
319 |
+
引
|
320 |
+
二
|
321 |
+
桧
|
322 |
+
牌
|
323 |
+
砺
|
324 |
+
洄
|
325 |
+
裴
|
326 |
+
修
|
327 |
+
图
|
328 |
+
痫
|
329 |
+
胡
|
330 |
+
许
|
331 |
+
犊
|
332 |
+
事
|
333 |
+
郛
|
334 |
+
基
|
335 |
+
柴
|
336 |
+
呼
|
337 |
+
食
|
338 |
+
研
|
339 |
+
奶
|
340 |
+
律
|
341 |
+
蛋
|
342 |
+
因
|
343 |
+
葆
|
344 |
+
察
|
345 |
+
戏
|
346 |
+
褒
|
347 |
+
戒
|
348 |
+
再
|
349 |
+
李
|
350 |
+
骁
|
351 |
+
工
|
352 |
+
貂
|
353 |
+
油
|
354 |
+
鹅
|
355 |
+
章
|
356 |
+
啄
|
357 |
+
休
|
358 |
+
场
|
359 |
+
给
|
360 |
+
睡
|
361 |
+
纷
|
362 |
+
豆
|
363 |
+
器
|
364 |
+
捎
|
365 |
+
说
|
366 |
+
敏
|
367 |
+
学
|
368 |
+
会
|
369 |
+
浒
|
370 |
+
设
|
371 |
+
诊
|
372 |
+
格
|
373 |
+
廓
|
374 |
+
查
|
375 |
+
来
|
376 |
+
霓
|
377 |
+
室
|
378 |
+
溆
|
379 |
+
¢
|
380 |
+
诡
|
381 |
+
寥
|
382 |
+
焕
|
383 |
+
舜
|
384 |
+
柒
|
385 |
+
狐
|
386 |
+
回
|
387 |
+
戟
|
388 |
+
砾
|
389 |
+
厄
|
390 |
+
实
|
391 |
+
翩
|
392 |
+
尿
|
393 |
+
五
|
394 |
+
入
|
395 |
+
径
|
396 |
+
惭
|
397 |
+
喹
|
398 |
+
股
|
399 |
+
宇
|
400 |
+
篝
|
401 |
+
|
|
402 |
+
;
|
403 |
+
美
|
404 |
+
期
|
405 |
+
云
|
406 |
+
九
|
407 |
+
祺
|
408 |
+
扮
|
409 |
+
靠
|
410 |
+
锝
|
411 |
+
槌
|
412 |
+
系
|
413 |
+
企
|
414 |
+
酰
|
415 |
+
阊
|
416 |
+
暂
|
417 |
+
蚕
|
418 |
+
忻
|
419 |
+
豁
|
420 |
+
本
|
421 |
+
羹
|
422 |
+
执
|
423 |
+
条
|
424 |
+
钦
|
425 |
+
H
|
426 |
+
獒
|
427 |
+
限
|
428 |
+
进
|
429 |
+
季
|
430 |
+
楦
|
431 |
+
于
|
432 |
+
芘
|
433 |
+
玖
|
434 |
+
铋
|
435 |
+
茯
|
436 |
+
未
|
437 |
+
答
|
438 |
+
粘
|
439 |
+
括
|
440 |
+
样
|
441 |
+
精
|
442 |
+
欠
|
443 |
+
矢
|
444 |
+
甥
|
445 |
+
帷
|
446 |
+
嵩
|
447 |
+
扣
|
448 |
+
令
|
449 |
+
仔
|
450 |
+
风
|
451 |
+
皈
|
452 |
+
行
|
453 |
+
支
|
454 |
+
部
|
455 |
+
蓉
|
456 |
+
刮
|
457 |
+
站
|
458 |
+
蜡
|
459 |
+
救
|
460 |
+
钊
|
461 |
+
汗
|
462 |
+
松
|
463 |
+
嫌
|
464 |
+
成
|
465 |
+
可
|
466 |
+
.
|
467 |
+
鹤
|
468 |
+
院
|
469 |
+
从
|
470 |
+
交
|
471 |
+
政
|
472 |
+
怕
|
473 |
+
活
|
474 |
+
调
|
475 |
+
球
|
476 |
+
局
|
477 |
+
验
|
478 |
+
髌
|
479 |
+
第
|
480 |
+
韫
|
481 |
+
谗
|
482 |
+
串
|
483 |
+
到
|
484 |
+
圆
|
485 |
+
年
|
486 |
+
米
|
487 |
+
/
|
488 |
+
*
|
489 |
+
友
|
490 |
+
忿
|
491 |
+
检
|
492 |
+
区
|
493 |
+
看
|
494 |
+
自
|
495 |
+
敢
|
496 |
+
刃
|
497 |
+
个
|
498 |
+
兹
|
499 |
+
弄
|
500 |
+
流
|
501 |
+
留
|
502 |
+
同
|
503 |
+
没
|
504 |
+
齿
|
505 |
+
星
|
506 |
+
聆
|
507 |
+
轼
|
508 |
+
湖
|
509 |
+
什
|
510 |
+
三
|
511 |
+
建
|
512 |
+
蛔
|
513 |
+
儿
|
514 |
+
椋
|
515 |
+
汕
|
516 |
+
震
|
517 |
+
颧
|
518 |
+
鲤
|
519 |
+
跟
|
520 |
+
力
|
521 |
+
情
|
522 |
+
璺
|
523 |
+
铨
|
524 |
+
陪
|
525 |
+
务
|
526 |
+
指
|
527 |
+
族
|
528 |
+
训
|
529 |
+
滦
|
530 |
+
鄣
|
531 |
+
濮
|
532 |
+
扒
|
533 |
+
商
|
534 |
+
箱
|
535 |
+
十
|
536 |
+
召
|
537 |
+
慷
|
538 |
+
辗
|
539 |
+
所
|
540 |
+
莞
|
541 |
+
管
|
542 |
+
护
|
543 |
+
臭
|
544 |
+
横
|
545 |
+
硒
|
546 |
+
嗓
|
547 |
+
接
|
548 |
+
侦
|
549 |
+
六
|
550 |
+
露
|
551 |
+
党
|
552 |
+
馋
|
553 |
+
驾
|
554 |
+
剖
|
555 |
+
高
|
556 |
+
侬
|
557 |
+
妪
|
558 |
+
幂
|
559 |
+
猗
|
560 |
+
绺
|
561 |
+
骐
|
562 |
+
央
|
563 |
+
酐
|
564 |
+
孝
|
565 |
+
筝
|
566 |
+
课
|
567 |
+
徇
|
568 |
+
缰
|
569 |
+
门
|
570 |
+
男
|
571 |
+
西
|
572 |
+
项
|
573 |
+
句
|
574 |
+
谙
|
575 |
+
瞒
|
576 |
+
秃
|
577 |
+
篇
|
578 |
+
教
|
579 |
+
碲
|
580 |
+
罚
|
581 |
+
声
|
582 |
+
呐
|
583 |
+
景
|
584 |
+
前
|
585 |
+
富
|
586 |
+
嘴
|
587 |
+
鳌
|
588 |
+
稀
|
589 |
+
免
|
590 |
+
朋
|
591 |
+
啬
|
592 |
+
睐
|
593 |
+
去
|
594 |
+
赈
|
595 |
+
鱼
|
596 |
+
住
|
597 |
+
肩
|
598 |
+
愕
|
599 |
+
速
|
600 |
+
旁
|
601 |
+
波
|
602 |
+
厅
|
603 |
+
健
|
604 |
+
茼
|
605 |
+
厥
|
606 |
+
鲟
|
607 |
+
谅
|
608 |
+
投
|
609 |
+
攸
|
610 |
+
炔
|
611 |
+
数
|
612 |
+
方
|
613 |
+
击
|
614 |
+
呋
|
615 |
+
谈
|
616 |
+
绩
|
617 |
+
别
|
618 |
+
愫
|
619 |
+
僚
|
620 |
+
躬
|
621 |
+
鹧
|
622 |
+
胪
|
623 |
+
炳
|
624 |
+
招
|
625 |
+
喇
|
626 |
+
膨
|
627 |
+
泵
|
628 |
+
蹦
|
629 |
+
毛
|
630 |
+
结
|
631 |
+
5
|
632 |
+
4
|
633 |
+
谱
|
634 |
+
识
|
635 |
+
陕
|
636 |
+
粽
|
637 |
+
婚
|
638 |
+
拟
|
639 |
+
构
|
640 |
+
且
|
641 |
+
搜
|
642 |
+
任
|
643 |
+
潘
|
644 |
+
比
|
645 |
+
郢
|
646 |
+
妨
|
647 |
+
醪
|
648 |
+
陀
|
649 |
+
桔
|
650 |
+
碘
|
651 |
+
扎
|
652 |
+
选
|
653 |
+
哈
|
654 |
+
骷
|
655 |
+
楷
|
656 |
+
亿
|
657 |
+
明
|
658 |
+
缆
|
659 |
+
脯
|
660 |
+
监
|
661 |
+
睫
|
662 |
+
逻
|
663 |
+
婵
|
664 |
+
共
|
665 |
+
赴
|
666 |
+
淝
|
667 |
+
凡
|
668 |
+
惦
|
669 |
+
及
|
670 |
+
达
|
671 |
+
揖
|
672 |
+
谩
|
673 |
+
澹
|
674 |
+
减
|
675 |
+
焰
|
676 |
+
蛹
|
677 |
+
番
|
678 |
+
祁
|
679 |
+
柏
|
680 |
+
员
|
681 |
+
禄
|
682 |
+
怡
|
683 |
+
峤
|
684 |
+
龙
|
685 |
+
白
|
686 |
+
叽
|
687 |
+
生
|
688 |
+
闯
|
689 |
+
起
|
690 |
+
细
|
691 |
+
装
|
692 |
+
谕
|
693 |
+
竟
|
694 |
+
聚
|
695 |
+
钙
|
696 |
+
上
|
697 |
+
导
|
698 |
+
渊
|
699 |
+
按
|
700 |
+
艾
|
701 |
+
辘
|
702 |
+
挡
|
703 |
+
耒
|
704 |
+
盹
|
705 |
+
饪
|
706 |
+
臀
|
707 |
+
记
|
708 |
+
邮
|
709 |
+
蕙
|
710 |
+
受
|
711 |
+
各
|
712 |
+
医
|
713 |
+
搂
|
714 |
+
普
|
715 |
+
滇
|
716 |
+
朗
|
717 |
+
茸
|
718 |
+
带
|
719 |
+
翻
|
720 |
+
酚
|
721 |
+
(
|
722 |
+
光
|
723 |
+
堤
|
724 |
+
墟
|
725 |
+
蔷
|
726 |
+
万
|
727 |
+
幻
|
728 |
+
〓
|
729 |
+
瑙
|
730 |
+
辈
|
731 |
+
昧
|
732 |
+
盏
|
733 |
+
亘
|
734 |
+
蛀
|
735 |
+
吉
|
736 |
+
铰
|
737 |
+
请
|
738 |
+
子
|
739 |
+
假
|
740 |
+
闻
|
741 |
+
税
|
742 |
+
井
|
743 |
+
诩
|
744 |
+
哨
|
745 |
+
嫂
|
746 |
+
好
|
747 |
+
面
|
748 |
+
琐
|
749 |
+
校
|
750 |
+
馊
|
751 |
+
鬣
|
752 |
+
缂
|
753 |
+
营
|
754 |
+
访
|
755 |
+
炖
|
756 |
+
占
|
757 |
+
农
|
758 |
+
缀
|
759 |
+
否
|
760 |
+
经
|
761 |
+
钚
|
762 |
+
棵
|
763 |
+
趟
|
764 |
+
张
|
765 |
+
亟
|
766 |
+
吏
|
767 |
+
茶
|
768 |
+
谨
|
769 |
+
捻
|
770 |
+
论
|
771 |
+
迸
|
772 |
+
堂
|
773 |
+
玉
|
774 |
+
信
|
775 |
+
吧
|
776 |
+
瞠
|
777 |
+
乡
|
778 |
+
姬
|
779 |
+
寺
|
780 |
+
咬
|
781 |
+
溏
|
782 |
+
苄
|
783 |
+
皿
|
784 |
+
意
|
785 |
+
赉
|
786 |
+
宝
|
787 |
+
尔
|
788 |
+
钰
|
789 |
+
艺
|
790 |
+
特
|
791 |
+
唳
|
792 |
+
踉
|
793 |
+
都
|
794 |
+
荣
|
795 |
+
倚
|
796 |
+
登
|
797 |
+
荐
|
798 |
+
丧
|
799 |
+
奇
|
800 |
+
涵
|
801 |
+
批
|
802 |
+
炭
|
803 |
+
近
|
804 |
+
符
|
805 |
+
傩
|
806 |
+
感
|
807 |
+
道
|
808 |
+
着
|
809 |
+
菊
|
810 |
+
虹
|
811 |
+
仲
|
812 |
+
众
|
813 |
+
懈
|
814 |
+
濯
|
815 |
+
颞
|
816 |
+
眺
|
817 |
+
南
|
818 |
+
释
|
819 |
+
北
|
820 |
+
缝
|
821 |
+
标
|
822 |
+
既
|
823 |
+
茗
|
824 |
+
整
|
825 |
+
撼
|
826 |
+
迤
|
827 |
+
贲
|
828 |
+
挎
|
829 |
+
耱
|
830 |
+
拒
|
831 |
+
某
|
832 |
+
妍
|
833 |
+
卫
|
834 |
+
哇
|
835 |
+
英
|
836 |
+
矶
|
837 |
+
藩
|
838 |
+
治
|
839 |
+
他
|
840 |
+
元
|
841 |
+
领
|
842 |
+
膜
|
843 |
+
遮
|
844 |
+
穗
|
845 |
+
蛾
|
846 |
+
飞
|
847 |
+
荒
|
848 |
+
棺
|
849 |
+
劫
|
850 |
+
么
|
851 |
+
市
|
852 |
+
火
|
853 |
+
温
|
854 |
+
拈
|
855 |
+
棚
|
856 |
+
洼
|
857 |
+
转
|
858 |
+
��
|
859 |
+
奕
|
860 |
+
卸
|
861 |
+
迪
|
862 |
+
伸
|
863 |
+
泳
|
864 |
+
斗
|
865 |
+
邡
|
866 |
+
侄
|
867 |
+
涨
|
868 |
+
屯
|
869 |
+
萋
|
870 |
+
胭
|
871 |
+
氡
|
872 |
+
崮
|
873 |
+
枞
|
874 |
+
惧
|
875 |
+
冒
|
876 |
+
彩
|
877 |
+
斜
|
878 |
+
手
|
879 |
+
豚
|
880 |
+
随
|
881 |
+
旭
|
882 |
+
淑
|
883 |
+
妞
|
884 |
+
形
|
885 |
+
菌
|
886 |
+
吲
|
887 |
+
沱
|
888 |
+
争
|
889 |
+
驯
|
890 |
+
歹
|
891 |
+
挟
|
892 |
+
兆
|
893 |
+
柱
|
894 |
+
传
|
895 |
+
至
|
896 |
+
包
|
897 |
+
内
|
898 |
+
响
|
899 |
+
临
|
900 |
+
红
|
901 |
+
功
|
902 |
+
弩
|
903 |
+
衡
|
904 |
+
寂
|
905 |
+
禁
|
906 |
+
老
|
907 |
+
棍
|
908 |
+
耆
|
909 |
+
渍
|
910 |
+
织
|
911 |
+
害
|
912 |
+
氵
|
913 |
+
渑
|
914 |
+
布
|
915 |
+
载
|
916 |
+
靥
|
917 |
+
嗬
|
918 |
+
虽
|
919 |
+
苹
|
920 |
+
咨
|
921 |
+
娄
|
922 |
+
库
|
923 |
+
雉
|
924 |
+
榜
|
925 |
+
帜
|
926 |
+
嘲
|
927 |
+
套
|
928 |
+
瑚
|
929 |
+
亲
|
930 |
+
簸
|
931 |
+
欧
|
932 |
+
边
|
933 |
+
6
|
934 |
+
腿
|
935 |
+
旮
|
936 |
+
抛
|
937 |
+
吹
|
938 |
+
瞳
|
939 |
+
得
|
940 |
+
镓
|
941 |
+
梗
|
942 |
+
厨
|
943 |
+
继
|
944 |
+
漾
|
945 |
+
愣
|
946 |
+
憨
|
947 |
+
士
|
948 |
+
策
|
949 |
+
窑
|
950 |
+
抑
|
951 |
+
躯
|
952 |
+
襟
|
953 |
+
脏
|
954 |
+
参
|
955 |
+
贸
|
956 |
+
言
|
957 |
+
干
|
958 |
+
绸
|
959 |
+
鳄
|
960 |
+
穷
|
961 |
+
藜
|
962 |
+
音
|
963 |
+
折
|
964 |
+
详
|
965 |
+
)
|
966 |
+
举
|
967 |
+
悍
|
968 |
+
甸
|
969 |
+
癌
|
970 |
+
黎
|
971 |
+
谴
|
972 |
+
死
|
973 |
+
罩
|
974 |
+
迁
|
975 |
+
寒
|
976 |
+
驷
|
977 |
+
袖
|
978 |
+
媒
|
979 |
+
蒋
|
980 |
+
掘
|
981 |
+
模
|
982 |
+
纠
|
983 |
+
恣
|
984 |
+
观
|
985 |
+
祖
|
986 |
+
蛆
|
987 |
+
碍
|
988 |
+
位
|
989 |
+
稿
|
990 |
+
主
|
991 |
+
澧
|
992 |
+
跌
|
993 |
+
筏
|
994 |
+
京
|
995 |
+
锏
|
996 |
+
帝
|
997 |
+
贴
|
998 |
+
证
|
999 |
+
糠
|
1000 |
+
才
|
1001 |
+
黄
|
1002 |
+
鲸
|
1003 |
+
略
|
1004 |
+
炯
|
1005 |
+
饱
|
1006 |
+
四
|
1007 |
+
出
|
1008 |
+
园
|
1009 |
+
犀
|
1010 |
+
牧
|
1011 |
+
容
|
1012 |
+
汉
|
1013 |
+
杆
|
1014 |
+
浈
|
1015 |
+
汰
|
1016 |
+
瑷
|
1017 |
+
造
|
1018 |
+
虫
|
1019 |
+
瘩
|
1020 |
+
怪
|
1021 |
+
驴
|
1022 |
+
济
|
1023 |
+
应
|
1024 |
+
花
|
1025 |
+
沣
|
1026 |
+
谔
|
1027 |
+
夙
|
1028 |
+
旅
|
1029 |
+
价
|
1030 |
+
矿
|
1031 |
+
以
|
1032 |
+
考
|
1033 |
+
s
|
1034 |
+
u
|
1035 |
+
呦
|
1036 |
+
晒
|
1037 |
+
巡
|
1038 |
+
茅
|
1039 |
+
准
|
1040 |
+
肟
|
1041 |
+
瓴
|
1042 |
+
詹
|
1043 |
+
仟
|
1044 |
+
褂
|
1045 |
+
译
|
1046 |
+
桌
|
1047 |
+
混
|
1048 |
+
宁
|
1049 |
+
怦
|
1050 |
+
郑
|
1051 |
+
抿
|
1052 |
+
些
|
1053 |
+
余
|
1054 |
+
鄂
|
1055 |
+
饴
|
1056 |
+
攒
|
1057 |
+
珑
|
1058 |
+
群
|
1059 |
+
阖
|
1060 |
+
岔
|
1061 |
+
琨
|
1062 |
+
藓
|
1063 |
+
预
|
1064 |
+
环
|
1065 |
+
洮
|
1066 |
+
岌
|
1067 |
+
宀
|
1068 |
+
杲
|
1069 |
+
瀵
|
1070 |
+
最
|
1071 |
+
常
|
1072 |
+
囡
|
1073 |
+
周
|
1074 |
+
踊
|
1075 |
+
女
|
1076 |
+
鼓
|
1077 |
+
袭
|
1078 |
+
喉
|
1079 |
+
简
|
1080 |
+
范
|
1081 |
+
薯
|
1082 |
+
遐
|
1083 |
+
疏
|
1084 |
+
粱
|
1085 |
+
黜
|
1086 |
+
禧
|
1087 |
+
法
|
1088 |
+
箔
|
1089 |
+
斤
|
1090 |
+
遥
|
1091 |
+
汝
|
1092 |
+
奥
|
1093 |
+
直
|
1094 |
+
贞
|
1095 |
+
撑
|
1096 |
+
置
|
1097 |
+
绱
|
1098 |
+
集
|
1099 |
+
她
|
1100 |
+
馅
|
1101 |
+
逗
|
1102 |
+
钧
|
1103 |
+
橱
|
1104 |
+
魉
|
1105 |
+
[
|
1106 |
+
恙
|
1107 |
+
躁
|
1108 |
+
唤
|
1109 |
+
9
|
1110 |
+
旺
|
1111 |
+
膘
|
1112 |
+
待
|
1113 |
+
脾
|
1114 |
+
惫
|
1115 |
+
购
|
1116 |
+
吗
|
1117 |
+
依
|
1118 |
+
盲
|
1119 |
+
度
|
1120 |
+
瘿
|
1121 |
+
蠖
|
1122 |
+
俾
|
1123 |
+
之
|
1124 |
+
镗
|
1125 |
+
拇
|
1126 |
+
鲵
|
1127 |
+
厝
|
1128 |
+
簧
|
1129 |
+
续
|
1130 |
+
款
|
1131 |
+
展
|
1132 |
+
啃
|
1133 |
+
表
|
1134 |
+
剔
|
1135 |
+
品
|
1136 |
+
钻
|
1137 |
+
腭
|
1138 |
+
损
|
1139 |
+
清
|
1140 |
+
锶
|
1141 |
+
统
|
1142 |
+
涌
|
1143 |
+
寸
|
1144 |
+
滨
|
1145 |
+
贪
|
1146 |
+
链
|
1147 |
+
吠
|
1148 |
+
冈
|
1149 |
+
伎
|
1150 |
+
迥
|
1151 |
+
咏
|
1152 |
+
吁
|
1153 |
+
览
|
1154 |
+
防
|
1155 |
+
迅
|
1156 |
+
失
|
1157 |
+
汾
|
1158 |
+
阔
|
1159 |
+
逵
|
1160 |
+
绀
|
1161 |
+
蔑
|
1162 |
+
列
|
1163 |
+
川
|
1164 |
+
凭
|
1165 |
+
努
|
1166 |
+
熨
|
1167 |
+
揪
|
1168 |
+
利
|
1169 |
+
俱
|
1170 |
+
绉
|
1171 |
+
抢
|
1172 |
+
鸨
|
1173 |
+
我
|
1174 |
+
即
|
1175 |
+
责
|
1176 |
+
膦
|
1177 |
+
易
|
1178 |
+
毓
|
1179 |
+
鹊
|
1180 |
+
刹
|
1181 |
+
玷
|
1182 |
+
岿
|
1183 |
+
空
|
1184 |
+
嘞
|
1185 |
+
绊
|
1186 |
+
排
|
1187 |
+
术
|
1188 |
+
估
|
1189 |
+
锷
|
1190 |
+
违
|
1191 |
+
们
|
1192 |
+
苟
|
1193 |
+
铜
|
1194 |
+
播
|
1195 |
+
肘
|
1196 |
+
件
|
1197 |
+
烫
|
1198 |
+
审
|
1199 |
+
鲂
|
1200 |
+
广
|
1201 |
+
像
|
1202 |
+
铌
|
1203 |
+
惰
|
1204 |
+
铟
|
1205 |
+
巳
|
1206 |
+
胍
|
1207 |
+
鲍
|
1208 |
+
康
|
1209 |
+
憧
|
1210 |
+
色
|
1211 |
+
恢
|
1212 |
+
想
|
1213 |
+
拷
|
1214 |
+
尤
|
1215 |
+
疳
|
1216 |
+
知
|
1217 |
+
S
|
1218 |
+
Y
|
1219 |
+
F
|
1220 |
+
D
|
1221 |
+
A
|
1222 |
+
峄
|
1223 |
+
裕
|
1224 |
+
帮
|
1225 |
+
握
|
1226 |
+
搔
|
1227 |
+
氐
|
1228 |
+
氘
|
1229 |
+
难
|
1230 |
+
墒
|
1231 |
+
沮
|
1232 |
+
雨
|
1233 |
+
叁
|
1234 |
+
缥
|
1235 |
+
悴
|
1236 |
+
藐
|
1237 |
+
湫
|
1238 |
+
娟
|
1239 |
+
苑
|
1240 |
+
稠
|
1241 |
+
颛
|
1242 |
+
簇
|
1243 |
+
后
|
1244 |
+
阕
|
1245 |
+
闭
|
1246 |
+
蕤
|
1247 |
+
缚
|
1248 |
+
怎
|
1249 |
+
佞
|
1250 |
+
码
|
1251 |
+
嘤
|
1252 |
+
蔡
|
1253 |
+
痊
|
1254 |
+
舱
|
1255 |
+
螯
|
1256 |
+
帕
|
1257 |
+
赫
|
1258 |
+
昵
|
1259 |
+
升
|
1260 |
+
烬
|
1261 |
+
岫
|
1262 |
+
、
|
1263 |
+
疵
|
1264 |
+
蜻
|
1265 |
+
髁
|
1266 |
+
蕨
|
1267 |
+
隶
|
1268 |
+
烛
|
1269 |
+
械
|
1270 |
+
丑
|
1271 |
+
盂
|
1272 |
+
梁
|
1273 |
+
强
|
1274 |
+
鲛
|
1275 |
+
由
|
1276 |
+
拘
|
1277 |
+
揉
|
1278 |
+
劭
|
1279 |
+
龟
|
1280 |
+
撤
|
1281 |
+
钩
|
1282 |
+
呕
|
1283 |
+
孛
|
1284 |
+
费
|
1285 |
+
妻
|
1286 |
+
漂
|
1287 |
+
求
|
1288 |
+
阑
|
1289 |
+
崖
|
1290 |
+
秤
|
1291 |
+
甘
|
1292 |
+
通
|
1293 |
+
深
|
1294 |
+
补
|
1295 |
+
赃
|
1296 |
+
坎
|
1297 |
+
床
|
1298 |
+
啪
|
1299 |
+
承
|
1300 |
+
吼
|
1301 |
+
量
|
1302 |
+
暇
|
1303 |
+
钼
|
1304 |
+
烨
|
1305 |
+
阂
|
1306 |
+
擎
|
1307 |
+
脱
|
1308 |
+
逮
|
1309 |
+
称
|
1310 |
+
P
|
1311 |
+
神
|
1312 |
+
属
|
1313 |
+
矗
|
1314 |
+
华
|
1315 |
+
届
|
1316 |
+
狍
|
1317 |
+
葑
|
1318 |
+
汹
|
1319 |
+
育
|
1320 |
+
患
|
1321 |
+
窒
|
1322 |
+
蛰
|
1323 |
+
佼
|
1324 |
+
静
|
1325 |
+
槎
|
1326 |
+
运
|
1327 |
+
鳗
|
1328 |
+
庆
|
1329 |
+
逝
|
1330 |
+
曼
|
1331 |
+
疱
|
1332 |
+
克
|
1333 |
+
代
|
1334 |
+
官
|
1335 |
+
此
|
1336 |
+
麸
|
1337 |
+
耧
|
1338 |
+
蚌
|
1339 |
+
晟
|
1340 |
+
例
|
1341 |
+
础
|
1342 |
+
榛
|
1343 |
+
副
|
1344 |
+
测
|
1345 |
+
唰
|
1346 |
+
缢
|
1347 |
+
迹
|
1348 |
+
灬
|
1349 |
+
霁
|
1350 |
+
身
|
1351 |
+
岁
|
1352 |
+
赭
|
1353 |
+
扛
|
1354 |
+
又
|
1355 |
+
菡
|
1356 |
+
乜
|
1357 |
+
雾
|
1358 |
+
板
|
1359 |
+
读
|
1360 |
+
陷
|
1361 |
+
徉
|
1362 |
+
贯
|
1363 |
+
郁
|
1364 |
+
虑
|
1365 |
+
变
|
1366 |
+
钓
|
1367 |
+
菜
|
1368 |
+
圾
|
1369 |
+
现
|
1370 |
+
琢
|
1371 |
+
式
|
1372 |
+
乐
|
1373 |
+
维
|
1374 |
+
渔
|
1375 |
+
浜
|
1376 |
+
左
|
1377 |
+
吾
|
1378 |
+
脑
|
1379 |
+
钡
|
1380 |
+
警
|
1381 |
+
T
|
1382 |
+
啵
|
1383 |
+
拴
|
1384 |
+
偌
|
1385 |
+
漱
|
1386 |
+
湿
|
1387 |
+
硕
|
1388 |
+
止
|
1389 |
+
骼
|
1390 |
+
魄
|
1391 |
+
积
|
1392 |
+
燥
|
1393 |
+
联
|
1394 |
+
踢
|
1395 |
+
玛
|
1396 |
+
则
|
1397 |
+
窿
|
1398 |
+
见
|
1399 |
+
振
|
1400 |
+
畿
|
1401 |
+
送
|
1402 |
+
班
|
1403 |
+
钽
|
1404 |
+
您
|
1405 |
+
赵
|
1406 |
+
刨
|
1407 |
+
印
|
1408 |
+
讨
|
1409 |
+
踝
|
1410 |
+
籍
|
1411 |
+
谡
|
1412 |
+
舌
|
1413 |
+
崧
|
1414 |
+
汽
|
1415 |
+
蔽
|
1416 |
+
沪
|
1417 |
+
酥
|
1418 |
+
绒
|
1419 |
+
怖
|
1420 |
+
财
|
1421 |
+
帖
|
1422 |
+
肱
|
1423 |
+
私
|
1424 |
+
莎
|
1425 |
+
勋
|
1426 |
+
羔
|
1427 |
+
霸
|
1428 |
+
励
|
1429 |
+
哼
|
1430 |
+
帐
|
1431 |
+
将
|
1432 |
+
帅
|
1433 |
+
渠
|
1434 |
+
纪
|
1435 |
+
婴
|
1436 |
+
娩
|
1437 |
+
岭
|
1438 |
+
厘
|
1439 |
+
滕
|
1440 |
+
吻
|
1441 |
+
伤
|
1442 |
+
坝
|
1443 |
+
冠
|
1444 |
+
戊
|
1445 |
+
隆
|
1446 |
+
瘁
|
1447 |
+
介
|
1448 |
+
涧
|
1449 |
+
物
|
1450 |
+
黍
|
1451 |
+
并
|
1452 |
+
姗
|
1453 |
+
奢
|
1454 |
+
蹑
|
1455 |
+
掣
|
1456 |
+
垸
|
1457 |
+
锴
|
1458 |
+
命
|
1459 |
+
箍
|
1460 |
+
捉
|
1461 |
+
病
|
1462 |
+
辖
|
1463 |
+
琰
|
1464 |
+
眭
|
1465 |
+
迩
|
1466 |
+
艘
|
1467 |
+
绌
|
1468 |
+
繁
|
1469 |
+
寅
|
1470 |
+
若
|
1471 |
+
毋
|
1472 |
+
思
|
1473 |
+
诉
|
1474 |
+
类
|
1475 |
+
诈
|
1476 |
+
燮
|
1477 |
+
轲
|
1478 |
+
酮
|
1479 |
+
狂
|
1480 |
+
重
|
1481 |
+
反
|
1482 |
+
职
|
1483 |
+
筱
|
1484 |
+
县
|
1485 |
+
委
|
1486 |
+
磕
|
1487 |
+
绣
|
1488 |
+
奖
|
1489 |
+
晋
|
1490 |
+
濉
|
1491 |
+
志
|
1492 |
+
徽
|
1493 |
+
肠
|
1494 |
+
呈
|
1495 |
+
獐
|
1496 |
+
坻
|
1497 |
+
口
|
1498 |
+
片
|
1499 |
+
碰
|
1500 |
+
几
|
1501 |
+
村
|
1502 |
+
柿
|
1503 |
+
劳
|
1504 |
+
料
|
1505 |
+
获
|
1506 |
+
亩
|
1507 |
+
惕
|
1508 |
+
晕
|
1509 |
+
厌
|
1510 |
+
号
|
1511 |
+
罢
|
1512 |
+
池
|
1513 |
+
正
|
1514 |
+
鏖
|
1515 |
+
煨
|
1516 |
+
家
|
1517 |
+
棕
|
1518 |
+
复
|
1519 |
+
尝
|
1520 |
+
懋
|
1521 |
+
蜥
|
1522 |
+
锅
|
1523 |
+
岛
|
1524 |
+
扰
|
1525 |
+
队
|
1526 |
+
坠
|
1527 |
+
瘾
|
1528 |
+
钬
|
1529 |
+
@
|
1530 |
+
卧
|
1531 |
+
疣
|
1532 |
+
镇
|
1533 |
+
譬
|
1534 |
+
冰
|
1535 |
+
彷
|
1536 |
+
频
|
1537 |
+
黯
|
1538 |
+
据
|
1539 |
+
垄
|
1540 |
+
采
|
1541 |
+
八
|
1542 |
+
缪
|
1543 |
+
瘫
|
1544 |
+
型
|
1545 |
+
熹
|
1546 |
+
砰
|
1547 |
+
楠
|
1548 |
+
襁
|
1549 |
+
箐
|
1550 |
+
但
|
1551 |
+
嘶
|
1552 |
+
绳
|
1553 |
+
啤
|
1554 |
+
拍
|
1555 |
+
盥
|
1556 |
+
穆
|
1557 |
+
傲
|
1558 |
+
洗
|
1559 |
+
盯
|
1560 |
+
塘
|
1561 |
+
怔
|
1562 |
+
筛
|
1563 |
+
丿
|
1564 |
+
台
|
1565 |
+
恒
|
1566 |
+
喂
|
1567 |
+
葛
|
1568 |
+
永
|
1569 |
+
¥
|
1570 |
+
烟
|
1571 |
+
酒
|
1572 |
+
桦
|
1573 |
+
书
|
1574 |
+
砂
|
1575 |
+
蚝
|
1576 |
+
缉
|
1577 |
+
态
|
1578 |
+
瀚
|
1579 |
+
袄
|
1580 |
+
圳
|
1581 |
+
轻
|
1582 |
+
蛛
|
1583 |
+
超
|
1584 |
+
榧
|
1585 |
+
遛
|
1586 |
+
姒
|
1587 |
+
奘
|
1588 |
+
铮
|
1589 |
+
右
|
1590 |
+
荽
|
1591 |
+
望
|
1592 |
+
偻
|
1593 |
+
卡
|
1594 |
+
丶
|
1595 |
+
氰
|
1596 |
+
附
|
1597 |
+
做
|
1598 |
+
革
|
1599 |
+
索
|
1600 |
+
戚
|
1601 |
+
坨
|
1602 |
+
桷
|
1603 |
+
唁
|
1604 |
+
垅
|
1605 |
+
榻
|
1606 |
+
岐
|
1607 |
+
偎
|
1608 |
+
坛
|
1609 |
+
莨
|
1610 |
+
山
|
1611 |
+
殊
|
1612 |
+
微
|
1613 |
+
骇
|
1614 |
+
陈
|
1615 |
+
爨
|
1616 |
+
推
|
1617 |
+
嗝
|
1618 |
+
驹
|
1619 |
+
澡
|
1620 |
+
藁
|
1621 |
+
呤
|
1622 |
+
卤
|
1623 |
+
嘻
|
1624 |
+
糅
|
1625 |
+
逛
|
1626 |
+
侵
|
1627 |
+
郓
|
1628 |
+
酌
|
1629 |
+
德
|
1630 |
+
摇
|
1631 |
+
※
|
1632 |
+
鬃
|
1633 |
+
被
|
1634 |
+
慨
|
1635 |
+
殡
|
1636 |
+
羸
|
1637 |
+
昌
|
1638 |
+
泡
|
1639 |
+
戛
|
1640 |
+
鞋
|
1641 |
+
河
|
1642 |
+
宪
|
1643 |
+
沿
|
1644 |
+
玲
|
1645 |
+
鲨
|
1646 |
+
翅
|
1647 |
+
哽
|
1648 |
+
源
|
1649 |
+
铅
|
1650 |
+
语
|
1651 |
+
照
|
1652 |
+
邯
|
1653 |
+
址
|
1654 |
+
荃
|
1655 |
+
佬
|
1656 |
+
顺
|
1657 |
+
鸳
|
1658 |
+
町
|
1659 |
+
霭
|
1660 |
+
睾
|
1661 |
+
瓢
|
1662 |
+
夸
|
1663 |
+
椁
|
1664 |
+
晓
|
1665 |
+
酿
|
1666 |
+
痈
|
1667 |
+
咔
|
1668 |
+
侏
|
1669 |
+
券
|
1670 |
+
噎
|
1671 |
+
湍
|
1672 |
+
签
|
1673 |
+
嚷
|
1674 |
+
离
|
1675 |
+
午
|
1676 |
+
尚
|
1677 |
+
社
|
1678 |
+
锤
|
1679 |
+
背
|
1680 |
+
孟
|
1681 |
+
使
|
1682 |
+
浪
|
1683 |
+
缦
|
1684 |
+
潍
|
1685 |
+
鞅
|
1686 |
+
军
|
1687 |
+
姹
|
1688 |
+
驶
|
1689 |
+
笑
|
1690 |
+
鳟
|
1691 |
+
鲁
|
1692 |
+
》
|
1693 |
+
孽
|
1694 |
+
钜
|
1695 |
+
绿
|
1696 |
+
洱
|
1697 |
+
礴
|
1698 |
+
焯
|
1699 |
+
椰
|
1700 |
+
颖
|
1701 |
+
囔
|
1702 |
+
乌
|
1703 |
+
孔
|
1704 |
+
巴
|
1705 |
+
互
|
1706 |
+
性
|
1707 |
+
椽
|
1708 |
+
哞
|
1709 |
+
聘
|
1710 |
+
昨
|
1711 |
+
早
|
1712 |
+
暮
|
1713 |
+
胶
|
1714 |
+
炀
|
1715 |
+
隧
|
1716 |
+
��
|
1717 |
+
彗
|
1718 |
+
昝
|
1719 |
+
铁
|
1720 |
+
呓
|
1721 |
+
氽
|
1722 |
+
藉
|
1723 |
+
喔
|
1724 |
+
癖
|
1725 |
+
瑗
|
1726 |
+
姨
|
1727 |
+
权
|
1728 |
+
胱
|
1729 |
+
韦
|
1730 |
+
堑
|
1731 |
+
蜜
|
1732 |
+
酋
|
1733 |
+
楝
|
1734 |
+
砝
|
1735 |
+
毁
|
1736 |
+
靓
|
1737 |
+
歙
|
1738 |
+
锲
|
1739 |
+
究
|
1740 |
+
屋
|
1741 |
+
喳
|
1742 |
+
骨
|
1743 |
+
辨
|
1744 |
+
碑
|
1745 |
+
武
|
1746 |
+
鸠
|
1747 |
+
宫
|
1748 |
+
辜
|
1749 |
+
烊
|
1750 |
+
适
|
1751 |
+
坡
|
1752 |
+
殃
|
1753 |
+
培
|
1754 |
+
佩
|
1755 |
+
供
|
1756 |
+
走
|
1757 |
+
蜈
|
1758 |
+
迟
|
1759 |
+
翼
|
1760 |
+
况
|
1761 |
+
姣
|
1762 |
+
凛
|
1763 |
+
浔
|
1764 |
+
吃
|
1765 |
+
飘
|
1766 |
+
债
|
1767 |
+
犟
|
1768 |
+
金
|
1769 |
+
促
|
1770 |
+
苛
|
1771 |
+
崇
|
1772 |
+
坂
|
1773 |
+
莳
|
1774 |
+
畔
|
1775 |
+
绂
|
1776 |
+
兵
|
1777 |
+
蠕
|
1778 |
+
斋
|
1779 |
+
根
|
1780 |
+
砍
|
1781 |
+
亢
|
1782 |
+
欢
|
1783 |
+
恬
|
1784 |
+
崔
|
1785 |
+
剁
|
1786 |
+
餐
|
1787 |
+
榫
|
1788 |
+
快
|
1789 |
+
扶
|
1790 |
+
‖
|
1791 |
+
濒
|
1792 |
+
缠
|
1793 |
+
鳜
|
1794 |
+
当
|
1795 |
+
彭
|
1796 |
+
驭
|
1797 |
+
浦
|
1798 |
+
篮
|
1799 |
+
昀
|
1800 |
+
锆
|
1801 |
+
秸
|
1802 |
+
钳
|
1803 |
+
弋
|
1804 |
+
娣
|
1805 |
+
瞑
|
1806 |
+
夷
|
1807 |
+
龛
|
1808 |
+
苫
|
1809 |
+
拱
|
1810 |
+
致
|
1811 |
+
%
|
1812 |
+
嵊
|
1813 |
+
障
|
1814 |
+
隐
|
1815 |
+
弑
|
1816 |
+
初
|
1817 |
+
娓
|
1818 |
+
抉
|
1819 |
+
汩
|
1820 |
+
累
|
1821 |
+
蓖
|
1822 |
+
"
|
1823 |
+
唬
|
1824 |
+
助
|
1825 |
+
苓
|
1826 |
+
昙
|
1827 |
+
押
|
1828 |
+
毙
|
1829 |
+
破
|
1830 |
+
城
|
1831 |
+
郧
|
1832 |
+
逢
|
1833 |
+
嚏
|
1834 |
+
獭
|
1835 |
+
瞻
|
1836 |
+
溱
|
1837 |
+
婿
|
1838 |
+
赊
|
1839 |
+
跨
|
1840 |
+
恼
|
1841 |
+
璧
|
1842 |
+
萃
|
1843 |
+
姻
|
1844 |
+
貉
|
1845 |
+
灵
|
1846 |
+
炉
|
1847 |
+
密
|
1848 |
+
氛
|
1849 |
+
陶
|
1850 |
+
砸
|
1851 |
+
谬
|
1852 |
+
衔
|
1853 |
+
点
|
1854 |
+
琛
|
1855 |
+
沛
|
1856 |
+
枳
|
1857 |
+
层
|
1858 |
+
岱
|
1859 |
+
诺
|
1860 |
+
脍
|
1861 |
+
榈
|
1862 |
+
埂
|
1863 |
+
征
|
1864 |
+
冷
|
1865 |
+
裁
|
1866 |
+
打
|
1867 |
+
蹴
|
1868 |
+
素
|
1869 |
+
瘘
|
1870 |
+
逞
|
1871 |
+
蛐
|
1872 |
+
聊
|
1873 |
+
激
|
1874 |
+
腱
|
1875 |
+
萘
|
1876 |
+
踵
|
1877 |
+
飒
|
1878 |
+
蓟
|
1879 |
+
吆
|
1880 |
+
取
|
1881 |
+
咙
|
1882 |
+
簋
|
1883 |
+
涓
|
1884 |
+
矩
|
1885 |
+
曝
|
1886 |
+
挺
|
1887 |
+
揣
|
1888 |
+
座
|
1889 |
+
你
|
1890 |
+
史
|
1891 |
+
舵
|
1892 |
+
焱
|
1893 |
+
尘
|
1894 |
+
苏
|
1895 |
+
笈
|
1896 |
+
脚
|
1897 |
+
溉
|
1898 |
+
榨
|
1899 |
+
诵
|
1900 |
+
樊
|
1901 |
+
邓
|
1902 |
+
焊
|
1903 |
+
义
|
1904 |
+
庶
|
1905 |
+
儋
|
1906 |
+
蟋
|
1907 |
+
蒲
|
1908 |
+
赦
|
1909 |
+
呷
|
1910 |
+
杞
|
1911 |
+
诠
|
1912 |
+
豪
|
1913 |
+
还
|
1914 |
+
试
|
1915 |
+
颓
|
1916 |
+
茉
|
1917 |
+
太
|
1918 |
+
除
|
1919 |
+
紫
|
1920 |
+
逃
|
1921 |
+
痴
|
1922 |
+
草
|
1923 |
+
充
|
1924 |
+
鳕
|
1925 |
+
珉
|
1926 |
+
祗
|
1927 |
+
墨
|
1928 |
+
渭
|
1929 |
+
烩
|
1930 |
+
蘸
|
1931 |
+
慕
|
1932 |
+
璇
|
1933 |
+
镶
|
1934 |
+
穴
|
1935 |
+
嵘
|
1936 |
+
恶
|
1937 |
+
骂
|
1938 |
+
险
|
1939 |
+
绋
|
1940 |
+
幕
|
1941 |
+
碉
|
1942 |
+
肺
|
1943 |
+
戳
|
1944 |
+
刘
|
1945 |
+
潞
|
1946 |
+
秣
|
1947 |
+
纾
|
1948 |
+
潜
|
1949 |
+
銮
|
1950 |
+
洛
|
1951 |
+
须
|
1952 |
+
罘
|
1953 |
+
销
|
1954 |
+
瘪
|
1955 |
+
汞
|
1956 |
+
兮
|
1957 |
+
屉
|
1958 |
+
r
|
1959 |
+
林
|
1960 |
+
厕
|
1961 |
+
质
|
1962 |
+
探
|
1963 |
+
划
|
1964 |
+
狸
|
1965 |
+
殚
|
1966 |
+
善
|
1967 |
+
煊
|
1968 |
+
烹
|
1969 |
+
〒
|
1970 |
+
锈
|
1971 |
+
逯
|
1972 |
+
宸
|
1973 |
+
辍
|
1974 |
+
泱
|
1975 |
+
柚
|
1976 |
+
袍
|
1977 |
+
远
|
1978 |
+
蹋
|
1979 |
+
嶙
|
1980 |
+
绝
|
1981 |
+
峥
|
1982 |
+
娥
|
1983 |
+
缍
|
1984 |
+
雀
|
1985 |
+
徵
|
1986 |
+
认
|
1987 |
+
镱
|
1988 |
+
谷
|
1989 |
+
=
|
1990 |
+
贩
|
1991 |
+
勉
|
1992 |
+
撩
|
1993 |
+
鄯
|
1994 |
+
斐
|
1995 |
+
洋
|
1996 |
+
非
|
1997 |
+
祚
|
1998 |
+
泾
|
1999 |
+
诒
|
2000 |
+
饿
|
2001 |
+
撬
|
2002 |
+
威
|
2003 |
+
晷
|
2004 |
+
搭
|
2005 |
+
芍
|
2006 |
+
锥
|
2007 |
+
笺
|
2008 |
+
蓦
|
2009 |
+
候
|
2010 |
+
琊
|
2011 |
+
档
|
2012 |
+
礁
|
2013 |
+
沼
|
2014 |
+
卵
|
2015 |
+
荠
|
2016 |
+
忑
|
2017 |
+
朝
|
2018 |
+
凹
|
2019 |
+
瑞
|
2020 |
+
头
|
2021 |
+
仪
|
2022 |
+
弧
|
2023 |
+
孵
|
2024 |
+
畏
|
2025 |
+
铆
|
2026 |
+
突
|
2027 |
+
衲
|
2028 |
+
车
|
2029 |
+
浩
|
2030 |
+
气
|
2031 |
+
茂
|
2032 |
+
悖
|
2033 |
+
厢
|
2034 |
+
枕
|
2035 |
+
酝
|
2036 |
+
戴
|
2037 |
+
湾
|
2038 |
+
邹
|
2039 |
+
飚
|
2040 |
+
攘
|
2041 |
+
锂
|
2042 |
+
写
|
2043 |
+
宵
|
2044 |
+
翁
|
2045 |
+
岷
|
2046 |
+
无
|
2047 |
+
喜
|
2048 |
+
丈
|
2049 |
+
挑
|
2050 |
+
嗟
|
2051 |
+
绛
|
2052 |
+
殉
|
2053 |
+
议
|
2054 |
+
槽
|
2055 |
+
具
|
2056 |
+
醇
|
2057 |
+
淞
|
2058 |
+
笃
|
2059 |
+
郴
|
2060 |
+
阅
|
2061 |
+
饼
|
2062 |
+
底
|
2063 |
+
壕
|
2064 |
+
砚
|
2065 |
+
弈
|
2066 |
+
询
|
2067 |
+
缕
|
2068 |
+
庹
|
2069 |
+
翟
|
2070 |
+
零
|
2071 |
+
筷
|
2072 |
+
暨
|
2073 |
+
舟
|
2074 |
+
闺
|
2075 |
+
甯
|
2076 |
+
撞
|
2077 |
+
麂
|
2078 |
+
茌
|
2079 |
+
蔼
|
2080 |
+
很
|
2081 |
+
珲
|
2082 |
+
捕
|
2083 |
+
棠
|
2084 |
+
角
|
2085 |
+
阉
|
2086 |
+
媛
|
2087 |
+
娲
|
2088 |
+
诽
|
2089 |
+
剿
|
2090 |
+
尉
|
2091 |
+
爵
|
2092 |
+
睬
|
2093 |
+
韩
|
2094 |
+
诰
|
2095 |
+
匣
|
2096 |
+
危
|
2097 |
+
糍
|
2098 |
+
镯
|
2099 |
+
立
|
2100 |
+
浏
|
2101 |
+
阳
|
2102 |
+
少
|
2103 |
+
盆
|
2104 |
+
舔
|
2105 |
+
擘
|
2106 |
+
匪
|
2107 |
+
申
|
2108 |
+
尬
|
2109 |
+
铣
|
2110 |
+
旯
|
2111 |
+
抖
|
2112 |
+
赘
|
2113 |
+
瓯
|
2114 |
+
居
|
2115 |
+
ˇ
|
2116 |
+
哮
|
2117 |
+
游
|
2118 |
+
锭
|
2119 |
+
茏
|
2120 |
+
歌
|
2121 |
+
坏
|
2122 |
+
甚
|
2123 |
+
秒
|
2124 |
+
舞
|
2125 |
+
沙
|
2126 |
+
仗
|
2127 |
+
劲
|
2128 |
+
潺
|
2129 |
+
阿
|
2130 |
+
燧
|
2131 |
+
郭
|
2132 |
+
嗖
|
2133 |
+
霏
|
2134 |
+
忠
|
2135 |
+
材
|
2136 |
+
奂
|
2137 |
+
耐
|
2138 |
+
跺
|
2139 |
+
砀
|
2140 |
+
输
|
2141 |
+
岖
|
2142 |
+
媳
|
2143 |
+
氟
|
2144 |
+
极
|
2145 |
+
摆
|
2146 |
+
灿
|
2147 |
+
今
|
2148 |
+
扔
|
2149 |
+
腻
|
2150 |
+
枝
|
2151 |
+
奎
|
2152 |
+
药
|
2153 |
+
熄
|
2154 |
+
吨
|
2155 |
+
话
|
2156 |
+
q
|
2157 |
+
额
|
2158 |
+
慑
|
2159 |
+
嘌
|
2160 |
+
协
|
2161 |
+
喀
|
2162 |
+
壳
|
2163 |
+
埭
|
2164 |
+
视
|
2165 |
+
著
|
2166 |
+
於
|
2167 |
+
愧
|
2168 |
+
陲
|
2169 |
+
翌
|
2170 |
+
峁
|
2171 |
+
颅
|
2172 |
+
佛
|
2173 |
+
腹
|
2174 |
+
聋
|
2175 |
+
侯
|
2176 |
+
咎
|
2177 |
+
叟
|
2178 |
+
秀
|
2179 |
+
颇
|
2180 |
+
存
|
2181 |
+
较
|
2182 |
+
罪
|
2183 |
+
哄
|
2184 |
+
岗
|
2185 |
+
扫
|
2186 |
+
栏
|
2187 |
+
钾
|
2188 |
+
羌
|
2189 |
+
己
|
2190 |
+
璨
|
2191 |
+
枭
|
2192 |
+
霉
|
2193 |
+
煌
|
2194 |
+
涸
|
2195 |
+
衿
|
2196 |
+
键
|
2197 |
+
镝
|
2198 |
+
益
|
2199 |
+
岢
|
2200 |
+
奏
|
2201 |
+
连
|
2202 |
+
夯
|
2203 |
+
睿
|
2204 |
+
冥
|
2205 |
+
均
|
2206 |
+
糖
|
2207 |
+
狞
|
2208 |
+
蹊
|
2209 |
+
稻
|
2210 |
+
爸
|
2211 |
+
刿
|
2212 |
+
胥
|
2213 |
+
煜
|
2214 |
+
丽
|
2215 |
+
肿
|
2216 |
+
璃
|
2217 |
+
掸
|
2218 |
+
跚
|
2219 |
+
灾
|
2220 |
+
垂
|
2221 |
+
樾
|
2222 |
+
濑
|
2223 |
+
乎
|
2224 |
+
莲
|
2225 |
+
窄
|
2226 |
+
犹
|
2227 |
+
撮
|
2228 |
+
战
|
2229 |
+
馄
|
2230 |
+
软
|
2231 |
+
络
|
2232 |
+
显
|
2233 |
+
鸢
|
2234 |
+
胸
|
2235 |
+
宾
|
2236 |
+
妲
|
2237 |
+
恕
|
2238 |
+
埔
|
2239 |
+
蝌
|
2240 |
+
份
|
2241 |
+
遇
|
2242 |
+
巧
|
2243 |
+
瞟
|
2244 |
+
粒
|
2245 |
+
恰
|
2246 |
+
剥
|
2247 |
+
桡
|
2248 |
+
博
|
2249 |
+
讯
|
2250 |
+
凯
|
2251 |
+
堇
|
2252 |
+
阶
|
2253 |
+
滤
|
2254 |
+
卖
|
2255 |
+
斌
|
2256 |
+
骚
|
2257 |
+
彬
|
2258 |
+
兑
|
2259 |
+
磺
|
2260 |
+
樱
|
2261 |
+
舷
|
2262 |
+
两
|
2263 |
+
娱
|
2264 |
+
福
|
2265 |
+
仃
|
2266 |
+
差
|
2267 |
+
找
|
2268 |
+
桁
|
2269 |
+
÷
|
2270 |
+
净
|
2271 |
+
把
|
2272 |
+
阴
|
2273 |
+
污
|
2274 |
+
戬
|
2275 |
+
雷
|
2276 |
+
碓
|
2277 |
+
蕲
|
2278 |
+
楚
|
2279 |
+
罡
|
2280 |
+
焖
|
2281 |
+
抽
|
2282 |
+
妫
|
2283 |
+
咒
|
2284 |
+
仑
|
2285 |
+
闱
|
2286 |
+
尽
|
2287 |
+
邑
|
2288 |
+
菁
|
2289 |
+
爱
|
2290 |
+
贷
|
2291 |
+
沥
|
2292 |
+
鞑
|
2293 |
+
牡
|
2294 |
+
嗉
|
2295 |
+
崴
|
2296 |
+
骤
|
2297 |
+
塌
|
2298 |
+
嗦
|
2299 |
+
订
|
2300 |
+
拮
|
2301 |
+
滓
|
2302 |
+
捡
|
2303 |
+
锻
|
2304 |
+
次
|
2305 |
+
坪
|
2306 |
+
杩
|
2307 |
+
臃
|
2308 |
+
箬
|
2309 |
+
融
|
2310 |
+
珂
|
2311 |
+
鹗
|
2312 |
+
宗
|
2313 |
+
枚
|
2314 |
+
降
|
2315 |
+
鸬
|
2316 |
+
妯
|
2317 |
+
阄
|
2318 |
+
堰
|
2319 |
+
盐
|
2320 |
+
毅
|
2321 |
+
必
|
2322 |
+
杨
|
2323 |
+
崃
|
2324 |
+
俺
|
2325 |
+
甬
|
2326 |
+
状
|
2327 |
+
莘
|
2328 |
+
货
|
2329 |
+
耸
|
2330 |
+
菱
|
2331 |
+
腼
|
2332 |
+
铸
|
2333 |
+
唏
|
2334 |
+
痤
|
2335 |
+
孚
|
2336 |
+
澳
|
2337 |
+
懒
|
2338 |
+
溅
|
2339 |
+
翘
|
2340 |
+
疙
|
2341 |
+
杷
|
2342 |
+
淼
|
2343 |
+
缙
|
2344 |
+
骰
|
2345 |
+
喊
|
2346 |
+
悉
|
2347 |
+
砻
|
2348 |
+
坷
|
2349 |
+
艇
|
2350 |
+
赁
|
2351 |
+
界
|
2352 |
+
谤
|
2353 |
+
纣
|
2354 |
+
宴
|
2355 |
+
晃
|
2356 |
+
茹
|
2357 |
+
归
|
2358 |
+
饭
|
2359 |
+
梢
|
2360 |
+
铡
|
2361 |
+
街
|
2362 |
+
抄
|
2363 |
+
肼
|
2364 |
+
鬟
|
2365 |
+
苯
|
2366 |
+
颂
|
2367 |
+
撷
|
2368 |
+
戈
|
2369 |
+
炒
|
2370 |
+
咆
|
2371 |
+
茭
|
2372 |
+
瘙
|
2373 |
+
负
|
2374 |
+
仰
|
2375 |
+
客
|
2376 |
+
琉
|
2377 |
+
铢
|
2378 |
+
封
|
2379 |
+
卑
|
2380 |
+
珥
|
2381 |
+
椿
|
2382 |
+
镧
|
2383 |
+
窨
|
2384 |
+
鬲
|
2385 |
+
寿
|
2386 |
+
御
|
2387 |
+
袤
|
2388 |
+
铃
|
2389 |
+
萎
|
2390 |
+
砖
|
2391 |
+
餮
|
2392 |
+
脒
|
2393 |
+
裳
|
2394 |
+
肪
|
2395 |
+
孕
|
2396 |
+
嫣
|
2397 |
+
馗
|
2398 |
+
嵇
|
2399 |
+
恳
|
2400 |
+
氯
|
2401 |
+
江
|
2402 |
+
石
|
2403 |
+
褶
|
2404 |
+
冢
|
2405 |
+
祸
|
2406 |
+
阻
|
2407 |
+
狈
|
2408 |
+
羞
|
2409 |
+
银
|
2410 |
+
靳
|
2411 |
+
透
|
2412 |
+
咳
|
2413 |
+
叼
|
2414 |
+
敷
|
2415 |
+
芷
|
2416 |
+
啥
|
2417 |
+
它
|
2418 |
+
瓤
|
2419 |
+
兰
|
2420 |
+
痘
|
2421 |
+
懊
|
2422 |
+
逑
|
2423 |
+
肌
|
2424 |
+
往
|
2425 |
+
捺
|
2426 |
+
坊
|
2427 |
+
甩
|
2428 |
+
呻
|
2429 |
+
〃
|
2430 |
+
沦
|
2431 |
+
忘
|
2432 |
+
膻
|
2433 |
+
祟
|
2434 |
+
菅
|
2435 |
+
剧
|
2436 |
+
崆
|
2437 |
+
智
|
2438 |
+
坯
|
2439 |
+
臧
|
2440 |
+
霍
|
2441 |
+
墅
|
2442 |
+
攻
|
2443 |
+
眯
|
2444 |
+
倘
|
2445 |
+
拢
|
2446 |
+
骠
|
2447 |
+
铐
|
2448 |
+
庭
|
2449 |
+
岙
|
2450 |
+
瓠
|
2451 |
+
′
|
2452 |
+
缺
|
2453 |
+
泥
|
2454 |
+
迢
|
2455 |
+
捶
|
2456 |
+
?
|
2457 |
+
?
|
2458 |
+
郏
|
2459 |
+
喙
|
2460 |
+
掷
|
2461 |
+
沌
|
2462 |
+
纯
|
2463 |
+
秘
|
2464 |
+
种
|
2465 |
+
听
|
2466 |
+
绘
|
2467 |
+
固
|
2468 |
+
螨
|
2469 |
+
团
|
2470 |
+
香
|
2471 |
+
盗
|
2472 |
+
妒
|
2473 |
+
埚
|
2474 |
+
蓝
|
2475 |
+
拖
|
2476 |
+
旱
|
2477 |
+
荞
|
2478 |
+
铀
|
2479 |
+
血
|
2480 |
+
遏
|
2481 |
+
汲
|
2482 |
+
辰
|
2483 |
+
叩
|
2484 |
+
拽
|
2485 |
+
幅
|
2486 |
+
硬
|
2487 |
+
惶
|
2488 |
+
桀
|
2489 |
+
漠
|
2490 |
+
措
|
2491 |
+
泼
|
2492 |
+
唑
|
2493 |
+
齐
|
2494 |
+
肾
|
2495 |
+
念
|
2496 |
+
酱
|
2497 |
+
虚
|
2498 |
+
屁
|
2499 |
+
耶
|
2500 |
+
旗
|
2501 |
+
砦
|
2502 |
+
闵
|
2503 |
+
婉
|
2504 |
+
馆
|
2505 |
+
拭
|
2506 |
+
绅
|
2507 |
+
韧
|
2508 |
+
忏
|
2509 |
+
窝
|
2510 |
+
醋
|
2511 |
+
葺
|
2512 |
+
顾
|
2513 |
+
辞
|
2514 |
+
倜
|
2515 |
+
堆
|
2516 |
+
辋
|
2517 |
+
逆
|
2518 |
+
玟
|
2519 |
+
贱
|
2520 |
+
疾
|
2521 |
+
董
|
2522 |
+
惘
|
2523 |
+
倌
|
2524 |
+
锕
|
2525 |
+
淘
|
2526 |
+
嘀
|
2527 |
+
莽
|
2528 |
+
俭
|
2529 |
+
笏
|
2530 |
+
绑
|
2531 |
+
鲷
|
2532 |
+
杈
|
2533 |
+
择
|
2534 |
+
蟀
|
2535 |
+
粥
|
2536 |
+
嗯
|
2537 |
+
驰
|
2538 |
+
逾
|
2539 |
+
案
|
2540 |
+
谪
|
2541 |
+
褓
|
2542 |
+
胫
|
2543 |
+
哩
|
2544 |
+
昕
|
2545 |
+
颚
|
2546 |
+
鲢
|
2547 |
+
绠
|
2548 |
+
躺
|
2549 |
+
鹄
|
2550 |
+
崂
|
2551 |
+
儒
|
2552 |
+
俨
|
2553 |
+
丝
|
2554 |
+
尕
|
2555 |
+
泌
|
2556 |
+
啊
|
2557 |
+
萸
|
2558 |
+
彰
|
2559 |
+
幺
|
2560 |
+
吟
|
2561 |
+
骄
|
2562 |
+
苣
|
2563 |
+
弦
|
2564 |
+
脊
|
2565 |
+
瑰
|
2566 |
+
〈
|
2567 |
+
诛
|
2568 |
+
镁
|
2569 |
+
析
|
2570 |
+
闪
|
2571 |
+
剪
|
2572 |
+
侧
|
2573 |
+
哟
|
2574 |
+
框
|
2575 |
+
螃
|
2576 |
+
守
|
2577 |
+
嬗
|
2578 |
+
燕
|
2579 |
+
狭
|
2580 |
+
铈
|
2581 |
+
缮
|
2582 |
+
概
|
2583 |
+
迳
|
2584 |
+
痧
|
2585 |
+
鲲
|
2586 |
+
俯
|
2587 |
+
售
|
2588 |
+
笼
|
2589 |
+
痣
|
2590 |
+
扉
|
2591 |
+
挖
|
2592 |
+
满
|
2593 |
+
咋
|
2594 |
+
援
|
2595 |
+
邱
|
2596 |
+
扇
|
2597 |
+
歪
|
2598 |
+
便
|
2599 |
+
玑
|
2600 |
+
绦
|
2601 |
+
峡
|
2602 |
+
蛇
|
2603 |
+
叨
|
2604 |
+
〖
|
2605 |
+
泽
|
2606 |
+
胃
|
2607 |
+
斓
|
2608 |
+
喋
|
2609 |
+
怂
|
2610 |
+
坟
|
2611 |
+
猪
|
2612 |
+
该
|
2613 |
+
蚬
|
2614 |
+
炕
|
2615 |
+
弥
|
2616 |
+
赞
|
2617 |
+
棣
|
2618 |
+
晔
|
2619 |
+
娠
|
2620 |
+
挲
|
2621 |
+
狡
|
2622 |
+
创
|
2623 |
+
疖
|
2624 |
+
铕
|
2625 |
+
镭
|
2626 |
+
稷
|
2627 |
+
挫
|
2628 |
+
弭
|
2629 |
+
啾
|
2630 |
+
翔
|
2631 |
+
粉
|
2632 |
+
履
|
2633 |
+
苘
|
2634 |
+
哦
|
2635 |
+
楼
|
2636 |
+
秕
|
2637 |
+
铂
|
2638 |
+
土
|
2639 |
+
锣
|
2640 |
+
瘟
|
2641 |
+
挣
|
2642 |
+
栉
|
2643 |
+
习
|
2644 |
+
享
|
2645 |
+
桢
|
2646 |
+
袅
|
2647 |
+
磨
|
2648 |
+
桂
|
2649 |
+
谦
|
2650 |
+
延
|
2651 |
+
坚
|
2652 |
+
蔚
|
2653 |
+
噗
|
2654 |
+
署
|
2655 |
+
谟
|
2656 |
+
猬
|
2657 |
+
钎
|
2658 |
+
恐
|
2659 |
+
嬉
|
2660 |
+
雒
|
2661 |
+
倦
|
2662 |
+
衅
|
2663 |
+
亏
|
2664 |
+
璩
|
2665 |
+
睹
|
2666 |
+
刻
|
2667 |
+
殿
|
2668 |
+
王
|
2669 |
+
算
|
2670 |
+
雕
|
2671 |
+
麻
|
2672 |
+
丘
|
2673 |
+
柯
|
2674 |
+
骆
|
2675 |
+
丸
|
2676 |
+
塍
|
2677 |
+
谚
|
2678 |
+
添
|
2679 |
+
鲈
|
2680 |
+
垓
|
2681 |
+
桎
|
2682 |
+
蚯
|
2683 |
+
芥
|
2684 |
+
予
|
2685 |
+
飕
|
2686 |
+
镦
|
2687 |
+
谌
|
2688 |
+
窗
|
2689 |
+
醚
|
2690 |
+
菀
|
2691 |
+
亮
|
2692 |
+
搪
|
2693 |
+
莺
|
2694 |
+
蒿
|
2695 |
+
羁
|
2696 |
+
足
|
2697 |
+
J
|
2698 |
+
真
|
2699 |
+
轶
|
2700 |
+
悬
|
2701 |
+
衷
|
2702 |
+
靛
|
2703 |
+
翊
|
2704 |
+
掩
|
2705 |
+
哒
|
2706 |
+
炅
|
2707 |
+
掐
|
2708 |
+
冼
|
2709 |
+
妮
|
2710 |
+
l
|
2711 |
+
谐
|
2712 |
+
稚
|
2713 |
+
荆
|
2714 |
+
擒
|
2715 |
+
犯
|
2716 |
+
陵
|
2717 |
+
虏
|
2718 |
+
浓
|
2719 |
+
崽
|
2720 |
+
刍
|
2721 |
+
陌
|
2722 |
+
傻
|
2723 |
+
孜
|
2724 |
+
千
|
2725 |
+
靖
|
2726 |
+
演
|
2727 |
+
矜
|
2728 |
+
钕
|
2729 |
+
煽
|
2730 |
+
杰
|
2731 |
+
酗
|
2732 |
+
渗
|
2733 |
+
伞
|
2734 |
+
栋
|
2735 |
+
俗
|
2736 |
+
泫
|
2737 |
+
戍
|
2738 |
+
罕
|
2739 |
+
沾
|
2740 |
+
疽
|
2741 |
+
灏
|
2742 |
+
煦
|
2743 |
+
芬
|
2744 |
+
磴
|
2745 |
+
叱
|
2746 |
+
阱
|
2747 |
+
榉
|
2748 |
+
湃
|
2749 |
+
蜀
|
2750 |
+
叉
|
2751 |
+
醒
|
2752 |
+
彪
|
2753 |
+
租
|
2754 |
+
郡
|
2755 |
+
篷
|
2756 |
+
屎
|
2757 |
+
良
|
2758 |
+
垢
|
2759 |
+
隗
|
2760 |
+
弱
|
2761 |
+
陨
|
2762 |
+
峪
|
2763 |
+
砷
|
2764 |
+
掴
|
2765 |
+
颁
|
2766 |
+
胎
|
2767 |
+
雯
|
2768 |
+
绵
|
2769 |
+
贬
|
2770 |
+
沐
|
2771 |
+
撵
|
2772 |
+
隘
|
2773 |
+
篙
|
2774 |
+
暖
|
2775 |
+
曹
|
2776 |
+
陡
|
2777 |
+
栓
|
2778 |
+
填
|
2779 |
+
臼
|
2780 |
+
彦
|
2781 |
+
瓶
|
2782 |
+
琪
|
2783 |
+
潼
|
2784 |
+
哪
|
2785 |
+
鸡
|
2786 |
+
摩
|
2787 |
+
啦
|
2788 |
+
俟
|
2789 |
+
锋
|
2790 |
+
域
|
2791 |
+
耻
|
2792 |
+
蔫
|
2793 |
+
疯
|
2794 |
+
纹
|
2795 |
+
撇
|
2796 |
+
毒
|
2797 |
+
绶
|
2798 |
+
痛
|
2799 |
+
酯
|
2800 |
+
忍
|
2801 |
+
爪
|
2802 |
+
赳
|
2803 |
+
歆
|
2804 |
+
嘹
|
2805 |
+
辕
|
2806 |
+
烈
|
2807 |
+
册
|
2808 |
+
朴
|
2809 |
+
钱
|
2810 |
+
吮
|
2811 |
+
毯
|
2812 |
+
癜
|
2813 |
+
娃
|
2814 |
+
谀
|
2815 |
+
邵
|
2816 |
+
厮
|
2817 |
+
炽
|
2818 |
+
璞
|
2819 |
+
邃
|
2820 |
+
丐
|
2821 |
+
追
|
2822 |
+
词
|
2823 |
+
瓒
|
2824 |
+
忆
|
2825 |
+
轧
|
2826 |
+
芫
|
2827 |
+
谯
|
2828 |
+
喷
|
2829 |
+
弟
|
2830 |
+
半
|
2831 |
+
冕
|
2832 |
+
裙
|
2833 |
+
掖
|
2834 |
+
墉
|
2835 |
+
绮
|
2836 |
+
寝
|
2837 |
+
苔
|
2838 |
+
势
|
2839 |
+
顷
|
2840 |
+
褥
|
2841 |
+
切
|
2842 |
+
衮
|
2843 |
+
君
|
2844 |
+
佳
|
2845 |
+
嫒
|
2846 |
+
蚩
|
2847 |
+
霞
|
2848 |
+
佚
|
2849 |
+
洙
|
2850 |
+
逊
|
2851 |
+
镖
|
2852 |
+
暹
|
2853 |
+
唛
|
2854 |
+
&
|
2855 |
+
殒
|
2856 |
+
顶
|
2857 |
+
碗
|
2858 |
+
獗
|
2859 |
+
轭
|
2860 |
+
铺
|
2861 |
+
蛊
|
2862 |
+
废
|
2863 |
+
恹
|
2864 |
+
汨
|
2865 |
+
崩
|
2866 |
+
珍
|
2867 |
+
那
|
2868 |
+
杵
|
2869 |
+
曲
|
2870 |
+
纺
|
2871 |
+
夏
|
2872 |
+
薰
|
2873 |
+
傀
|
2874 |
+
闳
|
2875 |
+
淬
|
2876 |
+
姘
|
2877 |
+
舀
|
2878 |
+
拧
|
2879 |
+
卷
|
2880 |
+
楂
|
2881 |
+
恍
|
2882 |
+
讪
|
2883 |
+
厩
|
2884 |
+
寮
|
2885 |
+
篪
|
2886 |
+
赓
|
2887 |
+
乘
|
2888 |
+
灭
|
2889 |
+
盅
|
2890 |
+
鞣
|
2891 |
+
沟
|
2892 |
+
慎
|
2893 |
+
挂
|
2894 |
+
饺
|
2895 |
+
鼾
|
2896 |
+
杳
|
2897 |
+
树
|
2898 |
+
缨
|
2899 |
+
丛
|
2900 |
+
絮
|
2901 |
+
娌
|
2902 |
+
臻
|
2903 |
+
嗳
|
2904 |
+
篡
|
2905 |
+
侩
|
2906 |
+
述
|
2907 |
+
衰
|
2908 |
+
矛
|
2909 |
+
圈
|
2910 |
+
蚜
|
2911 |
+
匕
|
2912 |
+
筹
|
2913 |
+
匿
|
2914 |
+
濞
|
2915 |
+
晨
|
2916 |
+
叶
|
2917 |
+
骋
|
2918 |
+
郝
|
2919 |
+
挚
|
2920 |
+
蚴
|
2921 |
+
滞
|
2922 |
+
增
|
2923 |
+
侍
|
2924 |
+
描
|
2925 |
+
瓣
|
2926 |
+
吖
|
2927 |
+
嫦
|
2928 |
+
蟒
|
2929 |
+
匾
|
2930 |
+
圣
|
2931 |
+
赌
|
2932 |
+
毡
|
2933 |
+
癞
|
2934 |
+
恺
|
2935 |
+
百
|
2936 |
+
曳
|
2937 |
+
需
|
2938 |
+
篓
|
2939 |
+
肮
|
2940 |
+
庖
|
2941 |
+
帏
|
2942 |
+
卿
|
2943 |
+
驿
|
2944 |
+
遗
|
2945 |
+
蹬
|
2946 |
+
鬓
|
2947 |
+
骡
|
2948 |
+
歉
|
2949 |
+
芎
|
2950 |
+
胳
|
2951 |
+
屐
|
2952 |
+
禽
|
2953 |
+
烦
|
2954 |
+
晌
|
2955 |
+
寄
|
2956 |
+
媾
|
2957 |
+
狄
|
2958 |
+
翡
|
2959 |
+
苒
|
2960 |
+
船
|
2961 |
+
廉
|
2962 |
+
终
|
2963 |
+
痞
|
2964 |
+
殇
|
2965 |
+
々
|
2966 |
+
畦
|
2967 |
+
饶
|
2968 |
+
改
|
2969 |
+
拆
|
2970 |
+
悻
|
2971 |
+
萄
|
2972 |
+
£
|
2973 |
+
瓿
|
2974 |
+
乃
|
2975 |
+
訾
|
2976 |
+
桅
|
2977 |
+
匮
|
2978 |
+
溧
|
2979 |
+
拥
|
2980 |
+
纱
|
2981 |
+
铍
|
2982 |
+
骗
|
2983 |
+
蕃
|
2984 |
+
龋
|
2985 |
+
缬
|
2986 |
+
父
|
2987 |
+
佐
|
2988 |
+
疚
|
2989 |
+
栎
|
2990 |
+
醍
|
2991 |
+
掳
|
2992 |
+
蓄
|
2993 |
+
x
|
2994 |
+
惆
|
2995 |
+
颜
|
2996 |
+
鲆
|
2997 |
+
榆
|
2998 |
+
〔
|
2999 |
+
猎
|
3000 |
+
敌
|
3001 |
+
暴
|
3002 |
+
谥
|
3003 |
+
鲫
|
3004 |
+
贾
|
3005 |
+
罗
|
3006 |
+
玻
|
3007 |
+
缄
|
3008 |
+
扦
|
3009 |
+
芪
|
3010 |
+
癣
|
3011 |
+
落
|
3012 |
+
徒
|
3013 |
+
臾
|
3014 |
+
恿
|
3015 |
+
猩
|
3016 |
+
托
|
3017 |
+
邴
|
3018 |
+
肄
|
3019 |
+
牵
|
3020 |
+
春
|
3021 |
+
陛
|
3022 |
+
耀
|
3023 |
+
刊
|
3024 |
+
拓
|
3025 |
+
蓓
|
3026 |
+
邳
|
3027 |
+
堕
|
3028 |
+
寇
|
3029 |
+
枉
|
3030 |
+
淌
|
3031 |
+
啡
|
3032 |
+
湄
|
3033 |
+
兽
|
3034 |
+
酷
|
3035 |
+
萼
|
3036 |
+
碚
|
3037 |
+
濠
|
3038 |
+
萤
|
3039 |
+
夹
|
3040 |
+
旬
|
3041 |
+
戮
|
3042 |
+
梭
|
3043 |
+
琥
|
3044 |
+
椭
|
3045 |
+
昔
|
3046 |
+
勺
|
3047 |
+
蜊
|
3048 |
+
绐
|
3049 |
+
晚
|
3050 |
+
孺
|
3051 |
+
僵
|
3052 |
+
宣
|
3053 |
+
摄
|
3054 |
+
冽
|
3055 |
+
旨
|
3056 |
+
萌
|
3057 |
+
忙
|
3058 |
+
蚤
|
3059 |
+
眉
|
3060 |
+
噼
|
3061 |
+
蟑
|
3062 |
+
付
|
3063 |
+
契
|
3064 |
+
瓜
|
3065 |
+
悼
|
3066 |
+
颡
|
3067 |
+
壁
|
3068 |
+
曾
|
3069 |
+
窕
|
3070 |
+
颢
|
3071 |
+
澎
|
3072 |
+
仿
|
3073 |
+
俑
|
3074 |
+
浑
|
3075 |
+
嵌
|
3076 |
+
浣
|
3077 |
+
乍
|
3078 |
+
碌
|
3079 |
+
褪
|
3080 |
+
乱
|
3081 |
+
蔟
|
3082 |
+
隙
|
3083 |
+
玩
|
3084 |
+
剐
|
3085 |
+
葫
|
3086 |
+
箫
|
3087 |
+
纲
|
3088 |
+
围
|
3089 |
+
伐
|
3090 |
+
决
|
3091 |
+
伙
|
3092 |
+
漩
|
3093 |
+
瑟
|
3094 |
+
刑
|
3095 |
+
肓
|
3096 |
+
镳
|
3097 |
+
缓
|
3098 |
+
蹭
|
3099 |
+
氨
|
3100 |
+
皓
|
3101 |
+
典
|
3102 |
+
畲
|
3103 |
+
坍
|
3104 |
+
铑
|
3105 |
+
檐
|
3106 |
+
塑
|
3107 |
+
洞
|
3108 |
+
倬
|
3109 |
+
储
|
3110 |
+
胴
|
3111 |
+
淳
|
3112 |
+
戾
|
3113 |
+
吐
|
3114 |
+
灼
|
3115 |
+
惺
|
3116 |
+
妙
|
3117 |
+
毕
|
3118 |
+
珐
|
3119 |
+
缈
|
3120 |
+
虱
|
3121 |
+
盖
|
3122 |
+
羰
|
3123 |
+
鸿
|
3124 |
+
磅
|
3125 |
+
谓
|
3126 |
+
髅
|
3127 |
+
娴
|
3128 |
+
苴
|
3129 |
+
唷
|
3130 |
+
蚣
|
3131 |
+
霹
|
3132 |
+
抨
|
3133 |
+
贤
|
3134 |
+
唠
|
3135 |
+
犬
|
3136 |
+
誓
|
3137 |
+
逍
|
3138 |
+
庠
|
3139 |
+
逼
|
3140 |
+
麓
|
3141 |
+
籼
|
3142 |
+
釉
|
3143 |
+
呜
|
3144 |
+
碧
|
3145 |
+
秧
|
3146 |
+
氩
|
3147 |
+
摔
|
3148 |
+
霄
|
3149 |
+
穸
|
3150 |
+
纨
|
3151 |
+
辟
|
3152 |
+
妈
|
3153 |
+
映
|
3154 |
+
完
|
3155 |
+
牛
|
3156 |
+
缴
|
3157 |
+
嗷
|
3158 |
+
炊
|
3159 |
+
恩
|
3160 |
+
荔
|
3161 |
+
茆
|
3162 |
+
掉
|
3163 |
+
紊
|
3164 |
+
慌
|
3165 |
+
莓
|
3166 |
+
羟
|
3167 |
+
阙
|
3168 |
+
萁
|
3169 |
+
磐
|
3170 |
+
另
|
3171 |
+
蕹
|
3172 |
+
辱
|
3173 |
+
鳐
|
3174 |
+
湮
|
3175 |
+
吡
|
3176 |
+
吩
|
3177 |
+
唐
|
3178 |
+
睦
|
3179 |
+
垠
|
3180 |
+
舒
|
3181 |
+
圜
|
3182 |
+
冗
|
3183 |
+
瞿
|
3184 |
+
溺
|
3185 |
+
芾
|
3186 |
+
囱
|
3187 |
+
匠
|
3188 |
+
僳
|
3189 |
+
汐
|
3190 |
+
菩
|
3191 |
+
饬
|
3192 |
+
漓
|
3193 |
+
黑
|
3194 |
+
霰
|
3195 |
+
浸
|
3196 |
+
濡
|
3197 |
+
窥
|
3198 |
+
毂
|
3199 |
+
蒡
|
3200 |
+
兢
|
3201 |
+
驻
|
3202 |
+
鹉
|
3203 |
+
芮
|
3204 |
+
诙
|
3205 |
+
迫
|
3206 |
+
雳
|
3207 |
+
厂
|
3208 |
+
忐
|
3209 |
+
臆
|
3210 |
+
猴
|
3211 |
+
鸣
|
3212 |
+
蚪
|
3213 |
+
栈
|
3214 |
+
箕
|
3215 |
+
羡
|
3216 |
+
渐
|
3217 |
+
莆
|
3218 |
+
捍
|
3219 |
+
眈
|
3220 |
+
哓
|
3221 |
+
趴
|
3222 |
+
蹼
|
3223 |
+
埕
|
3224 |
+
嚣
|
3225 |
+
骛
|
3226 |
+
宏
|
3227 |
+
淄
|
3228 |
+
斑
|
3229 |
+
噜
|
3230 |
+
严
|
3231 |
+
瑛
|
3232 |
+
垃
|
3233 |
+
椎
|
3234 |
+
诱
|
3235 |
+
压
|
3236 |
+
庾
|
3237 |
+
绞
|
3238 |
+
焘
|
3239 |
+
廿
|
3240 |
+
抡
|
3241 |
+
迄
|
3242 |
+
棘
|
3243 |
+
夫
|
3244 |
+
纬
|
3245 |
+
锹
|
3246 |
+
眨
|
3247 |
+
瞌
|
3248 |
+
侠
|
3249 |
+
脐
|
3250 |
+
竞
|
3251 |
+
瀑
|
3252 |
+
孳
|
3253 |
+
骧
|
3254 |
+
遁
|
3255 |
+
姜
|
3256 |
+
颦
|
3257 |
+
荪
|
3258 |
+
滚
|
3259 |
+
萦
|
3260 |
+
伪
|
3261 |
+
逸
|
3262 |
+
粳
|
3263 |
+
爬
|
3264 |
+
锁
|
3265 |
+
矣
|
3266 |
+
役
|
3267 |
+
趣
|
3268 |
+
洒
|
3269 |
+
颔
|
3270 |
+
诏
|
3271 |
+
逐
|
3272 |
+
奸
|
3273 |
+
甭
|
3274 |
+
惠
|
3275 |
+
攀
|
3276 |
+
蹄
|
3277 |
+
泛
|
3278 |
+
尼
|
3279 |
+
拼
|
3280 |
+
阮
|
3281 |
+
鹰
|
3282 |
+
亚
|
3283 |
+
颈
|
3284 |
+
惑
|
3285 |
+
勒
|
3286 |
+
〉
|
3287 |
+
际
|
3288 |
+
肛
|
3289 |
+
爷
|
3290 |
+
刚
|
3291 |
+
钨
|
3292 |
+
丰
|
3293 |
+
养
|
3294 |
+
冶
|
3295 |
+
鲽
|
3296 |
+
辉
|
3297 |
+
蔻
|
3298 |
+
画
|
3299 |
+
覆
|
3300 |
+
皴
|
3301 |
+
妊
|
3302 |
+
麦
|
3303 |
+
返
|
3304 |
+
醉
|
3305 |
+
皂
|
3306 |
+
擀
|
3307 |
+
〗
|
3308 |
+
酶
|
3309 |
+
凑
|
3310 |
+
粹
|
3311 |
+
悟
|
3312 |
+
诀
|
3313 |
+
硖
|
3314 |
+
港
|
3315 |
+
卜
|
3316 |
+
z
|
3317 |
+
杀
|
3318 |
+
涕
|
3319 |
+
±
|
3320 |
+
舍
|
3321 |
+
铠
|
3322 |
+
抵
|
3323 |
+
弛
|
3324 |
+
段
|
3325 |
+
敝
|
3326 |
+
镐
|
3327 |
+
奠
|
3328 |
+
拂
|
3329 |
+
轴
|
3330 |
+
跛
|
3331 |
+
袱
|
3332 |
+
e
|
3333 |
+
t
|
3334 |
+
沉
|
3335 |
+
菇
|
3336 |
+
俎
|
3337 |
+
薪
|
3338 |
+
峦
|
3339 |
+
秭
|
3340 |
+
蟹
|
3341 |
+
历
|
3342 |
+
盟
|
3343 |
+
菠
|
3344 |
+
寡
|
3345 |
+
液
|
3346 |
+
肢
|
3347 |
+
喻
|
3348 |
+
染
|
3349 |
+
裱
|
3350 |
+
悱
|
3351 |
+
抱
|
3352 |
+
氙
|
3353 |
+
赤
|
3354 |
+
捅
|
3355 |
+
猛
|
3356 |
+
跑
|
3357 |
+
氮
|
3358 |
+
谣
|
3359 |
+
仁
|
3360 |
+
尺
|
3361 |
+
辊
|
3362 |
+
窍
|
3363 |
+
烙
|
3364 |
+
衍
|
3365 |
+
架
|
3366 |
+
擦
|
3367 |
+
倏
|
3368 |
+
璐
|
3369 |
+
瑁
|
3370 |
+
币
|
3371 |
+
楞
|
3372 |
+
胖
|
3373 |
+
夔
|
3374 |
+
趸
|
3375 |
+
邛
|
3376 |
+
惴
|
3377 |
+
饕
|
3378 |
+
虔
|
3379 |
+
蝎
|
3380 |
+
§
|
3381 |
+
哉
|
3382 |
+
贝
|
3383 |
+
宽
|
3384 |
+
辫
|
3385 |
+
炮
|
3386 |
+
扩
|
3387 |
+
饲
|
3388 |
+
籽
|
3389 |
+
魏
|
3390 |
+
菟
|
3391 |
+
锰
|
3392 |
+
伍
|
3393 |
+
猝
|
3394 |
+
末
|
3395 |
+
琳
|
3396 |
+
哚
|
3397 |
+
蛎
|
3398 |
+
邂
|
3399 |
+
呀
|
3400 |
+
姿
|
3401 |
+
鄞
|
3402 |
+
却
|
3403 |
+
歧
|
3404 |
+
仙
|
3405 |
+
恸
|
3406 |
+
椐
|
3407 |
+
森
|
3408 |
+
牒
|
3409 |
+
寤
|
3410 |
+
袒
|
3411 |
+
婆
|
3412 |
+
虢
|
3413 |
+
雅
|
3414 |
+
钉
|
3415 |
+
朵
|
3416 |
+
贼
|
3417 |
+
欲
|
3418 |
+
苞
|
3419 |
+
寰
|
3420 |
+
故
|
3421 |
+
龚
|
3422 |
+
坭
|
3423 |
+
嘘
|
3424 |
+
咫
|
3425 |
+
礼
|
3426 |
+
硷
|
3427 |
+
兀
|
3428 |
+
睢
|
3429 |
+
汶
|
3430 |
+
’
|
3431 |
+
铲
|
3432 |
+
烧
|
3433 |
+
绕
|
3434 |
+
诃
|
3435 |
+
浃
|
3436 |
+
钿
|
3437 |
+
哺
|
3438 |
+
柜
|
3439 |
+
讼
|
3440 |
+
颊
|
3441 |
+
璁
|
3442 |
+
腔
|
3443 |
+
洽
|
3444 |
+
咐
|
3445 |
+
脲
|
3446 |
+
簌
|
3447 |
+
筠
|
3448 |
+
镣
|
3449 |
+
玮
|
3450 |
+
鞠
|
3451 |
+
谁
|
3452 |
+
兼
|
3453 |
+
姆
|
3454 |
+
挥
|
3455 |
+
梯
|
3456 |
+
蝴
|
3457 |
+
谘
|
3458 |
+
漕
|
3459 |
+
刷
|
3460 |
+
躏
|
3461 |
+
宦
|
3462 |
+
弼
|
3463 |
+
b
|
3464 |
+
垌
|
3465 |
+
劈
|
3466 |
+
麟
|
3467 |
+
莉
|
3468 |
+
揭
|
3469 |
+
笙
|
3470 |
+
渎
|
3471 |
+
仕
|
3472 |
+
嗤
|
3473 |
+
仓
|
3474 |
+
配
|
3475 |
+
怏
|
3476 |
+
抬
|
3477 |
+
错
|
3478 |
+
泯
|
3479 |
+
镊
|
3480 |
+
孰
|
3481 |
+
猿
|
3482 |
+
邪
|
3483 |
+
仍
|
3484 |
+
秋
|
3485 |
+
鼬
|
3486 |
+
壹
|
3487 |
+
歇
|
3488 |
+
吵
|
3489 |
+
炼
|
3490 |
+
<
|
3491 |
+
尧
|
3492 |
+
射
|
3493 |
+
柬
|
3494 |
+
廷
|
3495 |
+
胧
|
3496 |
+
霾
|
3497 |
+
凳
|
3498 |
+
隋
|
3499 |
+
肚
|
3500 |
+
浮
|
3501 |
+
梦
|
3502 |
+
祥
|
3503 |
+
株
|
3504 |
+
堵
|
3505 |
+
退
|
3506 |
+
L
|
3507 |
+
鹫
|
3508 |
+
跎
|
3509 |
+
凶
|
3510 |
+
毽
|
3511 |
+
荟
|
3512 |
+
炫
|
3513 |
+
栩
|
3514 |
+
玳
|
3515 |
+
甜
|
3516 |
+
沂
|
3517 |
+
鹿
|
3518 |
+
顽
|
3519 |
+
伯
|
3520 |
+
爹
|
3521 |
+
赔
|
3522 |
+
蛴
|
3523 |
+
徐
|
3524 |
+
匡
|
3525 |
+
欣
|
3526 |
+
狰
|
3527 |
+
缸
|
3528 |
+
雹
|
3529 |
+
蟆
|
3530 |
+
疤
|
3531 |
+
默
|
3532 |
+
沤
|
3533 |
+
啜
|
3534 |
+
痂
|
3535 |
+
衣
|
3536 |
+
禅
|
3537 |
+
w
|
3538 |
+
i
|
3539 |
+
h
|
3540 |
+
辽
|
3541 |
+
葳
|
3542 |
+
黝
|
3543 |
+
钗
|
3544 |
+
停
|
3545 |
+
沽
|
3546 |
+
棒
|
3547 |
+
馨
|
3548 |
+
颌
|
3549 |
+
肉
|
3550 |
+
吴
|
3551 |
+
硫
|
3552 |
+
悯
|
3553 |
+
劾
|
3554 |
+
娈
|
3555 |
+
马
|
3556 |
+
啧
|
3557 |
+
吊
|
3558 |
+
悌
|
3559 |
+
镑
|
3560 |
+
峭
|
3561 |
+
帆
|
3562 |
+
瀣
|
3563 |
+
涉
|
3564 |
+
咸
|
3565 |
+
疸
|
3566 |
+
滋
|
3567 |
+
泣
|
3568 |
+
翦
|
3569 |
+
拙
|
3570 |
+
癸
|
3571 |
+
钥
|
3572 |
+
蜒
|
3573 |
+
+
|
3574 |
+
尾
|
3575 |
+
庄
|
3576 |
+
凝
|
3577 |
+
泉
|
3578 |
+
婢
|
3579 |
+
渴
|
3580 |
+
谊
|
3581 |
+
乞
|
3582 |
+
陆
|
3583 |
+
锉
|
3584 |
+
糊
|
3585 |
+
鸦
|
3586 |
+
淮
|
3587 |
+
I
|
3588 |
+
B
|
3589 |
+
N
|
3590 |
+
晦
|
3591 |
+
弗
|
3592 |
+
乔
|
3593 |
+
庥
|
3594 |
+
葡
|
3595 |
+
尻
|
3596 |
+
席
|
3597 |
+
橡
|
3598 |
+
傣
|
3599 |
+
渣
|
3600 |
+
拿
|
3601 |
+
惩
|
3602 |
+
麋
|
3603 |
+
斛
|
3604 |
+
缃
|
3605 |
+
矮
|
3606 |
+
蛏
|
3607 |
+
岘
|
3608 |
+
鸽
|
3609 |
+
姐
|
3610 |
+
膏
|
3611 |
+
催
|
3612 |
+
奔
|
3613 |
+
镒
|
3614 |
+
喱
|
3615 |
+
蠡
|
3616 |
+
摧
|
3617 |
+
钯
|
3618 |
+
胤
|
3619 |
+
柠
|
3620 |
+
拐
|
3621 |
+
璋
|
3622 |
+
鸥
|
3623 |
+
卢
|
3624 |
+
荡
|
3625 |
+
倾
|
3626 |
+
^
|
3627 |
+
_
|
3628 |
+
珀
|
3629 |
+
逄
|
3630 |
+
萧
|
3631 |
+
塾
|
3632 |
+
掇
|
3633 |
+
贮
|
3634 |
+
笆
|
3635 |
+
聂
|
3636 |
+
圃
|
3637 |
+
冲
|
3638 |
+
嵬
|
3639 |
+
M
|
3640 |
+
滔
|
3641 |
+
笕
|
3642 |
+
值
|
3643 |
+
炙
|
3644 |
+
偶
|
3645 |
+
蜱
|
3646 |
+
搐
|
3647 |
+
梆
|
3648 |
+
汪
|
3649 |
+
蔬
|
3650 |
+
腑
|
3651 |
+
鸯
|
3652 |
+
蹇
|
3653 |
+
敞
|
3654 |
+
绯
|
3655 |
+
仨
|
3656 |
+
祯
|
3657 |
+
谆
|
3658 |
+
梧
|
3659 |
+
糗
|
3660 |
+
鑫
|
3661 |
+
啸
|
3662 |
+
豺
|
3663 |
+
囹
|
3664 |
+
猾
|
3665 |
+
巢
|
3666 |
+
柄
|
3667 |
+
瀛
|
3668 |
+
筑
|
3669 |
+
踌
|
3670 |
+
沭
|
3671 |
+
暗
|
3672 |
+
苁
|
3673 |
+
鱿
|
3674 |
+
蹉
|
3675 |
+
脂
|
3676 |
+
蘖
|
3677 |
+
牢
|
3678 |
+
热
|
3679 |
+
木
|
3680 |
+
吸
|
3681 |
+
溃
|
3682 |
+
宠
|
3683 |
+
序
|
3684 |
+
泞
|
3685 |
+
偿
|
3686 |
+
拜
|
3687 |
+
檩
|
3688 |
+
厚
|
3689 |
+
朐
|
3690 |
+
毗
|
3691 |
+
螳
|
3692 |
+
吞
|
3693 |
+
媚
|
3694 |
+
朽
|
3695 |
+
担
|
3696 |
+
蝗
|
3697 |
+
橘
|
3698 |
+
畴
|
3699 |
+
祈
|
3700 |
+
糟
|
3701 |
+
盱
|
3702 |
+
隼
|
3703 |
+
郜
|
3704 |
+
惜
|
3705 |
+
珠
|
3706 |
+
裨
|
3707 |
+
铵
|
3708 |
+
焙
|
3709 |
+
琚
|
3710 |
+
唯
|
3711 |
+
咚
|
3712 |
+
噪
|
3713 |
+
骊
|
3714 |
+
丫
|
3715 |
+
滢
|
3716 |
+
勤
|
3717 |
+
棉
|
3718 |
+
呸
|
3719 |
+
咣
|
3720 |
+
淀
|
3721 |
+
隔
|
3722 |
+
蕾
|
3723 |
+
窈
|
3724 |
+
饨
|
3725 |
+
挨
|
3726 |
+
煅
|
3727 |
+
短
|
3728 |
+
匙
|
3729 |
+
粕
|
3730 |
+
镜
|
3731 |
+
赣
|
3732 |
+
撕
|
3733 |
+
墩
|
3734 |
+
酬
|
3735 |
+
馁
|
3736 |
+
豌
|
3737 |
+
颐
|
3738 |
+
抗
|
3739 |
+
酣
|
3740 |
+
氓
|
3741 |
+
佑
|
3742 |
+
搁
|
3743 |
+
哭
|
3744 |
+
递
|
3745 |
+
耷
|
3746 |
+
涡
|
3747 |
+
桃
|
3748 |
+
贻
|
3749 |
+
碣
|
3750 |
+
截
|
3751 |
+
瘦
|
3752 |
+
昭
|
3753 |
+
镌
|
3754 |
+
蔓
|
3755 |
+
氚
|
3756 |
+
甲
|
3757 |
+
猕
|
3758 |
+
蕴
|
3759 |
+
蓬
|
3760 |
+
散
|
3761 |
+
拾
|
3762 |
+
纛
|
3763 |
+
狼
|
3764 |
+
猷
|
3765 |
+
铎
|
3766 |
+
埋
|
3767 |
+
旖
|
3768 |
+
矾
|
3769 |
+
讳
|
3770 |
+
囊
|
3771 |
+
糜
|
3772 |
+
迈
|
3773 |
+
粟
|
3774 |
+
蚂
|
3775 |
+
紧
|
3776 |
+
鲳
|
3777 |
+
瘢
|
3778 |
+
栽
|
3779 |
+
稼
|
3780 |
+
羊
|
3781 |
+
锄
|
3782 |
+
斟
|
3783 |
+
睁
|
3784 |
+
桥
|
3785 |
+
瓮
|
3786 |
+
蹙
|
3787 |
+
祉
|
3788 |
+
醺
|
3789 |
+
鼻
|
3790 |
+
昱
|
3791 |
+
剃
|
3792 |
+
跳
|
3793 |
+
篱
|
3794 |
+
跷
|
3795 |
+
蒜
|
3796 |
+
翎
|
3797 |
+
宅
|
3798 |
+
晖
|
3799 |
+
嗑
|
3800 |
+
壑
|
3801 |
+
峻
|
3802 |
+
癫
|
3803 |
+
屏
|
3804 |
+
狠
|
3805 |
+
陋
|
3806 |
+
袜
|
3807 |
+
途
|
3808 |
+
憎
|
3809 |
+
祀
|
3810 |
+
莹
|
3811 |
+
滟
|
3812 |
+
佶
|
3813 |
+
溥
|
3814 |
+
臣
|
3815 |
+
约
|
3816 |
+
盛
|
3817 |
+
峰
|
3818 |
+
磁
|
3819 |
+
慵
|
3820 |
+
婪
|
3821 |
+
拦
|
3822 |
+
莅
|
3823 |
+
朕
|
3824 |
+
鹦
|
3825 |
+
粲
|
3826 |
+
裤
|
3827 |
+
哎
|
3828 |
+
疡
|
3829 |
+
嫖
|
3830 |
+
琵
|
3831 |
+
窟
|
3832 |
+
堪
|
3833 |
+
谛
|
3834 |
+
嘉
|
3835 |
+
儡
|
3836 |
+
鳝
|
3837 |
+
斩
|
3838 |
+
郾
|
3839 |
+
驸
|
3840 |
+
酊
|
3841 |
+
妄
|
3842 |
+
胜
|
3843 |
+
贺
|
3844 |
+
徙
|
3845 |
+
傅
|
3846 |
+
噌
|
3847 |
+
钢
|
3848 |
+
栅
|
3849 |
+
庇
|
3850 |
+
恋
|
3851 |
+
匝
|
3852 |
+
巯
|
3853 |
+
邈
|
3854 |
+
尸
|
3855 |
+
锚
|
3856 |
+
粗
|
3857 |
+
佟
|
3858 |
+
蛟
|
3859 |
+
薹
|
3860 |
+
纵
|
3861 |
+
蚊
|
3862 |
+
郅
|
3863 |
+
绢
|
3864 |
+
锐
|
3865 |
+
苗
|
3866 |
+
俞
|
3867 |
+
篆
|
3868 |
+
淆
|
3869 |
+
膀
|
3870 |
+
鲜
|
3871 |
+
煎
|
3872 |
+
诶
|
3873 |
+
秽
|
3874 |
+
寻
|
3875 |
+
涮
|
3876 |
+
刺
|
3877 |
+
怀
|
3878 |
+
噶
|
3879 |
+
巨
|
3880 |
+
褰
|
3881 |
+
魅
|
3882 |
+
灶
|
3883 |
+
灌
|
3884 |
+
桉
|
3885 |
+
藕
|
3886 |
+
谜
|
3887 |
+
舸
|
3888 |
+
薄
|
3889 |
+
搀
|
3890 |
+
恽
|
3891 |
+
借
|
3892 |
+
牯
|
3893 |
+
痉
|
3894 |
+
渥
|
3895 |
+
愿
|
3896 |
+
亓
|
3897 |
+
耘
|
3898 |
+
杠
|
3899 |
+
柩
|
3900 |
+
锔
|
3901 |
+
蚶
|
3902 |
+
钣
|
3903 |
+
珈
|
3904 |
+
喘
|
3905 |
+
蹒
|
3906 |
+
幽
|
3907 |
+
赐
|
3908 |
+
稗
|
3909 |
+
晤
|
3910 |
+
莱
|
3911 |
+
泔
|
3912 |
+
扯
|
3913 |
+
肯
|
3914 |
+
菪
|
3915 |
+
裆
|
3916 |
+
腩
|
3917 |
+
豉
|
3918 |
+
疆
|
3919 |
+
骜
|
3920 |
+
腐
|
3921 |
+
倭
|
3922 |
+
珏
|
3923 |
+
唔
|
3924 |
+
粮
|
3925 |
+
亡
|
3926 |
+
润
|
3927 |
+
慰
|
3928 |
+
伽
|
3929 |
+
橄
|
3930 |
+
玄
|
3931 |
+
誉
|
3932 |
+
醐
|
3933 |
+
胆
|
3934 |
+
龊
|
3935 |
+
粼
|
3936 |
+
塬
|
3937 |
+
陇
|
3938 |
+
彼
|
3939 |
+
削
|
3940 |
+
嗣
|
3941 |
+
绾
|
3942 |
+
芽
|
3943 |
+
妗
|
3944 |
+
垭
|
3945 |
+
瘴
|
3946 |
+
爽
|
3947 |
+
薏
|
3948 |
+
寨
|
3949 |
+
龈
|
3950 |
+
泠
|
3951 |
+
弹
|
3952 |
+
赢
|
3953 |
+
漪
|
3954 |
+
猫
|
3955 |
+
嘧
|
3956 |
+
涂
|
3957 |
+
恤
|
3958 |
+
圭
|
3959 |
+
茧
|
3960 |
+
烽
|
3961 |
+
屑
|
3962 |
+
痕
|
3963 |
+
巾
|
3964 |
+
赖
|
3965 |
+
荸
|
3966 |
+
凰
|
3967 |
+
腮
|
3968 |
+
畈
|
3969 |
+
亵
|
3970 |
+
蹲
|
3971 |
+
偃
|
3972 |
+
苇
|
3973 |
+
澜
|
3974 |
+
艮
|
3975 |
+
换
|
3976 |
+
骺
|
3977 |
+
烘
|
3978 |
+
苕
|
3979 |
+
梓
|
3980 |
+
颉
|
3981 |
+
肇
|
3982 |
+
哗
|
3983 |
+
悄
|
3984 |
+
氤
|
3985 |
+
涠
|
3986 |
+
葬
|
3987 |
+
屠
|
3988 |
+
鹭
|
3989 |
+
植
|
3990 |
+
竺
|
3991 |
+
佯
|
3992 |
+
诣
|
3993 |
+
鲇
|
3994 |
+
瘀
|
3995 |
+
鲅
|
3996 |
+
邦
|
3997 |
+
移
|
3998 |
+
滁
|
3999 |
+
冯
|
4000 |
+
耕
|
4001 |
+
癔
|
4002 |
+
戌
|
4003 |
+
茬
|
4004 |
+
沁
|
4005 |
+
巩
|
4006 |
+
悠
|
4007 |
+
湘
|
4008 |
+
洪
|
4009 |
+
痹
|
4010 |
+
锟
|
4011 |
+
循
|
4012 |
+
谋
|
4013 |
+
腕
|
4014 |
+
鳃
|
4015 |
+
钠
|
4016 |
+
捞
|
4017 |
+
焉
|
4018 |
+
迎
|
4019 |
+
碱
|
4020 |
+
伫
|
4021 |
+
急
|
4022 |
+
榷
|
4023 |
+
奈
|
4024 |
+
邝
|
4025 |
+
卯
|
4026 |
+
辄
|
4027 |
+
皲
|
4028 |
+
卟
|
4029 |
+
醛
|
4030 |
+
畹
|
4031 |
+
忧
|
4032 |
+
稳
|
4033 |
+
雄
|
4034 |
+
昼
|
4035 |
+
缩
|
4036 |
+
阈
|
4037 |
+
睑
|
4038 |
+
扌
|
4039 |
+
耗
|
4040 |
+
曦
|
4041 |
+
涅
|
4042 |
+
捏
|
4043 |
+
瞧
|
4044 |
+
邕
|
4045 |
+
淖
|
4046 |
+
漉
|
4047 |
+
铝
|
4048 |
+
耦
|
4049 |
+
禹
|
4050 |
+
湛
|
4051 |
+
喽
|
4052 |
+
莼
|
4053 |
+
琅
|
4054 |
+
诸
|
4055 |
+
苎
|
4056 |
+
纂
|
4057 |
+
硅
|
4058 |
+
始
|
4059 |
+
嗨
|
4060 |
+
傥
|
4061 |
+
燃
|
4062 |
+
臂
|
4063 |
+
赅
|
4064 |
+
嘈
|
4065 |
+
呆
|
4066 |
+
贵
|
4067 |
+
屹
|
4068 |
+
壮
|
4069 |
+
肋
|
4070 |
+
亍
|
4071 |
+
蚀
|
4072 |
+
卅
|
4073 |
+
豹
|
4074 |
+
腆
|
4075 |
+
邬
|
4076 |
+
迭
|
4077 |
+
浊
|
4078 |
+
}
|
4079 |
+
童
|
4080 |
+
螂
|
4081 |
+
捐
|
4082 |
+
圩
|
4083 |
+
勐
|
4084 |
+
触
|
4085 |
+
寞
|
4086 |
+
汊
|
4087 |
+
壤
|
4088 |
+
荫
|
4089 |
+
膺
|
4090 |
+
渌
|
4091 |
+
芳
|
4092 |
+
懿
|
4093 |
+
遴
|
4094 |
+
螈
|
4095 |
+
泰
|
4096 |
+
蓼
|
4097 |
+
蛤
|
4098 |
+
茜
|
4099 |
+
舅
|
4100 |
+
枫
|
4101 |
+
朔
|
4102 |
+
膝
|
4103 |
+
眙
|
4104 |
+
避
|
4105 |
+
梅
|
4106 |
+
判
|
4107 |
+
鹜
|
4108 |
+
璜
|
4109 |
+
牍
|
4110 |
+
缅
|
4111 |
+
垫
|
4112 |
+
藻
|
4113 |
+
黔
|
4114 |
+
侥
|
4115 |
+
惚
|
4116 |
+
懂
|
4117 |
+
踩
|
4118 |
+
腰
|
4119 |
+
腈
|
4120 |
+
札
|
4121 |
+
丞
|
4122 |
+
唾
|
4123 |
+
慈
|
4124 |
+
顿
|
4125 |
+
摹
|
4126 |
+
荻
|
4127 |
+
琬
|
4128 |
+
~
|
4129 |
+
斧
|
4130 |
+
沈
|
4131 |
+
滂
|
4132 |
+
胁
|
4133 |
+
胀
|
4134 |
+
幄
|
4135 |
+
莜
|
4136 |
+
Z
|
4137 |
+
匀
|
4138 |
+
鄄
|
4139 |
+
掌
|
4140 |
+
绰
|
4141 |
+
茎
|
4142 |
+
焚
|
4143 |
+
赋
|
4144 |
+
萱
|
4145 |
+
谑
|
4146 |
+
汁
|
4147 |
+
铒
|
4148 |
+
瞎
|
4149 |
+
夺
|
4150 |
+
蜗
|
4151 |
+
野
|
4152 |
+
娆
|
4153 |
+
冀
|
4154 |
+
弯
|
4155 |
+
篁
|
4156 |
+
懵
|
4157 |
+
灞
|
4158 |
+
隽
|
4159 |
+
芡
|
4160 |
+
脘
|
4161 |
+
俐
|
4162 |
+
辩
|
4163 |
+
芯
|
4164 |
+
掺
|
4165 |
+
喏
|
4166 |
+
膈
|
4167 |
+
蝈
|
4168 |
+
觐
|
4169 |
+
悚
|
4170 |
+
踹
|
4171 |
+
蔗
|
4172 |
+
熠
|
4173 |
+
鼠
|
4174 |
+
呵
|
4175 |
+
抓
|
4176 |
+
橼
|
4177 |
+
峨
|
4178 |
+
畜
|
4179 |
+
缔
|
4180 |
+
禾
|
4181 |
+
崭
|
4182 |
+
弃
|
4183 |
+
熊
|
4184 |
+
摒
|
4185 |
+
凸
|
4186 |
+
拗
|
4187 |
+
穹
|
4188 |
+
蒙
|
4189 |
+
抒
|
4190 |
+
祛
|
4191 |
+
劝
|
4192 |
+
闫
|
4193 |
+
扳
|
4194 |
+
阵
|
4195 |
+
醌
|
4196 |
+
踪
|
4197 |
+
喵
|
4198 |
+
侣
|
4199 |
+
搬
|
4200 |
+
仅
|
4201 |
+
荧
|
4202 |
+
赎
|
4203 |
+
蝾
|
4204 |
+
琦
|
4205 |
+
买
|
4206 |
+
婧
|
4207 |
+
瞄
|
4208 |
+
寓
|
4209 |
+
皎
|
4210 |
+
冻
|
4211 |
+
赝
|
4212 |
+
箩
|
4213 |
+
莫
|
4214 |
+
瞰
|
4215 |
+
郊
|
4216 |
+
笫
|
4217 |
+
姝
|
4218 |
+
筒
|
4219 |
+
枪
|
4220 |
+
遣
|
4221 |
+
煸
|
4222 |
+
袋
|
4223 |
+
舆
|
4224 |
+
痱
|
4225 |
+
涛
|
4226 |
+
母
|
4227 |
+
〇
|
4228 |
+
启
|
4229 |
+
践
|
4230 |
+
耙
|
4231 |
+
绲
|
4232 |
+
盘
|
4233 |
+
遂
|
4234 |
+
昊
|
4235 |
+
搞
|
4236 |
+
槿
|
4237 |
+
诬
|
4238 |
+
纰
|
4239 |
+
泓
|
4240 |
+
惨
|
4241 |
+
檬
|
4242 |
+
亻
|
4243 |
+
越
|
4244 |
+
C
|
4245 |
+
o
|
4246 |
+
憩
|
4247 |
+
熵
|
4248 |
+
祷
|
4249 |
+
钒
|
4250 |
+
暧
|
4251 |
+
塔
|
4252 |
+
阗
|
4253 |
+
胰
|
4254 |
+
咄
|
4255 |
+
娶
|
4256 |
+
魔
|
4257 |
+
琶
|
4258 |
+
钞
|
4259 |
+
邻
|
4260 |
+
扬
|
4261 |
+
杉
|
4262 |
+
殴
|
4263 |
+
咽
|
4264 |
+
弓
|
4265 |
+
〆
|
4266 |
+
髻
|
4267 |
+
】
|
4268 |
+
吭
|
4269 |
+
揽
|
4270 |
+
霆
|
4271 |
+
拄
|
4272 |
+
殖
|
4273 |
+
脆
|
4274 |
+
彻
|
4275 |
+
岩
|
4276 |
+
芝
|
4277 |
+
勃
|
4278 |
+
辣
|
4279 |
+
剌
|
4280 |
+
钝
|
4281 |
+
嘎
|
4282 |
+
甄
|
4283 |
+
佘
|
4284 |
+
皖
|
4285 |
+
伦
|
4286 |
+
授
|
4287 |
+
��
|
4288 |
+
憔
|
4289 |
+
挪
|
4290 |
+
皇
|
4291 |
+
庞
|
4292 |
+
稔
|
4293 |
+
芜
|
4294 |
+
踏
|
4295 |
+
溴
|
4296 |
+
兖
|
4297 |
+
卒
|
4298 |
+
擢
|
4299 |
+
饥
|
4300 |
+
鳞
|
4301 |
+
煲
|
4302 |
+
‰
|
4303 |
+
账
|
4304 |
+
颗
|
4305 |
+
叻
|
4306 |
+
斯
|
4307 |
+
捧
|
4308 |
+
鳍
|
4309 |
+
琮
|
4310 |
+
讹
|
4311 |
+
蛙
|
4312 |
+
纽
|
4313 |
+
谭
|
4314 |
+
酸
|
4315 |
+
兔
|
4316 |
+
莒
|
4317 |
+
睇
|
4318 |
+
伟
|
4319 |
+
觑
|
4320 |
+
羲
|
4321 |
+
嗜
|
4322 |
+
宜
|
4323 |
+
褐
|
4324 |
+
旎
|
4325 |
+
辛
|
4326 |
+
卦
|
4327 |
+
诘
|
4328 |
+
筋
|
4329 |
+
鎏
|
4330 |
+
溪
|
4331 |
+
挛
|
4332 |
+
熔
|
4333 |
+
阜
|
4334 |
+
晰
|
4335 |
+
鳅
|
4336 |
+
丢
|
4337 |
+
奚
|
4338 |
+
灸
|
4339 |
+
呱
|
4340 |
+
献
|
4341 |
+
陉
|
4342 |
+
黛
|
4343 |
+
鸪
|
4344 |
+
甾
|
4345 |
+
萨
|
4346 |
+
疮
|
4347 |
+
拯
|
4348 |
+
洲
|
4349 |
+
疹
|
4350 |
+
辑
|
4351 |
+
叙
|
4352 |
+
恻
|
4353 |
+
谒
|
4354 |
+
允
|
4355 |
+
柔
|
4356 |
+
烂
|
4357 |
+
氏
|
4358 |
+
逅
|
4359 |
+
漆
|
4360 |
+
拎
|
4361 |
+
惋
|
4362 |
+
扈
|
4363 |
+
湟
|
4364 |
+
纭
|
4365 |
+
啕
|
4366 |
+
掬
|
4367 |
+
擞
|
4368 |
+
哥
|
4369 |
+
忽
|
4370 |
+
涤
|
4371 |
+
鸵
|
4372 |
+
靡
|
4373 |
+
郗
|
4374 |
+
瓷
|
4375 |
+
扁
|
4376 |
+
廊
|
4377 |
+
怨
|
4378 |
+
雏
|
4379 |
+
钮
|
4380 |
+
敦
|
4381 |
+
E
|
4382 |
+
懦
|
4383 |
+
憋
|
4384 |
+
汀
|
4385 |
+
拚
|
4386 |
+
啉
|
4387 |
+
腌
|
4388 |
+
岸
|
4389 |
+
f
|
4390 |
+
痼
|
4391 |
+
瞅
|
4392 |
+
尊
|
4393 |
+
咀
|
4394 |
+
眩
|
4395 |
+
飙
|
4396 |
+
忌
|
4397 |
+
仝
|
4398 |
+
迦
|
4399 |
+
熬
|
4400 |
+
毫
|
4401 |
+
胯
|
4402 |
+
篑
|
4403 |
+
茄
|
4404 |
+
腺
|
4405 |
+
凄
|
4406 |
+
舛
|
4407 |
+
碴
|
4408 |
+
锵
|
4409 |
+
诧
|
4410 |
+
羯
|
4411 |
+
後
|
4412 |
+
漏
|
4413 |
+
汤
|
4414 |
+
宓
|
4415 |
+
仞
|
4416 |
+
蚁
|
4417 |
+
壶
|
4418 |
+
谰
|
4419 |
+
皑
|
4420 |
+
铄
|
4421 |
+
棰
|
4422 |
+
罔
|
4423 |
+
辅
|
4424 |
+
晶
|
4425 |
+
苦
|
4426 |
+
牟
|
4427 |
+
闽
|
4428 |
+
\
|
4429 |
+
烃
|
4430 |
+
饮
|
4431 |
+
聿
|
4432 |
+
丙
|
4433 |
+
蛳
|
4434 |
+
朱
|
4435 |
+
煤
|
4436 |
+
涔
|
4437 |
+
鳖
|
4438 |
+
犁
|
4439 |
+
罐
|
4440 |
+
荼
|
4441 |
+
砒
|
4442 |
+
淦
|
4443 |
+
妤
|
4444 |
+
黏
|
4445 |
+
戎
|
4446 |
+
孑
|
4447 |
+
婕
|
4448 |
+
瑾
|
4449 |
+
戢
|
4450 |
+
钵
|
4451 |
+
枣
|
4452 |
+
捋
|
4453 |
+
砥
|
4454 |
+
衩
|
4455 |
+
狙
|
4456 |
+
桠
|
4457 |
+
稣
|
4458 |
+
阎
|
4459 |
+
肃
|
4460 |
+
梏
|
4461 |
+
诫
|
4462 |
+
孪
|
4463 |
+
昶
|
4464 |
+
婊
|
4465 |
+
衫
|
4466 |
+
嗔
|
4467 |
+
侃
|
4468 |
+
塞
|
4469 |
+
蜃
|
4470 |
+
樵
|
4471 |
+
峒
|
4472 |
+
貌
|
4473 |
+
屿
|
4474 |
+
欺
|
4475 |
+
缫
|
4476 |
+
阐
|
4477 |
+
栖
|
4478 |
+
诟
|
4479 |
+
珞
|
4480 |
+
荭
|
4481 |
+
吝
|
4482 |
+
萍
|
4483 |
+
嗽
|
4484 |
+
恂
|
4485 |
+
啻
|
4486 |
+
蜴
|
4487 |
+
磬
|
4488 |
+
峋
|
4489 |
+
俸
|
4490 |
+
豫
|
4491 |
+
谎
|
4492 |
+
徊
|
4493 |
+
镍
|
4494 |
+
韬
|
4495 |
+
魇
|
4496 |
+
晴
|
4497 |
+
U
|
4498 |
+
囟
|
4499 |
+
猜
|
4500 |
+
蛮
|
4501 |
+
坐
|
4502 |
+
囿
|
4503 |
+
伴
|
4504 |
+
亭
|
4505 |
+
肝
|
4506 |
+
佗
|
4507 |
+
蝠
|
4508 |
+
妃
|
4509 |
+
胞
|
4510 |
+
滩
|
4511 |
+
榴
|
4512 |
+
氖
|
4513 |
+
垩
|
4514 |
+
苋
|
4515 |
+
砣
|
4516 |
+
扪
|
4517 |
+
馏
|
4518 |
+
姓
|
4519 |
+
轩
|
4520 |
+
厉
|
4521 |
+
夥
|
4522 |
+
侈
|
4523 |
+
禀
|
4524 |
+
垒
|
4525 |
+
岑
|
4526 |
+
赏
|
4527 |
+
钛
|
4528 |
+
辐
|
4529 |
+
痔
|
4530 |
+
披
|
4531 |
+
纸
|
4532 |
+
碳
|
4533 |
+
“
|
4534 |
+
坞
|
4535 |
+
蠓
|
4536 |
+
挤
|
4537 |
+
荥
|
4538 |
+
沅
|
4539 |
+
悔
|
4540 |
+
铧
|
4541 |
+
帼
|
4542 |
+
蒌
|
4543 |
+
蝇
|
4544 |
+
a
|
4545 |
+
p
|
4546 |
+
y
|
4547 |
+
n
|
4548 |
+
g
|
4549 |
+
哀
|
4550 |
+
浆
|
4551 |
+
瑶
|
4552 |
+
凿
|
4553 |
+
桶
|
4554 |
+
馈
|
4555 |
+
皮
|
4556 |
+
奴
|
4557 |
+
苜
|
4558 |
+
佤
|
4559 |
+
伶
|
4560 |
+
晗
|
4561 |
+
铱
|
4562 |
+
炬
|
4563 |
+
优
|
4564 |
+
弊
|
4565 |
+
氢
|
4566 |
+
恃
|
4567 |
+
甫
|
4568 |
+
攥
|
4569 |
+
端
|
4570 |
+
锌
|
4571 |
+
灰
|
4572 |
+
稹
|
4573 |
+
炝
|
4574 |
+
曙
|
4575 |
+
邋
|
4576 |
+
亥
|
4577 |
+
眶
|
4578 |
+
碾
|
4579 |
+
拉
|
4580 |
+
萝
|
4581 |
+
绔
|
4582 |
+
捷
|
4583 |
+
浍
|
4584 |
+
腋
|
4585 |
+
姑
|
4586 |
+
菖
|
4587 |
+
凌
|
4588 |
+
涞
|
4589 |
+
麽
|
4590 |
+
锢
|
4591 |
+
桨
|
4592 |
+
潢
|
4593 |
+
绎
|
4594 |
+
镰
|
4595 |
+
殆
|
4596 |
+
锑
|
4597 |
+
渝
|
4598 |
+
铬
|
4599 |
+
困
|
4600 |
+
绽
|
4601 |
+
觎
|
4602 |
+
匈
|
4603 |
+
糙
|
4604 |
+
暑
|
4605 |
+
裹
|
4606 |
+
鸟
|
4607 |
+
盔
|
4608 |
+
肽
|
4609 |
+
迷
|
4610 |
+
綦
|
4611 |
+
『
|
4612 |
+
亳
|
4613 |
+
佝
|
4614 |
+
俘
|
4615 |
+
钴
|
4616 |
+
觇
|
4617 |
+
骥
|
4618 |
+
仆
|
4619 |
+
疝
|
4620 |
+
跪
|
4621 |
+
婶
|
4622 |
+
郯
|
4623 |
+
瀹
|
4624 |
+
唉
|
4625 |
+
脖
|
4626 |
+
踞
|
4627 |
+
针
|
4628 |
+
晾
|
4629 |
+
忒
|
4630 |
+
扼
|
4631 |
+
瞩
|
4632 |
+
叛
|
4633 |
+
椒
|
4634 |
+
疟
|
4635 |
+
嗡
|
4636 |
+
邗
|
4637 |
+
肆
|
4638 |
+
跆
|
4639 |
+
玫
|
4640 |
+
忡
|
4641 |
+
捣
|
4642 |
+
咧
|
4643 |
+
唆
|
4644 |
+
艄
|
4645 |
+
蘑
|
4646 |
+
潦
|
4647 |
+
笛
|
4648 |
+
阚
|
4649 |
+
沸
|
4650 |
+
泻
|
4651 |
+
掊
|
4652 |
+
菽
|
4653 |
+
贫
|
4654 |
+
斥
|
4655 |
+
髂
|
4656 |
+
孢
|
4657 |
+
镂
|
4658 |
+
赂
|
4659 |
+
麝
|
4660 |
+
鸾
|
4661 |
+
屡
|
4662 |
+
衬
|
4663 |
+
苷
|
4664 |
+
恪
|
4665 |
+
叠
|
4666 |
+
希
|
4667 |
+
粤
|
4668 |
+
爻
|
4669 |
+
喝
|
4670 |
+
茫
|
4671 |
+
惬
|
4672 |
+
郸
|
4673 |
+
绻
|
4674 |
+
庸
|
4675 |
+
撅
|
4676 |
+
碟
|
4677 |
+
宄
|
4678 |
+
妹
|
4679 |
+
膛
|
4680 |
+
叮
|
4681 |
+
饵
|
4682 |
+
崛
|
4683 |
+
嗲
|
4684 |
+
椅
|
4685 |
+
冤
|
4686 |
+
搅
|
4687 |
+
咕
|
4688 |
+
敛
|
4689 |
+
尹
|
4690 |
+
垦
|
4691 |
+
闷
|
4692 |
+
蝉
|
4693 |
+
霎
|
4694 |
+
勰
|
4695 |
+
败
|
4696 |
+
蓑
|
4697 |
+
泸
|
4698 |
+
肤
|
4699 |
+
鹌
|
4700 |
+
幌
|
4701 |
+
焦
|
4702 |
+
浠
|
4703 |
+
鞍
|
4704 |
+
刁
|
4705 |
+
舰
|
4706 |
+
乙
|
4707 |
+
竿
|
4708 |
+
裔
|
4709 |
+
。
|
4710 |
+
茵
|
4711 |
+
函
|
4712 |
+
伊
|
4713 |
+
兄
|
4714 |
+
丨
|
4715 |
+
娜
|
4716 |
+
匍
|
4717 |
+
謇
|
4718 |
+
莪
|
4719 |
+
宥
|
4720 |
+
似
|
4721 |
+
蝽
|
4722 |
+
翳
|
4723 |
+
酪
|
4724 |
+
翠
|
4725 |
+
粑
|
4726 |
+
薇
|
4727 |
+
祢
|
4728 |
+
骏
|
4729 |
+
赠
|
4730 |
+
叫
|
4731 |
+
Q
|
4732 |
+
噤
|
4733 |
+
噻
|
4734 |
+
竖
|
4735 |
+
芗
|
4736 |
+
莠
|
4737 |
+
潭
|
4738 |
+
俊
|
4739 |
+
羿
|
4740 |
+
耜
|
4741 |
+
O
|
4742 |
+
郫
|
4743 |
+
趁
|
4744 |
+
嗪
|
4745 |
+
囚
|
4746 |
+
蹶
|
4747 |
+
芒
|
4748 |
+
洁
|
4749 |
+
笋
|
4750 |
+
鹑
|
4751 |
+
敲
|
4752 |
+
硝
|
4753 |
+
啶
|
4754 |
+
堡
|
4755 |
+
渲
|
4756 |
+
揩
|
4757 |
+
』
|
4758 |
+
携
|
4759 |
+
宿
|
4760 |
+
遒
|
4761 |
+
颍
|
4762 |
+
扭
|
4763 |
+
棱
|
4764 |
+
割
|
4765 |
+
萜
|
4766 |
+
蔸
|
4767 |
+
葵
|
4768 |
+
琴
|
4769 |
+
捂
|
4770 |
+
饰
|
4771 |
+
衙
|
4772 |
+
耿
|
4773 |
+
掠
|
4774 |
+
募
|
4775 |
+
岂
|
4776 |
+
窖
|
4777 |
+
涟
|
4778 |
+
蔺
|
4779 |
+
瘤
|
4780 |
+
柞
|
4781 |
+
瞪
|
4782 |
+
怜
|
4783 |
+
匹
|
4784 |
+
距
|
4785 |
+
楔
|
4786 |
+
炜
|
4787 |
+
哆
|
4788 |
+
秦
|
4789 |
+
缎
|
4790 |
+
幼
|
4791 |
+
茁
|
4792 |
+
绪
|
4793 |
+
痨
|
4794 |
+
恨
|
4795 |
+
楸
|
4796 |
+
娅
|
4797 |
+
瓦
|
4798 |
+
桩
|
4799 |
+
雪
|
4800 |
+
嬴
|
4801 |
+
伏
|
4802 |
+
榔
|
4803 |
+
妥
|
4804 |
+
铿
|
4805 |
+
拌
|
4806 |
+
眠
|
4807 |
+
雍
|
4808 |
+
缇
|
4809 |
+
‘
|
4810 |
+
卓
|
4811 |
+
搓
|
4812 |
+
哌
|
4813 |
+
觞
|
4814 |
+
噩
|
4815 |
+
屈
|
4816 |
+
哧
|
4817 |
+
髓
|
4818 |
+
咦
|
4819 |
+
巅
|
4820 |
+
娑
|
4821 |
+
侑
|
4822 |
+
淫
|
4823 |
+
膳
|
4824 |
+
祝
|
4825 |
+
勾
|
4826 |
+
姊
|
4827 |
+
莴
|
4828 |
+
胄
|
4829 |
+
疃
|
4830 |
+
薛
|
4831 |
+
蜷
|
4832 |
+
胛
|
4833 |
+
巷
|
4834 |
+
芙
|
4835 |
+
芋
|
4836 |
+
熙
|
4837 |
+
闰
|
4838 |
+
勿
|
4839 |
+
窃
|
4840 |
+
狱
|
4841 |
+
剩
|
4842 |
+
钏
|
4843 |
+
幢
|
4844 |
+
陟
|
4845 |
+
铛
|
4846 |
+
慧
|
4847 |
+
靴
|
4848 |
+
耍
|
4849 |
+
k
|
4850 |
+
浙
|
4851 |
+
浇
|
4852 |
+
飨
|
4853 |
+
惟
|
4854 |
+
绗
|
4855 |
+
祜
|
4856 |
+
澈
|
4857 |
+
啼
|
4858 |
+
咪
|
4859 |
+
磷
|
4860 |
+
摞
|
4861 |
+
诅
|
4862 |
+
郦
|
4863 |
+
抹
|
4864 |
+
跃
|
4865 |
+
壬
|
4866 |
+
吕
|
4867 |
+
肖
|
4868 |
+
琏
|
4869 |
+
颤
|
4870 |
+
尴
|
4871 |
+
剡
|
4872 |
+
抠
|
4873 |
+
凋
|
4874 |
+
赚
|
4875 |
+
泊
|
4876 |
+
津
|
4877 |
+
宕
|
4878 |
+
殷
|
4879 |
+
倔
|
4880 |
+
氲
|
4881 |
+
漫
|
4882 |
+
邺
|
4883 |
+
涎
|
4884 |
+
怠
|
4885 |
+
$
|
4886 |
+
垮
|
4887 |
+
荬
|
4888 |
+
遵
|
4889 |
+
俏
|
4890 |
+
叹
|
4891 |
+
噢
|
4892 |
+
饽
|
4893 |
+
蜘
|
4894 |
+
孙
|
4895 |
+
筵
|
4896 |
+
疼
|
4897 |
+
鞭
|
4898 |
+
羧
|
4899 |
+
牦
|
4900 |
+
箭
|
4901 |
+
潴
|
4902 |
+
c
|
4903 |
+
眸
|
4904 |
+
祭
|
4905 |
+
髯
|
4906 |
+
啖
|
4907 |
+
坳
|
4908 |
+
愁
|
4909 |
+
芩
|
4910 |
+
驮
|
4911 |
+
倡
|
4912 |
+
巽
|
4913 |
+
穰
|
4914 |
+
沃
|
4915 |
+
胚
|
4916 |
+
怒
|
4917 |
+
凤
|
4918 |
+
槛
|
4919 |
+
剂
|
4920 |
+
趵
|
4921 |
+
嫁
|
4922 |
+
v
|
4923 |
+
邢
|
4924 |
+
灯
|
4925 |
+
鄢
|
4926 |
+
桐
|
4927 |
+
睽
|
4928 |
+
檗
|
4929 |
+
锯
|
4930 |
+
槟
|
4931 |
+
婷
|
4932 |
+
嵋
|
4933 |
+
圻
|
4934 |
+
诗
|
4935 |
+
蕈
|
4936 |
+
颠
|
4937 |
+
遭
|
4938 |
+
痢
|
4939 |
+
芸
|
4940 |
+
怯
|
4941 |
+
馥
|
4942 |
+
竭
|
4943 |
+
锗
|
4944 |
+
徜
|
4945 |
+
恭
|
4946 |
+
遍
|
4947 |
+
籁
|
4948 |
+
剑
|
4949 |
+
嘱
|
4950 |
+
苡
|
4951 |
+
龄
|
4952 |
+
僧
|
4953 |
+
桑
|
4954 |
+
潸
|
4955 |
+
弘
|
4956 |
+
澶
|
4957 |
+
楹
|
4958 |
+
悲
|
4959 |
+
讫
|
4960 |
+
愤
|
4961 |
+
腥
|
4962 |
+
悸
|
4963 |
+
谍
|
4964 |
+
椹
|
4965 |
+
呢
|
4966 |
+
桓
|
4967 |
+
葭
|
4968 |
+
攫
|
4969 |
+
阀
|
4970 |
+
翰
|
4971 |
+
躲
|
4972 |
+
敖
|
4973 |
+
柑
|
4974 |
+
郎
|
4975 |
+
笨
|
4976 |
+
橇
|
4977 |
+
呃
|
4978 |
+
魁
|
4979 |
+
燎
|
4980 |
+
脓
|
4981 |
+
葩
|
4982 |
+
磋
|
4983 |
+
垛
|
4984 |
+
玺
|
4985 |
+
狮
|
4986 |
+
沓
|
4987 |
+
砜
|
4988 |
+
蕊
|
4989 |
+
锺
|
4990 |
+
罹
|
4991 |
+
蕉
|
4992 |
+
翱
|
4993 |
+
虐
|
4994 |
+
闾
|
4995 |
+
巫
|
4996 |
+
旦
|
4997 |
+
茱
|
4998 |
+
嬷
|
4999 |
+
枯
|
5000 |
+
鹏
|
5001 |
+
贡
|
5002 |
+
芹
|
5003 |
+
汛
|
5004 |
+
矫
|
5005 |
+
绁
|
5006 |
+
拣
|
5007 |
+
禺
|
5008 |
+
佃
|
5009 |
+
讣
|
5010 |
+
舫
|
5011 |
+
惯
|
5012 |
+
乳
|
5013 |
+
趋
|
5014 |
+
疲
|
5015 |
+
挽
|
5016 |
+
岚
|
5017 |
+
虾
|
5018 |
+
衾
|
5019 |
+
蠹
|
5020 |
+
蹂
|
5021 |
+
飓
|
5022 |
+
氦
|
5023 |
+
铖
|
5024 |
+
孩
|
5025 |
+
稞
|
5026 |
+
瑜
|
5027 |
+
壅
|
5028 |
+
掀
|
5029 |
+
勘
|
5030 |
+
妓
|
5031 |
+
畅
|
5032 |
+
髋
|
5033 |
+
W
|
5034 |
+
庐
|
5035 |
+
牲
|
5036 |
+
蓿
|
5037 |
+
榕
|
5038 |
+
练
|
5039 |
+
垣
|
5040 |
+
唱
|
5041 |
+
邸
|
5042 |
+
菲
|
5043 |
+
昆
|
5044 |
+
婺
|
5045 |
+
穿
|
5046 |
+
绡
|
5047 |
+
麒
|
5048 |
+
蚱
|
5049 |
+
掂
|
5050 |
+
愚
|
5051 |
+
泷
|
5052 |
+
涪
|
5053 |
+
漳
|
5054 |
+
妩
|
5055 |
+
娉
|
5056 |
+
榄
|
5057 |
+
讷
|
5058 |
+
觅
|
5059 |
+
旧
|
5060 |
+
藤
|
5061 |
+
煮
|
5062 |
+
呛
|
5063 |
+
柳
|
5064 |
+
腓
|
5065 |
+
叭
|
5066 |
+
庵
|
5067 |
+
烷
|
5068 |
+
阡
|
5069 |
+
罂
|
5070 |
+
蜕
|
5071 |
+
擂
|
5072 |
+
猖
|
5073 |
+
咿
|
5074 |
+
媲
|
5075 |
+
脉
|
5076 |
+
【
|
5077 |
+
沏
|
5078 |
+
貅
|
5079 |
+
黠
|
5080 |
+
熏
|
5081 |
+
哲
|
5082 |
+
烁
|
5083 |
+
坦
|
5084 |
+
酵
|
5085 |
+
兜
|
5086 |
+
×
|
5087 |
+
潇
|
5088 |
+
撒
|
5089 |
+
剽
|
5090 |
+
珩
|
5091 |
+
圹
|
5092 |
+
乾
|
5093 |
+
摸
|
5094 |
+
樟
|
5095 |
+
帽
|
5096 |
+
嗒
|
5097 |
+
襄
|
5098 |
+
魂
|
5099 |
+
轿
|
5100 |
+
憬
|
5101 |
+
锡
|
5102 |
+
〕
|
5103 |
+
喃
|
5104 |
+
皆
|
5105 |
+
咖
|
5106 |
+
隅
|
5107 |
+
脸
|
5108 |
+
残
|
5109 |
+
泮
|
5110 |
+
袂
|
5111 |
+
鹂
|
5112 |
+
珊
|
5113 |
+
囤
|
5114 |
+
捆
|
5115 |
+
咤
|
5116 |
+
误
|
5117 |
+
徨
|
5118 |
+
闹
|
5119 |
+
淙
|
5120 |
+
芊
|
5121 |
+
淋
|
5122 |
+
怆
|
5123 |
+
囗
|
5124 |
+
拨
|
5125 |
+
梳
|
5126 |
+
渤
|
5127 |
+
R
|
5128 |
+
G
|
5129 |
+
绨
|
5130 |
+
蚓
|
5131 |
+
婀
|
5132 |
+
幡
|
5133 |
+
狩
|
5134 |
+
麾
|
5135 |
+
谢
|
5136 |
+
唢
|
5137 |
+
裸
|
5138 |
+
旌
|
5139 |
+
伉
|
5140 |
+
纶
|
5141 |
+
裂
|
5142 |
+
驳
|
5143 |
+
砼
|
5144 |
+
咛
|
5145 |
+
澄
|
5146 |
+
樨
|
5147 |
+
蹈
|
5148 |
+
宙
|
5149 |
+
澍
|
5150 |
+
倍
|
5151 |
+
貔
|
5152 |
+
操
|
5153 |
+
勇
|
5154 |
+
蟠
|
5155 |
+
摈
|
5156 |
+
砧
|
5157 |
+
虬
|
5158 |
+
够
|
5159 |
+
缁
|
5160 |
+
悦
|
5161 |
+
藿
|
5162 |
+
撸
|
5163 |
+
艹
|
5164 |
+
摁
|
5165 |
+
淹
|
5166 |
+
豇
|
5167 |
+
虎
|
5168 |
+
榭
|
5169 |
+
ˉ
|
5170 |
+
吱
|
5171 |
+
d
|
5172 |
+
°
|
5173 |
+
喧
|
5174 |
+
荀
|
5175 |
+
踱
|
5176 |
+
侮
|
5177 |
+
奋
|
5178 |
+
偕
|
5179 |
+
饷
|
5180 |
+
犍
|
5181 |
+
惮
|
5182 |
+
坑
|
5183 |
+
璎
|
5184 |
+
徘
|
5185 |
+
宛
|
5186 |
+
妆
|
5187 |
+
袈
|
5188 |
+
倩
|
5189 |
+
窦
|
5190 |
+
昂
|
5191 |
+
荏
|
5192 |
+
乖
|
5193 |
+
K
|
5194 |
+
怅
|
5195 |
+
撰
|
5196 |
+
鳙
|
5197 |
+
牙
|
5198 |
+
袁
|
5199 |
+
酞
|
5200 |
+
X
|
5201 |
+
痿
|
5202 |
+
琼
|
5203 |
+
闸
|
5204 |
+
雁
|
5205 |
+
趾
|
5206 |
+
荚
|
5207 |
+
虻
|
5208 |
+
涝
|
5209 |
+
《
|
5210 |
+
杏
|
5211 |
+
韭
|
5212 |
+
偈
|
5213 |
+
烤
|
5214 |
+
绫
|
5215 |
+
鞘
|
5216 |
+
卉
|
5217 |
+
症
|
5218 |
+
遢
|
5219 |
+
蓥
|
5220 |
+
诋
|
5221 |
+
杭
|
5222 |
+
荨
|
5223 |
+
匆
|
5224 |
+
竣
|
5225 |
+
簪
|
5226 |
+
辙
|
5227 |
+
敕
|
5228 |
+
虞
|
5229 |
+
丹
|
5230 |
+
缭
|
5231 |
+
咩
|
5232 |
+
黟
|
5233 |
+
m
|
5234 |
+
淤
|
5235 |
+
瑕
|
5236 |
+
咂
|
5237 |
+
铉
|
5238 |
+
硼
|
5239 |
+
茨
|
5240 |
+
嶂
|
5241 |
+
痒
|
5242 |
+
畸
|
5243 |
+
敬
|
5244 |
+
涿
|
5245 |
+
粪
|
5246 |
+
窘
|
5247 |
+
熟
|
5248 |
+
叔
|
5249 |
+
嫔
|
5250 |
+
盾
|
5251 |
+
忱
|
5252 |
+
裘
|
5253 |
+
憾
|
5254 |
+
梵
|
5255 |
+
赡
|
5256 |
+
珙
|
5257 |
+
咯
|
5258 |
+
娘
|
5259 |
+
庙
|
5260 |
+
溯
|
5261 |
+
胺
|
5262 |
+
葱
|
5263 |
+
痪
|
5264 |
+
摊
|
5265 |
+
荷
|
5266 |
+
卞
|
5267 |
+
乒
|
5268 |
+
髦
|
5269 |
+
寐
|
5270 |
+
铭
|
5271 |
+
坩
|
5272 |
+
胗
|
5273 |
+
枷
|
5274 |
+
爆
|
5275 |
+
溟
|
5276 |
+
嚼
|
5277 |
+
羚
|
5278 |
+
砬
|
5279 |
+
轨
|
5280 |
+
惊
|
5281 |
+
挠
|
5282 |
+
罄
|
5283 |
+
竽
|
5284 |
+
菏
|
5285 |
+
氧
|
5286 |
+
浅
|
5287 |
+
楣
|
5288 |
+
盼
|
5289 |
+
枢
|
5290 |
+
炸
|
5291 |
+
阆
|
5292 |
+
杯
|
5293 |
+
谏
|
5294 |
+
噬
|
5295 |
+
淇
|
5296 |
+
渺
|
5297 |
+
俪
|
5298 |
+
秆
|
5299 |
+
墓
|
5300 |
+
泪
|
5301 |
+
跻
|
5302 |
+
砌
|
5303 |
+
痰
|
5304 |
+
垡
|
5305 |
+
渡
|
5306 |
+
耽
|
5307 |
+
釜
|
5308 |
+
讶
|
5309 |
+
鳎
|
5310 |
+
煞
|
5311 |
+
呗
|
5312 |
+
韶
|
5313 |
+
舶
|
5314 |
+
绷
|
5315 |
+
鹳
|
5316 |
+
缜
|
5317 |
+
旷
|
5318 |
+
铊
|
5319 |
+
皱
|
5320 |
+
龌
|
5321 |
+
檀
|
5322 |
+
霖
|
5323 |
+
奄
|
5324 |
+
槐
|
5325 |
+
艳
|
5326 |
+
蝶
|
5327 |
+
旋
|
5328 |
+
哝
|
5329 |
+
赶
|
5330 |
+
骞
|
5331 |
+
蚧
|
5332 |
+
腊
|
5333 |
+
盈
|
5334 |
+
丁
|
5335 |
+
`
|
5336 |
+
蜚
|
5337 |
+
矸
|
5338 |
+
蝙
|
5339 |
+
睨
|
5340 |
+
嚓
|
5341 |
+
僻
|
5342 |
+
鬼
|
5343 |
+
醴
|
5344 |
+
夜
|
5345 |
+
彝
|
5346 |
+
磊
|
5347 |
+
笔
|
5348 |
+
拔
|
5349 |
+
栀
|
5350 |
+
糕
|
5351 |
+
厦
|
5352 |
+
邰
|
5353 |
+
纫
|
5354 |
+
逭
|
5355 |
+
纤
|
5356 |
+
眦
|
5357 |
+
膊
|
5358 |
+
馍
|
5359 |
+
躇
|
5360 |
+
烯
|
5361 |
+
蘼
|
5362 |
+
冬
|
5363 |
+
诤
|
5364 |
+
暄
|
5365 |
+
骶
|
5366 |
+
哑
|
5367 |
+
瘠
|
5368 |
+
」
|
5369 |
+
臊
|
5370 |
+
丕
|
5371 |
+
愈
|
5372 |
+
咱
|
5373 |
+
螺
|
5374 |
+
擅
|
5375 |
+
跋
|
5376 |
+
搏
|
5377 |
+
硪
|
5378 |
+
谄
|
5379 |
+
笠
|
5380 |
+
淡
|
5381 |
+
嘿
|
5382 |
+
骅
|
5383 |
+
谧
|
5384 |
+
鼎
|
5385 |
+
皋
|
5386 |
+
姚
|
5387 |
+
歼
|
5388 |
+
蠢
|
5389 |
+
驼
|
5390 |
+
耳
|
5391 |
+
胬
|
5392 |
+
挝
|
5393 |
+
涯
|
5394 |
+
狗
|
5395 |
+
蒽
|
5396 |
+
孓
|
5397 |
+
犷
|
5398 |
+
凉
|
5399 |
+
芦
|
5400 |
+
箴
|
5401 |
+
铤
|
5402 |
+
孤
|
5403 |
+
嘛
|
5404 |
+
坤
|
5405 |
+
V
|
5406 |
+
茴
|
5407 |
+
朦
|
5408 |
+
挞
|
5409 |
+
尖
|
5410 |
+
橙
|
5411 |
+
诞
|
5412 |
+
搴
|
5413 |
+
碇
|
5414 |
+
洵
|
5415 |
+
浚
|
5416 |
+
帚
|
5417 |
+
蜍
|
5418 |
+
漯
|
5419 |
+
柘
|
5420 |
+
嚎
|
5421 |
+
讽
|
5422 |
+
芭
|
5423 |
+
荤
|
5424 |
+
咻
|
5425 |
+
祠
|
5426 |
+
秉
|
5427 |
+
跖
|
5428 |
+
埃
|
5429 |
+
吓
|
5430 |
+
糯
|
5431 |
+
眷
|
5432 |
+
馒
|
5433 |
+
惹
|
5434 |
+
娼
|
5435 |
+
鲑
|
5436 |
+
嫩
|
5437 |
+
讴
|
5438 |
+
轮
|
5439 |
+
瞥
|
5440 |
+
靶
|
5441 |
+
褚
|
5442 |
+
乏
|
5443 |
+
缤
|
5444 |
+
宋
|
5445 |
+
帧
|
5446 |
+
删
|
5447 |
+
驱
|
5448 |
+
碎
|
5449 |
+
扑
|
5450 |
+
俩
|
5451 |
+
俄
|
5452 |
+
偏
|
5453 |
+
涣
|
5454 |
+
竹
|
5455 |
+
噱
|
5456 |
+
皙
|
5457 |
+
佰
|
5458 |
+
渚
|
5459 |
+
唧
|
5460 |
+
斡
|
5461 |
+
#
|
5462 |
+
镉
|
5463 |
+
刀
|
5464 |
+
崎
|
5465 |
+
筐
|
5466 |
+
佣
|
5467 |
+
夭
|
5468 |
+
贰
|
5469 |
+
肴
|
5470 |
+
峙
|
5471 |
+
哔
|
5472 |
+
艿
|
5473 |
+
匐
|
5474 |
+
牺
|
5475 |
+
镛
|
5476 |
+
缘
|
5477 |
+
仡
|
5478 |
+
嫡
|
5479 |
+
劣
|
5480 |
+
枸
|
5481 |
+
堀
|
5482 |
+
梨
|
5483 |
+
簿
|
5484 |
+
鸭
|
5485 |
+
蒸
|
5486 |
+
亦
|
5487 |
+
稽
|
5488 |
+
浴
|
5489 |
+
{
|
5490 |
+
衢
|
5491 |
+
束
|
5492 |
+
槲
|
5493 |
+
j
|
5494 |
+
阁
|
5495 |
+
揍
|
5496 |
+
疥
|
5497 |
+
棋
|
5498 |
+
潋
|
5499 |
+
聪
|
5500 |
+
窜
|
5501 |
+
乓
|
5502 |
+
睛
|
5503 |
+
插
|
5504 |
+
冉
|
5505 |
+
阪
|
5506 |
+
苍
|
5507 |
+
搽
|
5508 |
+
「
|
5509 |
+
蟾
|
5510 |
+
螟
|
5511 |
+
幸
|
5512 |
+
仇
|
5513 |
+
樽
|
5514 |
+
撂
|
5515 |
+
慢
|
5516 |
+
跤
|
5517 |
+
幔
|
5518 |
+
俚
|
5519 |
+
淅
|
5520 |
+
覃
|
5521 |
+
觊
|
5522 |
+
溶
|
5523 |
+
妖
|
5524 |
+
帛
|
5525 |
+
侨
|
5526 |
+
曰
|
5527 |
+
妾
|
5528 |
+
泗
|
5529 |
+
·
|
5530 |
+
:
|
5531 |
+
瀘
|
5532 |
+
風
|
5533 |
+
Ë
|
5534 |
+
(
|
5535 |
+
)
|
5536 |
+
∶
|
5537 |
+
紅
|
5538 |
+
紗
|
5539 |
+
瑭
|
5540 |
+
雲
|
5541 |
+
頭
|
5542 |
+
鶏
|
5543 |
+
財
|
5544 |
+
許
|
5545 |
+
•
|
5546 |
+
¥
|
5547 |
+
樂
|
5548 |
+
焗
|
5549 |
+
麗
|
5550 |
+
—
|
5551 |
+
;
|
5552 |
+
滙
|
5553 |
+
東
|
5554 |
+
榮
|
5555 |
+
繪
|
5556 |
+
興
|
5557 |
+
…
|
5558 |
+
門
|
5559 |
+
業
|
5560 |
+
π
|
5561 |
+
楊
|
5562 |
+
國
|
5563 |
+
顧
|
5564 |
+
é
|
5565 |
+
盤
|
5566 |
+
寳
|
5567 |
+
Λ
|
5568 |
+
龍
|
5569 |
+
鳳
|
5570 |
+
島
|
5571 |
+
誌
|
5572 |
+
緣
|
5573 |
+
結
|
5574 |
+
銭
|
5575 |
+
萬
|
5576 |
+
勝
|
5577 |
+
祎
|
5578 |
+
璟
|
5579 |
+
優
|
5580 |
+
歡
|
5581 |
+
臨
|
5582 |
+
時
|
5583 |
+
購
|
5584 |
+
=
|
5585 |
+
★
|
5586 |
+
藍
|
5587 |
+
昇
|
5588 |
+
鐵
|
5589 |
+
觀
|
5590 |
+
勅
|
5591 |
+
農
|
5592 |
+
聲
|
5593 |
+
畫
|
5594 |
+
兿
|
5595 |
+
術
|
5596 |
+
發
|
5597 |
+
劉
|
5598 |
+
記
|
5599 |
+
專
|
5600 |
+
耑
|
5601 |
+
園
|
5602 |
+
書
|
5603 |
+
壴
|
5604 |
+
種
|
5605 |
+
Ο
|
5606 |
+
●
|
5607 |
+
褀
|
5608 |
+
號
|
5609 |
+
銀
|
5610 |
+
匯
|
5611 |
+
敟
|
5612 |
+
锘
|
5613 |
+
葉
|
5614 |
+
橪
|
5615 |
+
廣
|
5616 |
+
進
|
5617 |
+
蒄
|
5618 |
+
鑽
|
5619 |
+
阝
|
5620 |
+
祙
|
5621 |
+
貢
|
5622 |
+
鍋
|
5623 |
+
豊
|
5624 |
+
夬
|
5625 |
+
喆
|
5626 |
+
團
|
5627 |
+
閣
|
5628 |
+
開
|
5629 |
+
燁
|
5630 |
+
賓
|
5631 |
+
館
|
5632 |
+
酡
|
5633 |
+
沔
|
5634 |
+
順
|
5635 |
+
+
|
5636 |
+
硚
|
5637 |
+
劵
|
5638 |
+
饸
|
5639 |
+
陽
|
5640 |
+
車
|
5641 |
+
湓
|
5642 |
+
復
|
5643 |
+
萊
|
5644 |
+
氣
|
5645 |
+
軒
|
5646 |
+
華
|
5647 |
+
堃
|
5648 |
+
迮
|
5649 |
+
纟
|
5650 |
+
戶
|
5651 |
+
馬
|
5652 |
+
學
|
5653 |
+
裡
|
5654 |
+
電
|
5655 |
+
嶽
|
5656 |
+
獨
|
5657 |
+
マ
|
5658 |
+
シ
|
5659 |
+
サ
|
5660 |
+
ジ
|
5661 |
+
燘
|
5662 |
+
袪
|
5663 |
+
環
|
5664 |
+
❤
|
5665 |
+
臺
|
5666 |
+
灣
|
5667 |
+
専
|
5668 |
+
賣
|
5669 |
+
孖
|
5670 |
+
聖
|
5671 |
+
攝
|
5672 |
+
線
|
5673 |
+
▪
|
5674 |
+
α
|
5675 |
+
傢
|
5676 |
+
俬
|
5677 |
+
夢
|
5678 |
+
達
|
5679 |
+
莊
|
5680 |
+
喬
|
5681 |
+
貝
|
5682 |
+
薩
|
5683 |
+
劍
|
5684 |
+
羅
|
5685 |
+
壓
|
5686 |
+
棛
|
5687 |
+
饦
|
5688 |
+
尃
|
5689 |
+
璈
|
5690 |
+
囍
|
5691 |
+
醫
|
5692 |
+
G
|
5693 |
+
I
|
5694 |
+
A
|
5695 |
+
#
|
5696 |
+
N
|
5697 |
+
鷄
|
5698 |
+
髙
|
5699 |
+
嬰
|
5700 |
+
啓
|
5701 |
+
約
|
5702 |
+
隹
|
5703 |
+
潔
|
5704 |
+
賴
|
5705 |
+
藝
|
5706 |
+
~
|
5707 |
+
寶
|
5708 |
+
籣
|
5709 |
+
麺
|
5710 |
+
|
5711 |
+
嶺
|
5712 |
+
√
|
5713 |
+
義
|
5714 |
+
網
|
5715 |
+
峩
|
5716 |
+
長
|
5717 |
+
∧
|
5718 |
+
魚
|
5719 |
+
機
|
5720 |
+
構
|
5721 |
+
②
|
5722 |
+
鳯
|
5723 |
+
偉
|
5724 |
+
L
|
5725 |
+
B
|
5726 |
+
㙟
|
5727 |
+
畵
|
5728 |
+
鴿
|
5729 |
+
'
|
5730 |
+
詩
|
5731 |
+
溝
|
5732 |
+
嚞
|
5733 |
+
屌
|
5734 |
+
藔
|
5735 |
+
佧
|
5736 |
+
玥
|
5737 |
+
蘭
|
5738 |
+
織
|
5739 |
+
1
|
5740 |
+
3
|
5741 |
+
9
|
5742 |
+
0
|
5743 |
+
7
|
5744 |
+
點
|
5745 |
+
砭
|
5746 |
+
鴨
|
5747 |
+
鋪
|
5748 |
+
銘
|
5749 |
+
廳
|
5750 |
+
弍
|
5751 |
+
‧
|
5752 |
+
創
|
5753 |
+
湯
|
5754 |
+
坶
|
5755 |
+
℃
|
5756 |
+
卩
|
5757 |
+
骝
|
5758 |
+
&
|
5759 |
+
烜
|
5760 |
+
荘
|
5761 |
+
當
|
5762 |
+
潤
|
5763 |
+
扞
|
5764 |
+
係
|
5765 |
+
懷
|
5766 |
+
碶
|
5767 |
+
钅
|
5768 |
+
蚨
|
5769 |
+
讠
|
5770 |
+
☆
|
5771 |
+
叢
|
5772 |
+
爲
|
5773 |
+
埗
|
5774 |
+
涫
|
5775 |
+
塗
|
5776 |
+
→
|
5777 |
+
楽
|
5778 |
+
現
|
5779 |
+
鯨
|
5780 |
+
愛
|
5781 |
+
瑪
|
5782 |
+
鈺
|
5783 |
+
忄
|
5784 |
+
悶
|
5785 |
+
藥
|
5786 |
+
飾
|
5787 |
+
樓
|
5788 |
+
視
|
5789 |
+
孬
|
5790 |
+
ㆍ
|
5791 |
+
燚
|
5792 |
+
苪
|
5793 |
+
師
|
5794 |
+
①
|
5795 |
+
丼
|
5796 |
+
锽
|
5797 |
+
│
|
5798 |
+
韓
|
5799 |
+
標
|
5800 |
+
è
|
5801 |
+
兒
|
5802 |
+
閏
|
5803 |
+
匋
|
5804 |
+
張
|
5805 |
+
漢
|
5806 |
+
Ü
|
5807 |
+
髪
|
5808 |
+
會
|
5809 |
+
閑
|
5810 |
+
檔
|
5811 |
+
習
|
5812 |
+
裝
|
5813 |
+
の
|
5814 |
+
峯
|
5815 |
+
菘
|
5816 |
+
輝
|
5817 |
+
И
|
5818 |
+
雞
|
5819 |
+
釣
|
5820 |
+
億
|
5821 |
+
浐
|
5822 |
+
K
|
5823 |
+
O
|
5824 |
+
R
|
5825 |
+
8
|
5826 |
+
H
|
5827 |
+
E
|
5828 |
+
P
|
5829 |
+
T
|
5830 |
+
W
|
5831 |
+
D
|
5832 |
+
S
|
5833 |
+
C
|
5834 |
+
M
|
5835 |
+
F
|
5836 |
+
姌
|
5837 |
+
饹
|
5838 |
+
»
|
5839 |
+
晞
|
5840 |
+
廰
|
5841 |
+
ä
|
5842 |
+
嵯
|
5843 |
+
鷹
|
5844 |
+
負
|
5845 |
+
飲
|
5846 |
+
絲
|
5847 |
+
冚
|
5848 |
+
楗
|
5849 |
+
澤
|
5850 |
+
綫
|
5851 |
+
區
|
5852 |
+
❋
|
5853 |
+
←
|
5854 |
+
質
|
5855 |
+
靑
|
5856 |
+
揚
|
5857 |
+
③
|
5858 |
+
滬
|
5859 |
+
統
|
5860 |
+
産
|
5861 |
+
協
|
5862 |
+
﹑
|
5863 |
+
乸
|
5864 |
+
畐
|
5865 |
+
經
|
5866 |
+
運
|
5867 |
+
際
|
5868 |
+
洺
|
5869 |
+
岽
|
5870 |
+
為
|
5871 |
+
粵
|
5872 |
+
諾
|
5873 |
+
崋
|
5874 |
+
豐
|
5875 |
+
碁
|
5876 |
+
ɔ
|
5877 |
+
V
|
5878 |
+
2
|
5879 |
+
6
|
5880 |
+
齋
|
5881 |
+
誠
|
5882 |
+
訂
|
5883 |
+
´
|
5884 |
+
勑
|
5885 |
+
雙
|
5886 |
+
陳
|
5887 |
+
無
|
5888 |
+
í
|
5889 |
+
泩
|
5890 |
+
媄
|
5891 |
+
夌
|
5892 |
+
刂
|
5893 |
+
i
|
5894 |
+
c
|
5895 |
+
t
|
5896 |
+
o
|
5897 |
+
r
|
5898 |
+
a
|
5899 |
+
嘢
|
5900 |
+
耄
|
5901 |
+
燴
|
5902 |
+
暃
|
5903 |
+
壽
|
5904 |
+
媽
|
5905 |
+
靈
|
5906 |
+
抻
|
5907 |
+
體
|
5908 |
+
唻
|
5909 |
+
É
|
5910 |
+
冮
|
5911 |
+
甹
|
5912 |
+
鎮
|
5913 |
+
錦
|
5914 |
+
ʌ
|
5915 |
+
蜛
|
5916 |
+
蠄
|
5917 |
+
尓
|
5918 |
+
駕
|
5919 |
+
戀
|
5920 |
+
飬
|
5921 |
+
逹
|
5922 |
+
倫
|
5923 |
+
貴
|
5924 |
+
極
|
5925 |
+
Я
|
5926 |
+
Й
|
5927 |
+
寬
|
5928 |
+
磚
|
5929 |
+
嶪
|
5930 |
+
郎
|
5931 |
+
職
|
5932 |
+
|
|
5933 |
+
間
|
5934 |
+
n
|
5935 |
+
d
|
5936 |
+
剎
|
5937 |
+
伈
|
5938 |
+
課
|
5939 |
+
飛
|
5940 |
+
橋
|
5941 |
+
瘊
|
5942 |
+
№
|
5943 |
+
譜
|
5944 |
+
骓
|
5945 |
+
圗
|
5946 |
+
滘
|
5947 |
+
縣
|
5948 |
+
粿
|
5949 |
+
咅
|
5950 |
+
養
|
5951 |
+
濤
|
5952 |
+
彳
|
5953 |
+
®
|
5954 |
+
%
|
5955 |
+
Ⅱ
|
5956 |
+
啰
|
5957 |
+
㴪
|
5958 |
+
見
|
5959 |
+
矞
|
5960 |
+
薬
|
5961 |
+
糁
|
5962 |
+
邨
|
5963 |
+
鲮
|
5964 |
+
顔
|
5965 |
+
罱
|
5966 |
+
З
|
5967 |
+
選
|
5968 |
+
話
|
5969 |
+
贏
|
5970 |
+
氪
|
5971 |
+
俵
|
5972 |
+
競
|
5973 |
+
瑩
|
5974 |
+
繡
|
5975 |
+
枱
|
5976 |
+
β
|
5977 |
+
綉
|
5978 |
+
á
|
5979 |
+
獅
|
5980 |
+
爾
|
5981 |
+
™
|
5982 |
+
麵
|
5983 |
+
戋
|
5984 |
+
淩
|
5985 |
+
徳
|
5986 |
+
個
|
5987 |
+
劇
|
5988 |
+
場
|
5989 |
+
務
|
5990 |
+
簡
|
5991 |
+
寵
|
5992 |
+
h
|
5993 |
+
實
|
5994 |
+
膠
|
5995 |
+
轱
|
5996 |
+
圖
|
5997 |
+
築
|
5998 |
+
嘣
|
5999 |
+
樹
|
6000 |
+
㸃
|
6001 |
+
營
|
6002 |
+
耵
|
6003 |
+
孫
|
6004 |
+
饃
|
6005 |
+
鄺
|
6006 |
+
飯
|
6007 |
+
麯
|
6008 |
+
遠
|
6009 |
+
輸
|
6010 |
+
坫
|
6011 |
+
孃
|
6012 |
+
乚
|
6013 |
+
閃
|
6014 |
+
鏢
|
6015 |
+
㎡
|
6016 |
+
題
|
6017 |
+
廠
|
6018 |
+
關
|
6019 |
+
↑
|
6020 |
+
爺
|
6021 |
+
將
|
6022 |
+
軍
|
6023 |
+
連
|
6024 |
+
篦
|
6025 |
+
覌
|
6026 |
+
參
|
6027 |
+
箸
|
6028 |
+
-
|
6029 |
+
窠
|
6030 |
+
棽
|
6031 |
+
寕
|
6032 |
+
夀
|
6033 |
+
爰
|
6034 |
+
歐
|
6035 |
+
呙
|
6036 |
+
閥
|
6037 |
+
頡
|
6038 |
+
熱
|
6039 |
+
雎
|
6040 |
+
垟
|
6041 |
+
裟
|
6042 |
+
凬
|
6043 |
+
勁
|
6044 |
+
帑
|
6045 |
+
馕
|
6046 |
+
夆
|
6047 |
+
疌
|
6048 |
+
枼
|
6049 |
+
馮
|
6050 |
+
貨
|
6051 |
+
蒤
|
6052 |
+
樸
|
6053 |
+
彧
|
6054 |
+
旸
|
6055 |
+
靜
|
6056 |
+
龢
|
6057 |
+
暢
|
6058 |
+
㐱
|
6059 |
+
鳥
|
6060 |
+
珺
|
6061 |
+
鏡
|
6062 |
+
灡
|
6063 |
+
爭
|
6064 |
+
堷
|
6065 |
+
廚
|
6066 |
+
Ó
|
6067 |
+
騰
|
6068 |
+
診
|
6069 |
+
┅
|
6070 |
+
蘇
|
6071 |
+
褔
|
6072 |
+
凱
|
6073 |
+
頂
|
6074 |
+
豕
|
6075 |
+
亞
|
6076 |
+
帥
|
6077 |
+
嘬
|
6078 |
+
⊥
|
6079 |
+
仺
|
6080 |
+
桖
|
6081 |
+
複
|
6082 |
+
饣
|
6083 |
+
絡
|
6084 |
+
穂
|
6085 |
+
顏
|
6086 |
+
棟
|
6087 |
+
納
|
6088 |
+
▏
|
6089 |
+
濟
|
6090 |
+
親
|
6091 |
+
設
|
6092 |
+
計
|
6093 |
+
攵
|
6094 |
+
埌
|
6095 |
+
烺
|
6096 |
+
ò
|
6097 |
+
頤
|
6098 |
+
燦
|
6099 |
+
蓮
|
6100 |
+
撻
|
6101 |
+
節
|
6102 |
+
講
|
6103 |
+
濱
|
6104 |
+
濃
|
6105 |
+
娽
|
6106 |
+
洳
|
6107 |
+
朿
|
6108 |
+
燈
|
6109 |
+
鈴
|
6110 |
+
護
|
6111 |
+
膚
|
6112 |
+
铔
|
6113 |
+
過
|
6114 |
+
補
|
6115 |
+
Z
|
6116 |
+
U
|
6117 |
+
5
|
6118 |
+
4
|
6119 |
+
坋
|
6120 |
+
闿
|
6121 |
+
䖝
|
6122 |
+
餘
|
6123 |
+
缐
|
6124 |
+
铞
|
6125 |
+
貿
|
6126 |
+
铪
|
6127 |
+
桼
|
6128 |
+
趙
|
6129 |
+
鍊
|
6130 |
+
[
|
6131 |
+
㐂
|
6132 |
+
垚
|
6133 |
+
菓
|
6134 |
+
揸
|
6135 |
+
捲
|
6136 |
+
鐘
|
6137 |
+
滏
|
6138 |
+
𣇉
|
6139 |
+
爍
|
6140 |
+
輪
|
6141 |
+
燜
|
6142 |
+
鴻
|
6143 |
+
鮮
|
6144 |
+
動
|
6145 |
+
鹞
|
6146 |
+
鷗
|
6147 |
+
丄
|
6148 |
+
慶
|
6149 |
+
鉌
|
6150 |
+
翥
|
6151 |
+
飮
|
6152 |
+
腸
|
6153 |
+
⇋
|
6154 |
+
漁
|
6155 |
+
覺
|
6156 |
+
來
|
6157 |
+
熘
|
6158 |
+
昴
|
6159 |
+
翏
|
6160 |
+
鲱
|
6161 |
+
圧
|
6162 |
+
鄉
|
6163 |
+
萭
|
6164 |
+
頔
|
6165 |
+
爐
|
6166 |
+
嫚
|
6167 |
+
г
|
6168 |
+
貭
|
6169 |
+
類
|
6170 |
+
聯
|
6171 |
+
幛
|
6172 |
+
輕
|
6173 |
+
訓
|
6174 |
+
鑒
|
6175 |
+
夋
|
6176 |
+
锨
|
6177 |
+
芃
|
6178 |
+
珣
|
6179 |
+
䝉
|
6180 |
+
扙
|
6181 |
+
嵐
|
6182 |
+
銷
|
6183 |
+
處
|
6184 |
+
ㄱ
|
6185 |
+
語
|
6186 |
+
誘
|
6187 |
+
苝
|
6188 |
+
歸
|
6189 |
+
儀
|
6190 |
+
燒
|
6191 |
+
楿
|
6192 |
+
內
|
6193 |
+
粢
|
6194 |
+
葒
|
6195 |
+
奧
|
6196 |
+
麥
|
6197 |
+
礻
|
6198 |
+
滿
|
6199 |
+
蠔
|
6200 |
+
穵
|
6201 |
+
瞭
|
6202 |
+
態
|
6203 |
+
鱬
|
6204 |
+
榞
|
6205 |
+
硂
|
6206 |
+
鄭
|
6207 |
+
黃
|
6208 |
+
煙
|
6209 |
+
祐
|
6210 |
+
奓
|
6211 |
+
逺
|
6212 |
+
*
|
6213 |
+
瑄
|
6214 |
+
獲
|
6215 |
+
聞
|
6216 |
+
薦
|
6217 |
+
讀
|
6218 |
+
這
|
6219 |
+
樣
|
6220 |
+
決
|
6221 |
+
問
|
6222 |
+
啟
|
6223 |
+
們
|
6224 |
+
執
|
6225 |
+
説
|
6226 |
+
轉
|
6227 |
+
單
|
6228 |
+
隨
|
6229 |
+
唘
|
6230 |
+
帶
|
6231 |
+
倉
|
6232 |
+
庫
|
6233 |
+
還
|
6234 |
+
贈
|
6235 |
+
尙
|
6236 |
+
皺
|
6237 |
+
■
|
6238 |
+
餅
|
6239 |
+
產
|
6240 |
+
○
|
6241 |
+
∈
|
6242 |
+
報
|
6243 |
+
狀
|
6244 |
+
楓
|
6245 |
+
賠
|
6246 |
+
琯
|
6247 |
+
嗮
|
6248 |
+
禮
|
6249 |
+
`
|
6250 |
+
傳
|
6251 |
+
>
|
6252 |
+
≤
|
6253 |
+
嗞
|
6254 |
+
Φ
|
6255 |
+
≥
|
6256 |
+
換
|
6257 |
+
咭
|
6258 |
+
∣
|
6259 |
+
↓
|
6260 |
+
曬
|
6261 |
+
ε
|
6262 |
+
応
|
6263 |
+
寫
|
6264 |
+
″
|
6265 |
+
終
|
6266 |
+
様
|
6267 |
+
純
|
6268 |
+
費
|
6269 |
+
療
|
6270 |
+
聨
|
6271 |
+
凍
|
6272 |
+
壐
|
6273 |
+
郵
|
6274 |
+
ü
|
6275 |
+
黒
|
6276 |
+
∫
|
6277 |
+
製
|
6278 |
+
塊
|
6279 |
+
調
|
6280 |
+
軽
|
6281 |
+
確
|
6282 |
+
撃
|
6283 |
+
級
|
6284 |
+
馴
|
6285 |
+
Ⅲ
|
6286 |
+
涇
|
6287 |
+
繹
|
6288 |
+
數
|
6289 |
+
碼
|
6290 |
+
證
|
6291 |
+
狒
|
6292 |
+
処
|
6293 |
+
劑
|
6294 |
+
<
|
6295 |
+
晧
|
6296 |
+
賀
|
6297 |
+
衆
|
6298 |
+
]
|
6299 |
+
櫥
|
6300 |
+
兩
|
6301 |
+
陰
|
6302 |
+
絶
|
6303 |
+
對
|
6304 |
+
鯉
|
6305 |
+
憶
|
6306 |
+
◎
|
6307 |
+
p
|
6308 |
+
e
|
6309 |
+
Y
|
6310 |
+
蕒
|
6311 |
+
煖
|
6312 |
+
頓
|
6313 |
+
測
|
6314 |
+
試
|
6315 |
+
鼽
|
6316 |
+
僑
|
6317 |
+
碩
|
6318 |
+
妝
|
6319 |
+
帯
|
6320 |
+
≈
|
6321 |
+
鐡
|
6322 |
+
舖
|
6323 |
+
權
|
6324 |
+
喫
|
6325 |
+
倆
|
6326 |
+
ˋ
|
6327 |
+
該
|
6328 |
+
悅
|
6329 |
+
ā
|
6330 |
+
俫
|
6331 |
+
.
|
6332 |
+
f
|
6333 |
+
s
|
6334 |
+
b
|
6335 |
+
m
|
6336 |
+
k
|
6337 |
+
g
|
6338 |
+
u
|
6339 |
+
j
|
6340 |
+
貼
|
6341 |
+
淨
|
6342 |
+
濕
|
6343 |
+
針
|
6344 |
+
適
|
6345 |
+
備
|
6346 |
+
l
|
6347 |
+
/
|
6348 |
+
給
|
6349 |
+
謢
|
6350 |
+
強
|
6351 |
+
觸
|
6352 |
+
衛
|
6353 |
+
與
|
6354 |
+
⊙
|
6355 |
+
$
|
6356 |
+
緯
|
6357 |
+
變
|
6358 |
+
⑴
|
6359 |
+
⑵
|
6360 |
+
⑶
|
6361 |
+
㎏
|
6362 |
+
殺
|
6363 |
+
∩
|
6364 |
+
幚
|
6365 |
+
─
|
6366 |
+
價
|
6367 |
+
▲
|
6368 |
+
離
|
6369 |
+
ú
|
6370 |
+
ó
|
6371 |
+
飄
|
6372 |
+
烏
|
6373 |
+
関
|
6374 |
+
閟
|
6375 |
+
﹝
|
6376 |
+
﹞
|
6377 |
+
邏
|
6378 |
+
輯
|
6379 |
+
鍵
|
6380 |
+
驗
|
6381 |
+
訣
|
6382 |
+
導
|
6383 |
+
歷
|
6384 |
+
屆
|
6385 |
+
層
|
6386 |
+
▼
|
6387 |
+
儱
|
6388 |
+
錄
|
6389 |
+
熳
|
6390 |
+
ē
|
6391 |
+
艦
|
6392 |
+
吋
|
6393 |
+
錶
|
6394 |
+
辧
|
6395 |
+
飼
|
6396 |
+
顯
|
6397 |
+
④
|
6398 |
+
禦
|
6399 |
+
販
|
6400 |
+
気
|
6401 |
+
対
|
6402 |
+
枰
|
6403 |
+
閩
|
6404 |
+
紀
|
6405 |
+
幹
|
6406 |
+
瞓
|
6407 |
+
貊
|
6408 |
+
淚
|
6409 |
+
△
|
6410 |
+
眞
|
6411 |
+
墊
|
6412 |
+
Ω
|
6413 |
+
獻
|
6414 |
+
褲
|
6415 |
+
縫
|
6416 |
+
緑
|
6417 |
+
亜
|
6418 |
+
鉅
|
6419 |
+
餠
|
6420 |
+
{
|
6421 |
+
}
|
6422 |
+
◆
|
6423 |
+
蘆
|
6424 |
+
薈
|
6425 |
+
█
|
6426 |
+
◇
|
6427 |
+
溫
|
6428 |
+
彈
|
6429 |
+
晳
|
6430 |
+
粧
|
6431 |
+
犸
|
6432 |
+
穩
|
6433 |
+
訊
|
6434 |
+
崬
|
6435 |
+
凖
|
6436 |
+
熥
|
6437 |
+
П
|
6438 |
+
舊
|
6439 |
+
條
|
6440 |
+
紋
|
6441 |
+
圍
|
6442 |
+
Ⅳ
|
6443 |
+
筆
|
6444 |
+
尷
|
6445 |
+
難
|
6446 |
+
雜
|
6447 |
+
錯
|
6448 |
+
綁
|
6449 |
+
識
|
6450 |
+
頰
|
6451 |
+
鎖
|
6452 |
+
艶
|
6453 |
+
□
|
6454 |
+
殁
|
6455 |
+
殼
|
6456 |
+
⑧
|
6457 |
+
├
|
6458 |
+
▕
|
6459 |
+
鵬
|
6460 |
+
ǐ
|
6461 |
+
ō
|
6462 |
+
ǒ
|
6463 |
+
糝
|
6464 |
+
綱
|
6465 |
+
▎
|
6466 |
+
μ
|
6467 |
+
盜
|
6468 |
+
饅
|
6469 |
+
醬
|
6470 |
+
籤
|
6471 |
+
蓋
|
6472 |
+
釀
|
6473 |
+
鹽
|
6474 |
+
據
|
6475 |
+
à
|
6476 |
+
ɡ
|
6477 |
+
辦
|
6478 |
+
◥
|
6479 |
+
彐
|
6480 |
+
┌
|
6481 |
+
婦
|
6482 |
+
獸
|
6483 |
+
鲩
|
6484 |
+
伱
|
6485 |
+
ī
|
6486 |
+
蒟
|
6487 |
+
蒻
|
6488 |
+
齊
|
6489 |
+
袆
|
6490 |
+
腦
|
6491 |
+
寧
|
6492 |
+
凈
|
6493 |
+
妳
|
6494 |
+
煥
|
6495 |
+
詢
|
6496 |
+
偽
|
6497 |
+
謹
|
6498 |
+
啫
|
6499 |
+
鯽
|
6500 |
+
騷
|
6501 |
+
鱸
|
6502 |
+
損
|
6503 |
+
傷
|
6504 |
+
鎻
|
6505 |
+
髮
|
6506 |
+
買
|
6507 |
+
冏
|
6508 |
+
儥
|
6509 |
+
両
|
6510 |
+
﹢
|
6511 |
+
∞
|
6512 |
+
載
|
6513 |
+
喰
|
6514 |
+
z
|
6515 |
+
羙
|
6516 |
+
悵
|
6517 |
+
燙
|
6518 |
+
曉
|
6519 |
+
員
|
6520 |
+
組
|
6521 |
+
徹
|
6522 |
+
艷
|
6523 |
+
痠
|
6524 |
+
鋼
|
6525 |
+
鼙
|
6526 |
+
縮
|
6527 |
+
細
|
6528 |
+
嚒
|
6529 |
+
爯
|
6530 |
+
≠
|
6531 |
+
維
|
6532 |
+
"
|
6533 |
+
鱻
|
6534 |
+
壇
|
6535 |
+
厍
|
6536 |
+
帰
|
6537 |
+
浥
|
6538 |
+
犇
|
6539 |
+
薡
|
6540 |
+
軎
|
6541 |
+
²
|
6542 |
+
應
|
6543 |
+
醜
|
6544 |
+
刪
|
6545 |
+
緻
|
6546 |
+
鶴
|
6547 |
+
賜
|
6548 |
+
噁
|
6549 |
+
軌
|
6550 |
+
尨
|
6551 |
+
镔
|
6552 |
+
鷺
|
6553 |
+
槗
|
6554 |
+
彌
|
6555 |
+
葚
|
6556 |
+
濛
|
6557 |
+
請
|
6558 |
+
溇
|
6559 |
+
緹
|
6560 |
+
賢
|
6561 |
+
訪
|
6562 |
+
獴
|
6563 |
+
瑅
|
6564 |
+
資
|
6565 |
+
縤
|
6566 |
+
陣
|
6567 |
+
蕟
|
6568 |
+
栢
|
6569 |
+
韻
|
6570 |
+
祼
|
6571 |
+
恁
|
6572 |
+
伢
|
6573 |
+
謝
|
6574 |
+
劃
|
6575 |
+
涑
|
6576 |
+
總
|
6577 |
+
衖
|
6578 |
+
踺
|
6579 |
+
砋
|
6580 |
+
凉
|
6581 |
+
籃
|
6582 |
+
駿
|
6583 |
+
苼
|
6584 |
+
瘋
|
6585 |
+
昽
|
6586 |
+
紡
|
6587 |
+
驊
|
6588 |
+
腎
|
6589 |
+
﹗
|
6590 |
+
響
|
6591 |
+
杋
|
6592 |
+
剛
|
6593 |
+
嚴
|
6594 |
+
禪
|
6595 |
+
歓
|
6596 |
+
槍
|
6597 |
+
傘
|
6598 |
+
檸
|
6599 |
+
檫
|
6600 |
+
炣
|
6601 |
+
勢
|
6602 |
+
鏜
|
6603 |
+
鎢
|
6604 |
+
銑
|
6605 |
+
尐
|
6606 |
+
減
|
6607 |
+
奪
|
6608 |
+
惡
|
6609 |
+
θ
|
6610 |
+
僮
|
6611 |
+
婭
|
6612 |
+
臘
|
6613 |
+
ū
|
6614 |
+
ì
|
6615 |
+
殻
|
6616 |
+
鉄
|
6617 |
+
∑
|
6618 |
+
蛲
|
6619 |
+
焼
|
6620 |
+
緖
|
6621 |
+
續
|
6622 |
+
紹
|
6623 |
+
懮
|
deepdoc/vision/operators.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
|
17 |
+
import sys
|
18 |
+
import six
|
19 |
+
import cv2
|
20 |
+
import numpy as np
|
21 |
+
import math
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
|
25 |
+
class DecodeImage(object):
|
26 |
+
""" decode image """
|
27 |
+
|
28 |
+
def __init__(self,
|
29 |
+
img_mode='RGB',
|
30 |
+
channel_first=False,
|
31 |
+
ignore_orientation=False,
|
32 |
+
**kwargs):
|
33 |
+
self.img_mode = img_mode
|
34 |
+
self.channel_first = channel_first
|
35 |
+
self.ignore_orientation = ignore_orientation
|
36 |
+
|
37 |
+
def __call__(self, data):
|
38 |
+
img = data['image']
|
39 |
+
if six.PY2:
|
40 |
+
assert isinstance(img, str) and len(
|
41 |
+
img) > 0, "invalid input 'img' in DecodeImage"
|
42 |
+
else:
|
43 |
+
assert isinstance(img, bytes) and len(
|
44 |
+
img) > 0, "invalid input 'img' in DecodeImage"
|
45 |
+
img = np.frombuffer(img, dtype='uint8')
|
46 |
+
if self.ignore_orientation:
|
47 |
+
img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION |
|
48 |
+
cv2.IMREAD_COLOR)
|
49 |
+
else:
|
50 |
+
img = cv2.imdecode(img, 1)
|
51 |
+
if img is None:
|
52 |
+
return None
|
53 |
+
if self.img_mode == 'GRAY':
|
54 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
55 |
+
elif self.img_mode == 'RGB':
|
56 |
+
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
|
57 |
+
img.shape)
|
58 |
+
img = img[:, :, ::-1]
|
59 |
+
|
60 |
+
if self.channel_first:
|
61 |
+
img = img.transpose((2, 0, 1))
|
62 |
+
|
63 |
+
data['image'] = img
|
64 |
+
return data
|
65 |
+
|
66 |
+
|
67 |
+
class StandardizeImage(object):
|
68 |
+
"""normalize image
|
69 |
+
Args:
|
70 |
+
mean (list): im - mean
|
71 |
+
std (list): im / std
|
72 |
+
is_scale (bool): whether need im / 255
|
73 |
+
norm_type (str): type in ['mean_std', 'none']
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
|
77 |
+
self.mean = mean
|
78 |
+
self.std = std
|
79 |
+
self.is_scale = is_scale
|
80 |
+
self.norm_type = norm_type
|
81 |
+
|
82 |
+
def __call__(self, im, im_info):
|
83 |
+
"""
|
84 |
+
Args:
|
85 |
+
im (np.ndarray): image (np.ndarray)
|
86 |
+
im_info (dict): info of image
|
87 |
+
Returns:
|
88 |
+
im (np.ndarray): processed image (np.ndarray)
|
89 |
+
im_info (dict): info of processed image
|
90 |
+
"""
|
91 |
+
im = im.astype(np.float32, copy=False)
|
92 |
+
if self.is_scale:
|
93 |
+
scale = 1.0 / 255.0
|
94 |
+
im *= scale
|
95 |
+
|
96 |
+
if self.norm_type == 'mean_std':
|
97 |
+
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
|
98 |
+
std = np.array(self.std)[np.newaxis, np.newaxis, :]
|
99 |
+
im -= mean
|
100 |
+
im /= std
|
101 |
+
return im, im_info
|
102 |
+
|
103 |
+
|
104 |
+
class NormalizeImage(object):
|
105 |
+
""" normalize image such as substract mean, divide std
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
|
109 |
+
if isinstance(scale, str):
|
110 |
+
scale = eval(scale)
|
111 |
+
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
112 |
+
mean = mean if mean is not None else [0.485, 0.456, 0.406]
|
113 |
+
std = std if std is not None else [0.229, 0.224, 0.225]
|
114 |
+
|
115 |
+
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
|
116 |
+
self.mean = np.array(mean).reshape(shape).astype('float32')
|
117 |
+
self.std = np.array(std).reshape(shape).astype('float32')
|
118 |
+
|
119 |
+
def __call__(self, data):
|
120 |
+
img = data['image']
|
121 |
+
from PIL import Image
|
122 |
+
if isinstance(img, Image.Image):
|
123 |
+
img = np.array(img)
|
124 |
+
assert isinstance(img,
|
125 |
+
np.ndarray), "invalid input 'img' in NormalizeImage"
|
126 |
+
data['image'] = (
|
127 |
+
img.astype('float32') * self.scale - self.mean) / self.std
|
128 |
+
return data
|
129 |
+
|
130 |
+
|
131 |
+
class ToCHWImage(object):
|
132 |
+
""" convert hwc image to chw image
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, **kwargs):
|
136 |
+
pass
|
137 |
+
|
138 |
+
def __call__(self, data):
|
139 |
+
img = data['image']
|
140 |
+
from PIL import Image
|
141 |
+
if isinstance(img, Image.Image):
|
142 |
+
img = np.array(img)
|
143 |
+
data['image'] = img.transpose((2, 0, 1))
|
144 |
+
return data
|
145 |
+
|
146 |
+
|
147 |
+
class Fasttext(object):
|
148 |
+
def __init__(self, path="None", **kwargs):
|
149 |
+
import fasttext
|
150 |
+
self.fast_model = fasttext.load_model(path)
|
151 |
+
|
152 |
+
def __call__(self, data):
|
153 |
+
label = data['label']
|
154 |
+
fast_label = self.fast_model[label]
|
155 |
+
data['fast_label'] = fast_label
|
156 |
+
return data
|
157 |
+
|
158 |
+
|
159 |
+
class KeepKeys(object):
|
160 |
+
def __init__(self, keep_keys, **kwargs):
|
161 |
+
self.keep_keys = keep_keys
|
162 |
+
|
163 |
+
def __call__(self, data):
|
164 |
+
data_list = []
|
165 |
+
for key in self.keep_keys:
|
166 |
+
data_list.append(data[key])
|
167 |
+
return data_list
|
168 |
+
|
169 |
+
|
170 |
+
class Pad(object):
|
171 |
+
def __init__(self, size=None, size_div=32, **kwargs):
|
172 |
+
if size is not None and not isinstance(size, (int, list, tuple)):
|
173 |
+
raise TypeError("Type of target_size is invalid. Now is {}".format(
|
174 |
+
type(size)))
|
175 |
+
if isinstance(size, int):
|
176 |
+
size = [size, size]
|
177 |
+
self.size = size
|
178 |
+
self.size_div = size_div
|
179 |
+
|
180 |
+
def __call__(self, data):
|
181 |
+
|
182 |
+
img = data['image']
|
183 |
+
img_h, img_w = img.shape[0], img.shape[1]
|
184 |
+
if self.size:
|
185 |
+
resize_h2, resize_w2 = self.size
|
186 |
+
assert (
|
187 |
+
img_h < resize_h2 and img_w < resize_w2
|
188 |
+
), '(h, w) of target size should be greater than (img_h, img_w)'
|
189 |
+
else:
|
190 |
+
resize_h2 = max(
|
191 |
+
int(math.ceil(img.shape[0] / self.size_div) * self.size_div),
|
192 |
+
self.size_div)
|
193 |
+
resize_w2 = max(
|
194 |
+
int(math.ceil(img.shape[1] / self.size_div) * self.size_div),
|
195 |
+
self.size_div)
|
196 |
+
img = cv2.copyMakeBorder(
|
197 |
+
img,
|
198 |
+
0,
|
199 |
+
resize_h2 - img_h,
|
200 |
+
0,
|
201 |
+
resize_w2 - img_w,
|
202 |
+
cv2.BORDER_CONSTANT,
|
203 |
+
value=0)
|
204 |
+
data['image'] = img
|
205 |
+
return data
|
206 |
+
|
207 |
+
|
208 |
+
class LinearResize(object):
|
209 |
+
"""resize image by target_size and max_size
|
210 |
+
Args:
|
211 |
+
target_size (int): the target size of image
|
212 |
+
keep_ratio (bool): whether keep_ratio or not, default true
|
213 |
+
interp (int): method of resize
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
|
217 |
+
if isinstance(target_size, int):
|
218 |
+
target_size = [target_size, target_size]
|
219 |
+
self.target_size = target_size
|
220 |
+
self.keep_ratio = keep_ratio
|
221 |
+
self.interp = interp
|
222 |
+
|
223 |
+
def __call__(self, im, im_info):
|
224 |
+
"""
|
225 |
+
Args:
|
226 |
+
im (np.ndarray): image (np.ndarray)
|
227 |
+
im_info (dict): info of image
|
228 |
+
Returns:
|
229 |
+
im (np.ndarray): processed image (np.ndarray)
|
230 |
+
im_info (dict): info of processed image
|
231 |
+
"""
|
232 |
+
assert len(self.target_size) == 2
|
233 |
+
assert self.target_size[0] > 0 and self.target_size[1] > 0
|
234 |
+
im_channel = im.shape[2]
|
235 |
+
im_scale_y, im_scale_x = self.generate_scale(im)
|
236 |
+
im = cv2.resize(
|
237 |
+
im,
|
238 |
+
None,
|
239 |
+
None,
|
240 |
+
fx=im_scale_x,
|
241 |
+
fy=im_scale_y,
|
242 |
+
interpolation=self.interp)
|
243 |
+
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
|
244 |
+
im_info['scale_factor'] = np.array(
|
245 |
+
[im_scale_y, im_scale_x]).astype('float32')
|
246 |
+
return im, im_info
|
247 |
+
|
248 |
+
def generate_scale(self, im):
|
249 |
+
"""
|
250 |
+
Args:
|
251 |
+
im (np.ndarray): image (np.ndarray)
|
252 |
+
Returns:
|
253 |
+
im_scale_x: the resize ratio of X
|
254 |
+
im_scale_y: the resize ratio of Y
|
255 |
+
"""
|
256 |
+
origin_shape = im.shape[:2]
|
257 |
+
im_c = im.shape[2]
|
258 |
+
if self.keep_ratio:
|
259 |
+
im_size_min = np.min(origin_shape)
|
260 |
+
im_size_max = np.max(origin_shape)
|
261 |
+
target_size_min = np.min(self.target_size)
|
262 |
+
target_size_max = np.max(self.target_size)
|
263 |
+
im_scale = float(target_size_min) / float(im_size_min)
|
264 |
+
if np.round(im_scale * im_size_max) > target_size_max:
|
265 |
+
im_scale = float(target_size_max) / float(im_size_max)
|
266 |
+
im_scale_x = im_scale
|
267 |
+
im_scale_y = im_scale
|
268 |
+
else:
|
269 |
+
resize_h, resize_w = self.target_size
|
270 |
+
im_scale_y = resize_h / float(origin_shape[0])
|
271 |
+
im_scale_x = resize_w / float(origin_shape[1])
|
272 |
+
return im_scale_y, im_scale_x
|
273 |
+
|
274 |
+
|
275 |
+
class Resize(object):
|
276 |
+
def __init__(self, size=(640, 640), **kwargs):
|
277 |
+
self.size = size
|
278 |
+
|
279 |
+
def resize_image(self, img):
|
280 |
+
resize_h, resize_w = self.size
|
281 |
+
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
282 |
+
ratio_h = float(resize_h) / ori_h
|
283 |
+
ratio_w = float(resize_w) / ori_w
|
284 |
+
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
285 |
+
return img, [ratio_h, ratio_w]
|
286 |
+
|
287 |
+
def __call__(self, data):
|
288 |
+
img = data['image']
|
289 |
+
if 'polys' in data:
|
290 |
+
text_polys = data['polys']
|
291 |
+
|
292 |
+
img_resize, [ratio_h, ratio_w] = self.resize_image(img)
|
293 |
+
if 'polys' in data:
|
294 |
+
new_boxes = []
|
295 |
+
for box in text_polys:
|
296 |
+
new_box = []
|
297 |
+
for cord in box:
|
298 |
+
new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
|
299 |
+
new_boxes.append(new_box)
|
300 |
+
data['polys'] = np.array(new_boxes, dtype=np.float32)
|
301 |
+
data['image'] = img_resize
|
302 |
+
return data
|
303 |
+
|
304 |
+
|
305 |
+
class DetResizeForTest(object):
|
306 |
+
def __init__(self, **kwargs):
|
307 |
+
super(DetResizeForTest, self).__init__()
|
308 |
+
self.resize_type = 0
|
309 |
+
self.keep_ratio = False
|
310 |
+
if 'image_shape' in kwargs:
|
311 |
+
self.image_shape = kwargs['image_shape']
|
312 |
+
self.resize_type = 1
|
313 |
+
if 'keep_ratio' in kwargs:
|
314 |
+
self.keep_ratio = kwargs['keep_ratio']
|
315 |
+
elif 'limit_side_len' in kwargs:
|
316 |
+
self.limit_side_len = kwargs['limit_side_len']
|
317 |
+
self.limit_type = kwargs.get('limit_type', 'min')
|
318 |
+
elif 'resize_long' in kwargs:
|
319 |
+
self.resize_type = 2
|
320 |
+
self.resize_long = kwargs.get('resize_long', 960)
|
321 |
+
else:
|
322 |
+
self.limit_side_len = 736
|
323 |
+
self.limit_type = 'min'
|
324 |
+
|
325 |
+
def __call__(self, data):
|
326 |
+
img = data['image']
|
327 |
+
src_h, src_w, _ = img.shape
|
328 |
+
if sum([src_h, src_w]) < 64:
|
329 |
+
img = self.image_padding(img)
|
330 |
+
|
331 |
+
if self.resize_type == 0:
|
332 |
+
# img, shape = self.resize_image_type0(img)
|
333 |
+
img, [ratio_h, ratio_w] = self.resize_image_type0(img)
|
334 |
+
elif self.resize_type == 2:
|
335 |
+
img, [ratio_h, ratio_w] = self.resize_image_type2(img)
|
336 |
+
else:
|
337 |
+
# img, shape = self.resize_image_type1(img)
|
338 |
+
img, [ratio_h, ratio_w] = self.resize_image_type1(img)
|
339 |
+
data['image'] = img
|
340 |
+
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
341 |
+
return data
|
342 |
+
|
343 |
+
def image_padding(self, im, value=0):
|
344 |
+
h, w, c = im.shape
|
345 |
+
im_pad = np.zeros((max(32, h), max(32, w), c), np.uint8) + value
|
346 |
+
im_pad[:h, :w, :] = im
|
347 |
+
return im_pad
|
348 |
+
|
349 |
+
def resize_image_type1(self, img):
|
350 |
+
resize_h, resize_w = self.image_shape
|
351 |
+
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
352 |
+
if self.keep_ratio is True:
|
353 |
+
resize_w = ori_w * resize_h / ori_h
|
354 |
+
N = math.ceil(resize_w / 32)
|
355 |
+
resize_w = N * 32
|
356 |
+
ratio_h = float(resize_h) / ori_h
|
357 |
+
ratio_w = float(resize_w) / ori_w
|
358 |
+
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
359 |
+
# return img, np.array([ori_h, ori_w])
|
360 |
+
return img, [ratio_h, ratio_w]
|
361 |
+
|
362 |
+
def resize_image_type0(self, img):
|
363 |
+
"""
|
364 |
+
resize image to a size multiple of 32 which is required by the network
|
365 |
+
args:
|
366 |
+
img(array): array with shape [h, w, c]
|
367 |
+
return(tuple):
|
368 |
+
img, (ratio_h, ratio_w)
|
369 |
+
"""
|
370 |
+
limit_side_len = self.limit_side_len
|
371 |
+
h, w, c = img.shape
|
372 |
+
|
373 |
+
# limit the max side
|
374 |
+
if self.limit_type == 'max':
|
375 |
+
if max(h, w) > limit_side_len:
|
376 |
+
if h > w:
|
377 |
+
ratio = float(limit_side_len) / h
|
378 |
+
else:
|
379 |
+
ratio = float(limit_side_len) / w
|
380 |
+
else:
|
381 |
+
ratio = 1.
|
382 |
+
elif self.limit_type == 'min':
|
383 |
+
if min(h, w) < limit_side_len:
|
384 |
+
if h < w:
|
385 |
+
ratio = float(limit_side_len) / h
|
386 |
+
else:
|
387 |
+
ratio = float(limit_side_len) / w
|
388 |
+
else:
|
389 |
+
ratio = 1.
|
390 |
+
elif self.limit_type == 'resize_long':
|
391 |
+
ratio = float(limit_side_len) / max(h, w)
|
392 |
+
else:
|
393 |
+
raise Exception('not support limit type, image ')
|
394 |
+
resize_h = int(h * ratio)
|
395 |
+
resize_w = int(w * ratio)
|
396 |
+
|
397 |
+
resize_h = max(int(round(resize_h / 32) * 32), 32)
|
398 |
+
resize_w = max(int(round(resize_w / 32) * 32), 32)
|
399 |
+
|
400 |
+
try:
|
401 |
+
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
402 |
+
return None, (None, None)
|
403 |
+
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
404 |
+
except BaseException:
|
405 |
+
print(img.shape, resize_w, resize_h)
|
406 |
+
sys.exit(0)
|
407 |
+
ratio_h = resize_h / float(h)
|
408 |
+
ratio_w = resize_w / float(w)
|
409 |
+
return img, [ratio_h, ratio_w]
|
410 |
+
|
411 |
+
def resize_image_type2(self, img):
|
412 |
+
h, w, _ = img.shape
|
413 |
+
|
414 |
+
resize_w = w
|
415 |
+
resize_h = h
|
416 |
+
|
417 |
+
if resize_h > resize_w:
|
418 |
+
ratio = float(self.resize_long) / resize_h
|
419 |
+
else:
|
420 |
+
ratio = float(self.resize_long) / resize_w
|
421 |
+
|
422 |
+
resize_h = int(resize_h * ratio)
|
423 |
+
resize_w = int(resize_w * ratio)
|
424 |
+
|
425 |
+
max_stride = 128
|
426 |
+
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
427 |
+
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
428 |
+
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
429 |
+
ratio_h = resize_h / float(h)
|
430 |
+
ratio_w = resize_w / float(w)
|
431 |
+
|
432 |
+
return img, [ratio_h, ratio_w]
|
433 |
+
|
434 |
+
|
435 |
+
class E2EResizeForTest(object):
|
436 |
+
def __init__(self, **kwargs):
|
437 |
+
super(E2EResizeForTest, self).__init__()
|
438 |
+
self.max_side_len = kwargs['max_side_len']
|
439 |
+
self.valid_set = kwargs['valid_set']
|
440 |
+
|
441 |
+
def __call__(self, data):
|
442 |
+
img = data['image']
|
443 |
+
src_h, src_w, _ = img.shape
|
444 |
+
if self.valid_set == 'totaltext':
|
445 |
+
im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
|
446 |
+
img, max_side_len=self.max_side_len)
|
447 |
+
else:
|
448 |
+
im_resized, (ratio_h, ratio_w) = self.resize_image(
|
449 |
+
img, max_side_len=self.max_side_len)
|
450 |
+
data['image'] = im_resized
|
451 |
+
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
452 |
+
return data
|
453 |
+
|
454 |
+
def resize_image_for_totaltext(self, im, max_side_len=512):
|
455 |
+
|
456 |
+
h, w, _ = im.shape
|
457 |
+
resize_w = w
|
458 |
+
resize_h = h
|
459 |
+
ratio = 1.25
|
460 |
+
if h * ratio > max_side_len:
|
461 |
+
ratio = float(max_side_len) / resize_h
|
462 |
+
resize_h = int(resize_h * ratio)
|
463 |
+
resize_w = int(resize_w * ratio)
|
464 |
+
|
465 |
+
max_stride = 128
|
466 |
+
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
467 |
+
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
468 |
+
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
469 |
+
ratio_h = resize_h / float(h)
|
470 |
+
ratio_w = resize_w / float(w)
|
471 |
+
return im, (ratio_h, ratio_w)
|
472 |
+
|
473 |
+
def resize_image(self, im, max_side_len=512):
|
474 |
+
"""
|
475 |
+
resize image to a size multiple of max_stride which is required by the network
|
476 |
+
:param im: the resized image
|
477 |
+
:param max_side_len: limit of max image size to avoid out of memory in gpu
|
478 |
+
:return: the resized image and the resize ratio
|
479 |
+
"""
|
480 |
+
h, w, _ = im.shape
|
481 |
+
|
482 |
+
resize_w = w
|
483 |
+
resize_h = h
|
484 |
+
|
485 |
+
# Fix the longer side
|
486 |
+
if resize_h > resize_w:
|
487 |
+
ratio = float(max_side_len) / resize_h
|
488 |
+
else:
|
489 |
+
ratio = float(max_side_len) / resize_w
|
490 |
+
|
491 |
+
resize_h = int(resize_h * ratio)
|
492 |
+
resize_w = int(resize_w * ratio)
|
493 |
+
|
494 |
+
max_stride = 128
|
495 |
+
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
496 |
+
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
497 |
+
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
498 |
+
ratio_h = resize_h / float(h)
|
499 |
+
ratio_w = resize_w / float(w)
|
500 |
+
|
501 |
+
return im, (ratio_h, ratio_w)
|
502 |
+
|
503 |
+
|
504 |
+
class KieResize(object):
|
505 |
+
def __init__(self, **kwargs):
|
506 |
+
super(KieResize, self).__init__()
|
507 |
+
self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
|
508 |
+
'img_scale'][1]
|
509 |
+
|
510 |
+
def __call__(self, data):
|
511 |
+
img = data['image']
|
512 |
+
points = data['points']
|
513 |
+
src_h, src_w, _ = img.shape
|
514 |
+
im_resized, scale_factor, [ratio_h, ratio_w
|
515 |
+
], [new_h, new_w] = self.resize_image(img)
|
516 |
+
resize_points = self.resize_boxes(img, points, scale_factor)
|
517 |
+
data['ori_image'] = img
|
518 |
+
data['ori_boxes'] = points
|
519 |
+
data['points'] = resize_points
|
520 |
+
data['image'] = im_resized
|
521 |
+
data['shape'] = np.array([new_h, new_w])
|
522 |
+
return data
|
523 |
+
|
524 |
+
def resize_image(self, img):
|
525 |
+
norm_img = np.zeros([1024, 1024, 3], dtype='float32')
|
526 |
+
scale = [512, 1024]
|
527 |
+
h, w = img.shape[:2]
|
528 |
+
max_long_edge = max(scale)
|
529 |
+
max_short_edge = min(scale)
|
530 |
+
scale_factor = min(max_long_edge / max(h, w),
|
531 |
+
max_short_edge / min(h, w))
|
532 |
+
resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
|
533 |
+
scale_factor) + 0.5)
|
534 |
+
max_stride = 32
|
535 |
+
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
536 |
+
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
537 |
+
im = cv2.resize(img, (resize_w, resize_h))
|
538 |
+
new_h, new_w = im.shape[:2]
|
539 |
+
w_scale = new_w / w
|
540 |
+
h_scale = new_h / h
|
541 |
+
scale_factor = np.array(
|
542 |
+
[w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
|
543 |
+
norm_img[:new_h, :new_w, :] = im
|
544 |
+
return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
|
545 |
+
|
546 |
+
def resize_boxes(self, im, points, scale_factor):
|
547 |
+
points = points * scale_factor
|
548 |
+
img_shape = im.shape[:2]
|
549 |
+
points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
|
550 |
+
points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
|
551 |
+
return points
|
552 |
+
|
553 |
+
|
554 |
+
class SRResize(object):
|
555 |
+
def __init__(self,
|
556 |
+
imgH=32,
|
557 |
+
imgW=128,
|
558 |
+
down_sample_scale=4,
|
559 |
+
keep_ratio=False,
|
560 |
+
min_ratio=1,
|
561 |
+
mask=False,
|
562 |
+
infer_mode=False,
|
563 |
+
**kwargs):
|
564 |
+
self.imgH = imgH
|
565 |
+
self.imgW = imgW
|
566 |
+
self.keep_ratio = keep_ratio
|
567 |
+
self.min_ratio = min_ratio
|
568 |
+
self.down_sample_scale = down_sample_scale
|
569 |
+
self.mask = mask
|
570 |
+
self.infer_mode = infer_mode
|
571 |
+
|
572 |
+
def __call__(self, data):
|
573 |
+
imgH = self.imgH
|
574 |
+
imgW = self.imgW
|
575 |
+
images_lr = data["image_lr"]
|
576 |
+
transform2 = ResizeNormalize(
|
577 |
+
(imgW // self.down_sample_scale, imgH // self.down_sample_scale))
|
578 |
+
images_lr = transform2(images_lr)
|
579 |
+
data["img_lr"] = images_lr
|
580 |
+
if self.infer_mode:
|
581 |
+
return data
|
582 |
+
|
583 |
+
images_HR = data["image_hr"]
|
584 |
+
label_strs = data["label"]
|
585 |
+
transform = ResizeNormalize((imgW, imgH))
|
586 |
+
images_HR = transform(images_HR)
|
587 |
+
data["img_hr"] = images_HR
|
588 |
+
return data
|
589 |
+
|
590 |
+
|
591 |
+
class ResizeNormalize(object):
|
592 |
+
def __init__(self, size, interpolation=Image.BICUBIC):
|
593 |
+
self.size = size
|
594 |
+
self.interpolation = interpolation
|
595 |
+
|
596 |
+
def __call__(self, img):
|
597 |
+
img = img.resize(self.size, self.interpolation)
|
598 |
+
img_numpy = np.array(img).astype("float32")
|
599 |
+
img_numpy = img_numpy.transpose((2, 0, 1)) / 255
|
600 |
+
return img_numpy
|
601 |
+
|
602 |
+
|
603 |
+
class GrayImageChannelFormat(object):
|
604 |
+
"""
|
605 |
+
format gray scale image's channel: (3,h,w) -> (1,h,w)
|
606 |
+
Args:
|
607 |
+
inverse: inverse gray image
|
608 |
+
"""
|
609 |
+
|
610 |
+
def __init__(self, inverse=False, **kwargs):
|
611 |
+
self.inverse = inverse
|
612 |
+
|
613 |
+
def __call__(self, data):
|
614 |
+
img = data['image']
|
615 |
+
img_single_channel = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
616 |
+
img_expanded = np.expand_dims(img_single_channel, 0)
|
617 |
+
|
618 |
+
if self.inverse:
|
619 |
+
data['image'] = np.abs(img_expanded - 1)
|
620 |
+
else:
|
621 |
+
data['image'] = img_expanded
|
622 |
+
|
623 |
+
data['src_image'] = img
|
624 |
+
return data
|
625 |
+
|
626 |
+
|
627 |
+
class Permute(object):
|
628 |
+
"""permute image
|
629 |
+
Args:
|
630 |
+
to_bgr (bool): whether convert RGB to BGR
|
631 |
+
channel_first (bool): whether convert HWC to CHW
|
632 |
+
"""
|
633 |
+
|
634 |
+
def __init__(self, ):
|
635 |
+
super(Permute, self).__init__()
|
636 |
+
|
637 |
+
def __call__(self, im, im_info):
|
638 |
+
"""
|
639 |
+
Args:
|
640 |
+
im (np.ndarray): image (np.ndarray)
|
641 |
+
im_info (dict): info of image
|
642 |
+
Returns:
|
643 |
+
im (np.ndarray): processed image (np.ndarray)
|
644 |
+
im_info (dict): info of processed image
|
645 |
+
"""
|
646 |
+
im = im.transpose((2, 0, 1)).copy()
|
647 |
+
return im, im_info
|
648 |
+
|
649 |
+
|
650 |
+
class PadStride(object):
|
651 |
+
""" padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
|
652 |
+
Args:
|
653 |
+
stride (bool): model with FPN need image shape % stride == 0
|
654 |
+
"""
|
655 |
+
|
656 |
+
def __init__(self, stride=0):
|
657 |
+
self.coarsest_stride = stride
|
658 |
+
|
659 |
+
def __call__(self, im, im_info):
|
660 |
+
"""
|
661 |
+
Args:
|
662 |
+
im (np.ndarray): image (np.ndarray)
|
663 |
+
im_info (dict): info of image
|
664 |
+
Returns:
|
665 |
+
im (np.ndarray): processed image (np.ndarray)
|
666 |
+
im_info (dict): info of processed image
|
667 |
+
"""
|
668 |
+
coarsest_stride = self.coarsest_stride
|
669 |
+
if coarsest_stride <= 0:
|
670 |
+
return im, im_info
|
671 |
+
im_c, im_h, im_w = im.shape
|
672 |
+
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
|
673 |
+
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
|
674 |
+
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
|
675 |
+
padding_im[:, :im_h, :im_w] = im
|
676 |
+
return padding_im, im_info
|
677 |
+
|
678 |
+
|
679 |
+
def decode_image(im_file, im_info):
|
680 |
+
"""read rgb image
|
681 |
+
Args:
|
682 |
+
im_file (str|np.ndarray): input can be image path or np.ndarray
|
683 |
+
im_info (dict): info of image
|
684 |
+
Returns:
|
685 |
+
im (np.ndarray): processed image (np.ndarray)
|
686 |
+
im_info (dict): info of processed image
|
687 |
+
"""
|
688 |
+
if isinstance(im_file, str):
|
689 |
+
with open(im_file, 'rb') as f:
|
690 |
+
im_read = f.read()
|
691 |
+
data = np.frombuffer(im_read, dtype='uint8')
|
692 |
+
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
|
693 |
+
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
694 |
+
else:
|
695 |
+
im = im_file
|
696 |
+
im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
|
697 |
+
im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32)
|
698 |
+
return im, im_info
|
699 |
+
|
700 |
+
|
701 |
+
def preprocess(im, preprocess_ops):
|
702 |
+
# process image by preprocess_ops
|
703 |
+
im_info = {
|
704 |
+
'scale_factor': np.array(
|
705 |
+
[1., 1.], dtype=np.float32),
|
706 |
+
'im_shape': None,
|
707 |
+
}
|
708 |
+
im, im_info = decode_image(im, im_info)
|
709 |
+
for operator in preprocess_ops:
|
710 |
+
im, im_info = operator(im, im_info)
|
711 |
+
return im, im_info
|
deepdoc/vision/postprocess.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from shapely.geometry import Polygon
|
6 |
+
import pyclipper
|
7 |
+
|
8 |
+
|
9 |
+
def build_post_process(config, global_config=None):
|
10 |
+
support_dict = ['DBPostProcess', 'CTCLabelDecode']
|
11 |
+
|
12 |
+
config = copy.deepcopy(config)
|
13 |
+
module_name = config.pop('name')
|
14 |
+
if module_name == "None":
|
15 |
+
return
|
16 |
+
if global_config is not None:
|
17 |
+
config.update(global_config)
|
18 |
+
assert module_name in support_dict, Exception(
|
19 |
+
'post process only support {}'.format(support_dict))
|
20 |
+
module_class = eval(module_name)(**config)
|
21 |
+
return module_class
|
22 |
+
|
23 |
+
|
24 |
+
class DBPostProcess(object):
|
25 |
+
"""
|
26 |
+
The post process for Differentiable Binarization (DB).
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self,
|
30 |
+
thresh=0.3,
|
31 |
+
box_thresh=0.7,
|
32 |
+
max_candidates=1000,
|
33 |
+
unclip_ratio=2.0,
|
34 |
+
use_dilation=False,
|
35 |
+
score_mode="fast",
|
36 |
+
box_type='quad',
|
37 |
+
**kwargs):
|
38 |
+
self.thresh = thresh
|
39 |
+
self.box_thresh = box_thresh
|
40 |
+
self.max_candidates = max_candidates
|
41 |
+
self.unclip_ratio = unclip_ratio
|
42 |
+
self.min_size = 3
|
43 |
+
self.score_mode = score_mode
|
44 |
+
self.box_type = box_type
|
45 |
+
assert score_mode in [
|
46 |
+
"slow", "fast"
|
47 |
+
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
|
48 |
+
|
49 |
+
self.dilation_kernel = None if not use_dilation else np.array(
|
50 |
+
[[1, 1], [1, 1]])
|
51 |
+
|
52 |
+
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
53 |
+
'''
|
54 |
+
_bitmap: single map with shape (1, H, W),
|
55 |
+
whose values are binarized as {0, 1}
|
56 |
+
'''
|
57 |
+
|
58 |
+
bitmap = _bitmap
|
59 |
+
height, width = bitmap.shape
|
60 |
+
|
61 |
+
boxes = []
|
62 |
+
scores = []
|
63 |
+
|
64 |
+
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
|
65 |
+
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
66 |
+
|
67 |
+
for contour in contours[:self.max_candidates]:
|
68 |
+
epsilon = 0.002 * cv2.arcLength(contour, True)
|
69 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
70 |
+
points = approx.reshape((-1, 2))
|
71 |
+
if points.shape[0] < 4:
|
72 |
+
continue
|
73 |
+
|
74 |
+
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
75 |
+
if self.box_thresh > score:
|
76 |
+
continue
|
77 |
+
|
78 |
+
if points.shape[0] > 2:
|
79 |
+
box = self.unclip(points, self.unclip_ratio)
|
80 |
+
if len(box) > 1:
|
81 |
+
continue
|
82 |
+
else:
|
83 |
+
continue
|
84 |
+
box = box.reshape(-1, 2)
|
85 |
+
|
86 |
+
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
|
87 |
+
if sside < self.min_size + 2:
|
88 |
+
continue
|
89 |
+
|
90 |
+
box = np.array(box)
|
91 |
+
box[:, 0] = np.clip(
|
92 |
+
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
93 |
+
box[:, 1] = np.clip(
|
94 |
+
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
95 |
+
boxes.append(box.tolist())
|
96 |
+
scores.append(score)
|
97 |
+
return boxes, scores
|
98 |
+
|
99 |
+
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
100 |
+
'''
|
101 |
+
_bitmap: single map with shape (1, H, W),
|
102 |
+
whose values are binarized as {0, 1}
|
103 |
+
'''
|
104 |
+
|
105 |
+
bitmap = _bitmap
|
106 |
+
height, width = bitmap.shape
|
107 |
+
|
108 |
+
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
|
109 |
+
cv2.CHAIN_APPROX_SIMPLE)
|
110 |
+
if len(outs) == 3:
|
111 |
+
img, contours, _ = outs[0], outs[1], outs[2]
|
112 |
+
elif len(outs) == 2:
|
113 |
+
contours, _ = outs[0], outs[1]
|
114 |
+
|
115 |
+
num_contours = min(len(contours), self.max_candidates)
|
116 |
+
|
117 |
+
boxes = []
|
118 |
+
scores = []
|
119 |
+
for index in range(num_contours):
|
120 |
+
contour = contours[index]
|
121 |
+
points, sside = self.get_mini_boxes(contour)
|
122 |
+
if sside < self.min_size:
|
123 |
+
continue
|
124 |
+
points = np.array(points)
|
125 |
+
if self.score_mode == "fast":
|
126 |
+
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
127 |
+
else:
|
128 |
+
score = self.box_score_slow(pred, contour)
|
129 |
+
if self.box_thresh > score:
|
130 |
+
continue
|
131 |
+
|
132 |
+
box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
|
133 |
+
box, sside = self.get_mini_boxes(box)
|
134 |
+
if sside < self.min_size + 2:
|
135 |
+
continue
|
136 |
+
box = np.array(box)
|
137 |
+
|
138 |
+
box[:, 0] = np.clip(
|
139 |
+
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
140 |
+
box[:, 1] = np.clip(
|
141 |
+
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
142 |
+
boxes.append(box.astype("int32"))
|
143 |
+
scores.append(score)
|
144 |
+
return np.array(boxes, dtype="int32"), scores
|
145 |
+
|
146 |
+
def unclip(self, box, unclip_ratio):
|
147 |
+
poly = Polygon(box)
|
148 |
+
distance = poly.area * unclip_ratio / poly.length
|
149 |
+
offset = pyclipper.PyclipperOffset()
|
150 |
+
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
151 |
+
expanded = np.array(offset.Execute(distance))
|
152 |
+
return expanded
|
153 |
+
|
154 |
+
def get_mini_boxes(self, contour):
|
155 |
+
bounding_box = cv2.minAreaRect(contour)
|
156 |
+
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
157 |
+
|
158 |
+
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
|
159 |
+
if points[1][1] > points[0][1]:
|
160 |
+
index_1 = 0
|
161 |
+
index_4 = 1
|
162 |
+
else:
|
163 |
+
index_1 = 1
|
164 |
+
index_4 = 0
|
165 |
+
if points[3][1] > points[2][1]:
|
166 |
+
index_2 = 2
|
167 |
+
index_3 = 3
|
168 |
+
else:
|
169 |
+
index_2 = 3
|
170 |
+
index_3 = 2
|
171 |
+
|
172 |
+
box = [
|
173 |
+
points[index_1], points[index_2], points[index_3], points[index_4]
|
174 |
+
]
|
175 |
+
return box, min(bounding_box[1])
|
176 |
+
|
177 |
+
def box_score_fast(self, bitmap, _box):
|
178 |
+
'''
|
179 |
+
box_score_fast: use bbox mean score as the mean score
|
180 |
+
'''
|
181 |
+
h, w = bitmap.shape[:2]
|
182 |
+
box = _box.copy()
|
183 |
+
xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
|
184 |
+
xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
|
185 |
+
ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
|
186 |
+
ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
|
187 |
+
|
188 |
+
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
189 |
+
box[:, 0] = box[:, 0] - xmin
|
190 |
+
box[:, 1] = box[:, 1] - ymin
|
191 |
+
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
|
192 |
+
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
193 |
+
|
194 |
+
def box_score_slow(self, bitmap, contour):
|
195 |
+
'''
|
196 |
+
box_score_slow: use polyon mean score as the mean score
|
197 |
+
'''
|
198 |
+
h, w = bitmap.shape[:2]
|
199 |
+
contour = contour.copy()
|
200 |
+
contour = np.reshape(contour, (-1, 2))
|
201 |
+
|
202 |
+
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
|
203 |
+
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
|
204 |
+
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
|
205 |
+
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
|
206 |
+
|
207 |
+
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
208 |
+
|
209 |
+
contour[:, 0] = contour[:, 0] - xmin
|
210 |
+
contour[:, 1] = contour[:, 1] - ymin
|
211 |
+
|
212 |
+
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
|
213 |
+
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
214 |
+
|
215 |
+
def __call__(self, outs_dict, shape_list):
|
216 |
+
pred = outs_dict['maps']
|
217 |
+
if not isinstance(pred, np.ndarray):
|
218 |
+
pred = pred.numpy()
|
219 |
+
pred = pred[:, 0, :, :]
|
220 |
+
segmentation = pred > self.thresh
|
221 |
+
|
222 |
+
boxes_batch = []
|
223 |
+
for batch_index in range(pred.shape[0]):
|
224 |
+
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
|
225 |
+
if self.dilation_kernel is not None:
|
226 |
+
mask = cv2.dilate(
|
227 |
+
np.array(segmentation[batch_index]).astype(np.uint8),
|
228 |
+
self.dilation_kernel)
|
229 |
+
else:
|
230 |
+
mask = segmentation[batch_index]
|
231 |
+
if self.box_type == 'poly':
|
232 |
+
boxes, scores = self.polygons_from_bitmap(pred[batch_index],
|
233 |
+
mask, src_w, src_h)
|
234 |
+
elif self.box_type == 'quad':
|
235 |
+
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
236 |
+
src_w, src_h)
|
237 |
+
else:
|
238 |
+
raise ValueError(
|
239 |
+
"box_type can only be one of ['quad', 'poly']")
|
240 |
+
|
241 |
+
boxes_batch.append({'points': boxes})
|
242 |
+
return boxes_batch
|
243 |
+
|
244 |
+
|
245 |
+
class BaseRecLabelDecode(object):
|
246 |
+
""" Convert between text-label and text-index """
|
247 |
+
|
248 |
+
def __init__(self, character_dict_path=None, use_space_char=False):
|
249 |
+
self.beg_str = "sos"
|
250 |
+
self.end_str = "eos"
|
251 |
+
self.reverse = False
|
252 |
+
self.character_str = []
|
253 |
+
|
254 |
+
if character_dict_path is None:
|
255 |
+
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
256 |
+
dict_character = list(self.character_str)
|
257 |
+
else:
|
258 |
+
with open(character_dict_path, "rb") as fin:
|
259 |
+
lines = fin.readlines()
|
260 |
+
for line in lines:
|
261 |
+
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
262 |
+
self.character_str.append(line)
|
263 |
+
if use_space_char:
|
264 |
+
self.character_str.append(" ")
|
265 |
+
dict_character = list(self.character_str)
|
266 |
+
if 'arabic' in character_dict_path:
|
267 |
+
self.reverse = True
|
268 |
+
|
269 |
+
dict_character = self.add_special_char(dict_character)
|
270 |
+
self.dict = {}
|
271 |
+
for i, char in enumerate(dict_character):
|
272 |
+
self.dict[char] = i
|
273 |
+
self.character = dict_character
|
274 |
+
|
275 |
+
def pred_reverse(self, pred):
|
276 |
+
pred_re = []
|
277 |
+
c_current = ''
|
278 |
+
for c in pred:
|
279 |
+
if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
|
280 |
+
if c_current != '':
|
281 |
+
pred_re.append(c_current)
|
282 |
+
pred_re.append(c)
|
283 |
+
c_current = ''
|
284 |
+
else:
|
285 |
+
c_current += c
|
286 |
+
if c_current != '':
|
287 |
+
pred_re.append(c_current)
|
288 |
+
|
289 |
+
return ''.join(pred_re[::-1])
|
290 |
+
|
291 |
+
def add_special_char(self, dict_character):
|
292 |
+
return dict_character
|
293 |
+
|
294 |
+
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
295 |
+
""" convert text-index into text-label. """
|
296 |
+
result_list = []
|
297 |
+
ignored_tokens = self.get_ignored_tokens()
|
298 |
+
batch_size = len(text_index)
|
299 |
+
for batch_idx in range(batch_size):
|
300 |
+
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
|
301 |
+
if is_remove_duplicate:
|
302 |
+
selection[1:] = text_index[batch_idx][1:] != text_index[
|
303 |
+
batch_idx][:-1]
|
304 |
+
for ignored_token in ignored_tokens:
|
305 |
+
selection &= text_index[batch_idx] != ignored_token
|
306 |
+
|
307 |
+
char_list = [
|
308 |
+
self.character[text_id]
|
309 |
+
for text_id in text_index[batch_idx][selection]
|
310 |
+
]
|
311 |
+
if text_prob is not None:
|
312 |
+
conf_list = text_prob[batch_idx][selection]
|
313 |
+
else:
|
314 |
+
conf_list = [1] * len(selection)
|
315 |
+
if len(conf_list) == 0:
|
316 |
+
conf_list = [0]
|
317 |
+
|
318 |
+
text = ''.join(char_list)
|
319 |
+
|
320 |
+
if self.reverse: # for arabic rec
|
321 |
+
text = self.pred_reverse(text)
|
322 |
+
|
323 |
+
result_list.append((text, np.mean(conf_list).tolist()))
|
324 |
+
return result_list
|
325 |
+
|
326 |
+
def get_ignored_tokens(self):
|
327 |
+
return [0] # for ctc blank
|
328 |
+
|
329 |
+
|
330 |
+
class CTCLabelDecode(BaseRecLabelDecode):
|
331 |
+
""" Convert between text-label and text-index """
|
332 |
+
|
333 |
+
def __init__(self, character_dict_path=None, use_space_char=False,
|
334 |
+
**kwargs):
|
335 |
+
super(CTCLabelDecode, self).__init__(character_dict_path,
|
336 |
+
use_space_char)
|
337 |
+
|
338 |
+
def __call__(self, preds, label=None, *args, **kwargs):
|
339 |
+
if isinstance(preds, tuple) or isinstance(preds, list):
|
340 |
+
preds = preds[-1]
|
341 |
+
if not isinstance(preds, np.ndarray):
|
342 |
+
preds = preds.numpy()
|
343 |
+
preds_idx = preds.argmax(axis=2)
|
344 |
+
preds_prob = preds.max(axis=2)
|
345 |
+
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
|
346 |
+
if label is None:
|
347 |
+
return text
|
348 |
+
label = self.decode(label)
|
349 |
+
return text, label
|
350 |
+
|
351 |
+
def add_special_char(self, dict_character):
|
352 |
+
dict_character = ['blank'] + dict_character
|
353 |
+
return dict_character
|
deepdoc/vision/ragFlow.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import time
|
3 |
+
import os
|
4 |
+
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
from .operators import *
|
8 |
+
import numpy as np
|
9 |
+
import onnxruntime as ort
|
10 |
+
import logging
|
11 |
+
from .postprocess import build_post_process
|
12 |
+
|
13 |
+
from typing import List
|
14 |
+
|
15 |
+
def get_deepdoc_directory():
|
16 |
+
PROJECT_BASE = os.path.abspath(
|
17 |
+
os.path.join(
|
18 |
+
os.path.dirname(os.path.realpath(__file__)),
|
19 |
+
os.pardir
|
20 |
+
)
|
21 |
+
)
|
22 |
+
return PROJECT_BASE
|
23 |
+
def transform(data, ops=None):
|
24 |
+
""" transform """
|
25 |
+
if ops is None:
|
26 |
+
ops = []
|
27 |
+
for op in ops:
|
28 |
+
data = op(data)
|
29 |
+
if data is None:
|
30 |
+
return None
|
31 |
+
return data
|
32 |
+
|
33 |
+
|
34 |
+
def create_operators(op_param_list, global_config=None):
|
35 |
+
"""
|
36 |
+
create operators based on the config
|
37 |
+
|
38 |
+
Args:
|
39 |
+
params(list): a dict list, used to create some operators
|
40 |
+
"""
|
41 |
+
assert isinstance(
|
42 |
+
op_param_list, list), ('operator config should be a list')
|
43 |
+
ops = []
|
44 |
+
for operator in op_param_list:
|
45 |
+
assert isinstance(operator,
|
46 |
+
dict) and len(operator) == 1, "yaml format error"
|
47 |
+
op_name = list(operator)[0]
|
48 |
+
param = {} if operator[op_name] is None else operator[op_name]
|
49 |
+
if global_config is not None:
|
50 |
+
param.update(global_config)
|
51 |
+
op = eval(op_name)(**param)
|
52 |
+
ops.append(op)
|
53 |
+
return ops
|
54 |
+
|
55 |
+
|
56 |
+
def load_model(model_dir, nm):
|
57 |
+
model_file_path = os.path.join(model_dir, nm + ".onnx")
|
58 |
+
if not os.path.exists(model_file_path):
|
59 |
+
raise ValueError("not find model file path {}".format(
|
60 |
+
model_file_path))
|
61 |
+
|
62 |
+
options = ort.SessionOptions()
|
63 |
+
options.enable_cpu_mem_arena = False
|
64 |
+
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
65 |
+
options.intra_op_num_threads = 2
|
66 |
+
options.inter_op_num_threads = 2
|
67 |
+
if False and ort.get_device() == "GPU":
|
68 |
+
sess = ort.InferenceSession(
|
69 |
+
model_file_path,
|
70 |
+
options=options,
|
71 |
+
providers=['CUDAExecutionProvider'])
|
72 |
+
else:
|
73 |
+
sess = ort.InferenceSession(
|
74 |
+
model_file_path,
|
75 |
+
options=options,
|
76 |
+
providers=['CPUExecutionProvider'])
|
77 |
+
print(model_file_path)
|
78 |
+
print(sess.get_modelmeta().description)
|
79 |
+
return sess, sess.get_inputs()[0]
|
80 |
+
|
81 |
+
|
82 |
+
class RagFlowTextDetector:
|
83 |
+
"""
|
84 |
+
The class depends on TextDetector to perform its primary function of detecting text and retrieving bounding boxes.
|
85 |
+
"""
|
86 |
+
def __init__(self, model_dir):
|
87 |
+
pre_process_list = [{
|
88 |
+
'DetResizeForTest': {
|
89 |
+
'limit_side_len': 960,
|
90 |
+
'limit_type': "max",
|
91 |
+
}
|
92 |
+
}, {
|
93 |
+
'NormalizeImage': {
|
94 |
+
'std': [0.229, 0.224, 0.225],
|
95 |
+
'mean': [0.485, 0.456, 0.406],
|
96 |
+
'scale': '1./255.',
|
97 |
+
'order': 'hwc'
|
98 |
+
}
|
99 |
+
}, {
|
100 |
+
'ToCHWImage': None
|
101 |
+
}, {
|
102 |
+
'KeepKeys': {
|
103 |
+
'keep_keys': ['image', 'shape']
|
104 |
+
}
|
105 |
+
}]
|
106 |
+
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
|
107 |
+
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
|
108 |
+
|
109 |
+
self.postprocess_op = build_post_process(postprocess_params)
|
110 |
+
self.predictor, self.input_tensor = load_model(model_dir, 'det')
|
111 |
+
|
112 |
+
img_h, img_w = self.input_tensor.shape[2:]
|
113 |
+
if isinstance(img_h, str) or isinstance(img_w, str):
|
114 |
+
pass
|
115 |
+
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
|
116 |
+
pre_process_list[0] = {
|
117 |
+
'DetResizeForTest': {
|
118 |
+
'image_shape': [img_h, img_w]
|
119 |
+
}
|
120 |
+
}
|
121 |
+
self.preprocess_op = create_operators(pre_process_list)
|
122 |
+
|
123 |
+
def order_points_clockwise(self, pts):
|
124 |
+
rect = np.zeros((4, 2), dtype="float32")
|
125 |
+
s = pts.sum(axis=1)
|
126 |
+
rect[0] = pts[np.argmin(s)]
|
127 |
+
rect[2] = pts[np.argmax(s)]
|
128 |
+
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
|
129 |
+
diff = np.diff(np.array(tmp), axis=1)
|
130 |
+
rect[1] = tmp[np.argmin(diff)]
|
131 |
+
rect[3] = tmp[np.argmax(diff)]
|
132 |
+
return rect
|
133 |
+
|
134 |
+
def clip_det_res(self, points, img_height, img_width):
|
135 |
+
for pno in range(points.shape[0]):
|
136 |
+
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
137 |
+
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
138 |
+
return points
|
139 |
+
|
140 |
+
def filter_tag_det_res(self, dt_boxes, image_shape):
|
141 |
+
img_height, img_width = image_shape[0:2]
|
142 |
+
dt_boxes_new = []
|
143 |
+
for box in dt_boxes:
|
144 |
+
if isinstance(box, list):
|
145 |
+
box = np.array(box)
|
146 |
+
box = self.order_points_clockwise(box)
|
147 |
+
box = self.clip_det_res(box, img_height, img_width)
|
148 |
+
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
149 |
+
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
150 |
+
if rect_width <= 3 or rect_height <= 3:
|
151 |
+
continue
|
152 |
+
dt_boxes_new.append(box)
|
153 |
+
dt_boxes = np.array(dt_boxes_new)
|
154 |
+
return dt_boxes
|
155 |
+
|
156 |
+
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
|
157 |
+
img_height, img_width = image_shape[0:2]
|
158 |
+
dt_boxes_new = []
|
159 |
+
for box in dt_boxes:
|
160 |
+
if isinstance(box, list):
|
161 |
+
box = np.array(box)
|
162 |
+
box = self.clip_det_res(box, img_height, img_width)
|
163 |
+
dt_boxes_new.append(box)
|
164 |
+
dt_boxes = np.array(dt_boxes_new)
|
165 |
+
return dt_boxes
|
166 |
+
|
167 |
+
def __call__(self, img):
|
168 |
+
ori_im = img.copy()
|
169 |
+
data = {'image': img}
|
170 |
+
|
171 |
+
st = time.time()
|
172 |
+
data = transform(data, self.preprocess_op)
|
173 |
+
img, shape_list = data
|
174 |
+
if img is None:
|
175 |
+
return None, 0
|
176 |
+
img = np.expand_dims(img, axis=0)
|
177 |
+
shape_list = np.expand_dims(shape_list, axis=0)
|
178 |
+
img = img.copy()
|
179 |
+
input_dict = {}
|
180 |
+
input_dict[self.input_tensor.name] = img
|
181 |
+
for i in range(100000):
|
182 |
+
try:
|
183 |
+
outputs = self.predictor.run(None, input_dict)
|
184 |
+
break
|
185 |
+
except Exception as e:
|
186 |
+
if i >= 3:
|
187 |
+
raise e
|
188 |
+
time.sleep(5)
|
189 |
+
|
190 |
+
post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
|
191 |
+
dt_boxes = post_result[0]['points']
|
192 |
+
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
193 |
+
|
194 |
+
return dt_boxes, time.time() - st
|
195 |
+
|
196 |
+
|
197 |
+
class RagFlow():
|
198 |
+
def __init__(self, model_dir=None):
|
199 |
+
|
200 |
+
if not model_dir:
|
201 |
+
try:
|
202 |
+
model_dir = os.path.join(
|
203 |
+
get_deepdoc_directory(),
|
204 |
+
"models")
|
205 |
+
self.text_detector = RagFlowTextDetector(model_dir)
|
206 |
+
|
207 |
+
|
208 |
+
except Exception as e:
|
209 |
+
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
|
210 |
+
local_dir=os.path.join(get_deepdoc_directory(), "models"),
|
211 |
+
local_dir_use_symlinks=False)
|
212 |
+
self.text_detector = RagFlowTextDetector(model_dir)
|
213 |
+
|
214 |
+
|
215 |
+
self.drop_score = 0.5
|
216 |
+
self.crop_image_res_index = 0
|
217 |
+
|
218 |
+
def get_rotate_crop_image(self, img, points):
|
219 |
+
'''
|
220 |
+
img_height, img_width = img.shape[0:2]
|
221 |
+
left = int(np.min(points[:, 0]))
|
222 |
+
right = int(np.max(points[:, 0]))
|
223 |
+
top = int(np.min(points[:, 1]))
|
224 |
+
bottom = int(np.max(points[:, 1]))
|
225 |
+
img_crop = img[top:bottom, left:right, :].copy()
|
226 |
+
points[:, 0] = points[:, 0] - left
|
227 |
+
points[:, 1] = points[:, 1] - top
|
228 |
+
'''
|
229 |
+
assert len(points) == 4, "shape of points must be 4*2"
|
230 |
+
img_crop_width = int(
|
231 |
+
max(
|
232 |
+
np.linalg.norm(points[0] - points[1]),
|
233 |
+
np.linalg.norm(points[2] - points[3])))
|
234 |
+
img_crop_height = int(
|
235 |
+
max(
|
236 |
+
np.linalg.norm(points[0] - points[3]),
|
237 |
+
np.linalg.norm(points[1] - points[2])))
|
238 |
+
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
239 |
+
[img_crop_width, img_crop_height],
|
240 |
+
[0, img_crop_height]])
|
241 |
+
M = cv2.getPerspectiveTransform(points, pts_std)
|
242 |
+
dst_img = cv2.warpPerspective(
|
243 |
+
img,
|
244 |
+
M, (img_crop_width, img_crop_height),
|
245 |
+
borderMode=cv2.BORDER_REPLICATE,
|
246 |
+
flags=cv2.INTER_CUBIC)
|
247 |
+
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
248 |
+
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
249 |
+
dst_img = np.rot90(dst_img)
|
250 |
+
return dst_img
|
251 |
+
|
252 |
+
def sorted_boxes(self, dt_boxes):
|
253 |
+
"""
|
254 |
+
Sort text boxes in order from top to bottom, left to right
|
255 |
+
args:
|
256 |
+
dt_boxes(array):detected text boxes with shape [4, 2]
|
257 |
+
return:
|
258 |
+
sorted boxes(array) with shape [4, 2]
|
259 |
+
"""
|
260 |
+
num_boxes = dt_boxes.shape[0]
|
261 |
+
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
|
262 |
+
_boxes = list(sorted_boxes)
|
263 |
+
|
264 |
+
for i in range(num_boxes - 1):
|
265 |
+
for j in range(i, -1, -1):
|
266 |
+
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
|
267 |
+
(_boxes[j + 1][0][0] < _boxes[j][0][0]):
|
268 |
+
tmp = _boxes[j]
|
269 |
+
_boxes[j] = _boxes[j + 1]
|
270 |
+
_boxes[j + 1] = tmp
|
271 |
+
else:
|
272 |
+
break
|
273 |
+
return _boxes
|
274 |
+
|
275 |
+
def detect(self, img):
|
276 |
+
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
|
277 |
+
|
278 |
+
if img is None:
|
279 |
+
return None, None, time_dict
|
280 |
+
|
281 |
+
start = time.time()
|
282 |
+
dt_boxes, elapse = self.text_detector(img)
|
283 |
+
time_dict['det'] = elapse
|
284 |
+
|
285 |
+
|
286 |
+
return zip(self.sorted_boxes(dt_boxes), [
|
287 |
+
("", 0) for _ in range(len(dt_boxes))])
|
288 |
+
|
289 |
+
def recognize(self, ori_im, box):
|
290 |
+
img_crop = self.get_rotate_crop_image(ori_im, box)
|
291 |
+
|
292 |
+
rec_res, elapse = self.text_recognizer([img_crop])
|
293 |
+
text, score = rec_res[0]
|
294 |
+
if score < self.drop_score:
|
295 |
+
return ""
|
296 |
+
return text
|
297 |
+
|
298 |
+
def predict(self,img:np.ndarray=None)-> List[List[float]]:
|
299 |
+
"""
|
300 |
+
Return np array of bounding boxes - for each box 4 points of 2 coordinates
|
301 |
+
"""
|
302 |
+
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
|
303 |
+
|
304 |
+
dt_boxes, elapse = self.text_detector(img)
|
305 |
+
time_dict['det'] = elapse
|
306 |
+
|
307 |
+
|
308 |
+
dt_boxes = self.sorted_boxes(dt_boxes)
|
309 |
+
|
310 |
+
|
311 |
+
return dt_boxes
|
312 |
+
|
313 |
+
|
detectionAndOcrTable1.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, List, Sequence, Optional, Union
|
2 |
+
from torchvision import transforms
|
3 |
+
from torch import nn, Tensor
|
4 |
+
from PIL import Image
|
5 |
+
from pathlib import Path
|
6 |
+
from bs4 import BeautifulSoup as bs
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import numpy.typing as npt
|
10 |
+
from numpy import uint8
|
11 |
+
ImageType = npt.NDArray[uint8]
|
12 |
+
from transformers import AutoModelForObjectDetection
|
13 |
+
import torch
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import matplotlib.patches as patches
|
16 |
+
from matplotlib.patches import Patch
|
17 |
+
|
18 |
+
from unitable import UnitablePredictor
|
19 |
+
from doctrfiles import DoctrWordDetector,DoctrTextRecognizer
|
20 |
+
from utils import crop_an_Image,cropImageExtraMargin
|
21 |
+
from utils import denoisingAndSharpening
|
22 |
+
|
23 |
+
#based on this notebook:https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Table%20Transformer/Inference_with_Table_Transformer_(TATR)_for_parsing_tables.ipynb
|
24 |
+
class MaxResize(object):
|
25 |
+
def __init__(self, max_size=800):
|
26 |
+
self.max_size = max_size
|
27 |
+
|
28 |
+
def __call__(self, image):
|
29 |
+
width, height = image.size
|
30 |
+
current_max_size = max(width, height)
|
31 |
+
scale = self.max_size / current_max_size
|
32 |
+
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
|
33 |
+
|
34 |
+
return resized_image
|
35 |
+
|
36 |
+
|
37 |
+
html_table_template = (
|
38 |
+
|
39 |
+
lambda table: f"""<html>
|
40 |
+
<head> <meta charset="UTF-8">
|
41 |
+
<style>
|
42 |
+
table, th, td {{
|
43 |
+
border: 1px solid black;
|
44 |
+
font-size: 10px;
|
45 |
+
}}
|
46 |
+
</style> </head>
|
47 |
+
<body>
|
48 |
+
<table frame="hsides" rules="groups" width="100%%">
|
49 |
+
{table}
|
50 |
+
</table> </body> </html>"""
|
51 |
+
)
|
52 |
+
|
53 |
+
class DetectionAndOcrTable1():
|
54 |
+
def __init__(self,englishFlag=True):
|
55 |
+
self.unitablePredictor = UnitablePredictor()
|
56 |
+
self.wordDetector = DoctrWordDetector(architecture="db_resnet50",
|
57 |
+
path_weights="doctrfiles/models/db_resnet50-79bd7d70.pt",
|
58 |
+
path_config_json ="doctrfiles/models/db_resnet50_config.json")
|
59 |
+
|
60 |
+
|
61 |
+
if englishFlag:
|
62 |
+
self.textRecognizer = DoctrTextRecognizer(architecture="master", path_weights="./doctrfiles/models/master-fde31e4a.pt",
|
63 |
+
path_config_json="./doctrfiles/models/master.json")
|
64 |
+
else:
|
65 |
+
self.textRecognizer = DoctrTextRecognizer(architecture="parseq", path_weights="./doctrfiles/models/doctr-multilingual-parseq.bin",
|
66 |
+
path_config_json="./doctrfiles/models/multilingual-parseq-config.json")
|
67 |
+
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def build_table_from_html_and_cell(
|
71 |
+
structure: List[str], content: List[str] = None
|
72 |
+
) -> List[str]:
|
73 |
+
"""Build table from html and cell token list"""
|
74 |
+
assert structure is not None
|
75 |
+
html_code = list()
|
76 |
+
|
77 |
+
# deal with empty table
|
78 |
+
if content is None:
|
79 |
+
content = ["placeholder"] * len(structure)
|
80 |
+
|
81 |
+
for tag in structure:
|
82 |
+
if tag in ("<td>[]</td>", ">[]</td>"):
|
83 |
+
if len(content) == 0:
|
84 |
+
continue
|
85 |
+
cell = content.pop(0)
|
86 |
+
html_code.append(tag.replace("[]", cell))
|
87 |
+
else:
|
88 |
+
html_code.append(tag)
|
89 |
+
|
90 |
+
return html_code
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'):
|
94 |
+
i = 0
|
95 |
+
for img in detected_lines_images:
|
96 |
+
pilimg = Image.fromarray(img)
|
97 |
+
pilimg.save(prefix+str(i)+'.png')
|
98 |
+
i=i+1
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
# for output bounding box post-processing
|
102 |
+
def box_cxcywh_to_xyxy(x):
|
103 |
+
x_c, y_c, w, h = x.unbind(-1)
|
104 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
|
105 |
+
return torch.stack(b, dim=1)
|
106 |
+
|
107 |
+
@staticmethod
|
108 |
+
def rescale_bboxes(out_bbox, size):
|
109 |
+
img_w, img_h = size
|
110 |
+
b = DetectionAndOcrTable1.box_cxcywh_to_xyxy(out_bbox)
|
111 |
+
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
|
112 |
+
return b
|
113 |
+
|
114 |
+
@staticmethod
|
115 |
+
def outputs_to_objects(outputs, img_size, id2label):
|
116 |
+
m = outputs.logits.softmax(-1).max(-1)
|
117 |
+
pred_labels = list(m.indices.detach().cpu().numpy())[0]
|
118 |
+
pred_scores = list(m.values.detach().cpu().numpy())[0]
|
119 |
+
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
|
120 |
+
pred_bboxes = [elem.tolist() for elem in DetectionAndOcrTable1.rescale_bboxes(pred_bboxes, img_size)]
|
121 |
+
|
122 |
+
objects = []
|
123 |
+
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
|
124 |
+
class_label = id2label[int(label)]
|
125 |
+
if not class_label == 'no object':
|
126 |
+
objects.append({'label': class_label, 'score': float(score),
|
127 |
+
'bbox': [float(elem) for elem in bbox]})
|
128 |
+
|
129 |
+
return objects
|
130 |
+
|
131 |
+
@staticmethod
|
132 |
+
def fig2img(fig):
|
133 |
+
"""Convert a Matplotlib figure to a PIL Image and return it"""
|
134 |
+
import io
|
135 |
+
buf = io.BytesIO()
|
136 |
+
fig.savefig(buf)
|
137 |
+
buf.seek(0)
|
138 |
+
img = Image.open(buf)
|
139 |
+
return img
|
140 |
+
#For that, the TATR authors employ some padding to make sure the borders of the table are included.
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
def objects_to_crops(img, tokens, objects, class_thresholds, padding=10):
|
144 |
+
"""
|
145 |
+
Process the bounding boxes produced by the table detection model into
|
146 |
+
cropped table images and cropped tokens.
|
147 |
+
"""
|
148 |
+
|
149 |
+
table_crops = []
|
150 |
+
for obj in objects:
|
151 |
+
# abit unecessary here cause i crop them anywyas
|
152 |
+
if obj['score'] < class_thresholds[obj['label']]:
|
153 |
+
continue
|
154 |
+
|
155 |
+
cropped_table = {}
|
156 |
+
|
157 |
+
bbox = obj['bbox']
|
158 |
+
bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding]
|
159 |
+
|
160 |
+
cropped_img = img.crop(bbox)
|
161 |
+
|
162 |
+
# Add padding to the cropped image
|
163 |
+
padded_width = cropped_img.width + 40
|
164 |
+
padded_height = cropped_img.height +40
|
165 |
+
|
166 |
+
new_img_np = np.full((padded_height, padded_width, 3), fill_value=255, dtype=np.uint8)
|
167 |
+
y_offset = (padded_height - cropped_img.height) // 2
|
168 |
+
x_offset = (padded_width - cropped_img.width) // 2
|
169 |
+
new_img_np[y_offset:y_offset + cropped_img.height, x_offset:x_offset+cropped_img.width] = np.array(cropped_img)
|
170 |
+
|
171 |
+
padded_img = Image.fromarray(new_img_np,'RGB')
|
172 |
+
|
173 |
+
|
174 |
+
table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5]
|
175 |
+
for token in table_tokens:
|
176 |
+
token['bbox'] = [token['bbox'][0]-bbox[0] + padding,
|
177 |
+
token['bbox'][1]-bbox[1] + padding,
|
178 |
+
token['bbox'][2]-bbox[0] + padding,
|
179 |
+
token['bbox'][3]-bbox[1] + padding]
|
180 |
+
|
181 |
+
# If table is predicted to be rotated, rotate cropped image and tokens/words:
|
182 |
+
if obj['label'] == 'table rotated':
|
183 |
+
padded_img = padded_img.rotate(270, expand=True)
|
184 |
+
for token in table_tokens:
|
185 |
+
bbox = token['bbox']
|
186 |
+
bbox = [padded_img.size[0]-bbox[3]-1,
|
187 |
+
bbox[0],
|
188 |
+
padded_img.size[0]-bbox[1]-1,
|
189 |
+
bbox[2]]
|
190 |
+
token['bbox'] = bbox
|
191 |
+
|
192 |
+
cropped_table['image'] = padded_img
|
193 |
+
cropped_table['tokens'] = table_tokens
|
194 |
+
|
195 |
+
table_crops.append(cropped_table)
|
196 |
+
|
197 |
+
return table_crops
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def visualize_detected_tables(img, det_tables, out_path=None):
|
201 |
+
plt.imshow(img, interpolation="lanczos")
|
202 |
+
fig = plt.gcf()
|
203 |
+
fig.set_size_inches(20, 20)
|
204 |
+
ax = plt.gca()
|
205 |
+
|
206 |
+
for det_table in det_tables:
|
207 |
+
bbox = det_table['bbox']
|
208 |
+
|
209 |
+
if det_table['label'] == 'table':
|
210 |
+
facecolor = (1, 0, 0.45)
|
211 |
+
edgecolor = (1, 0, 0.45)
|
212 |
+
alpha = 0.3
|
213 |
+
linewidth = 2
|
214 |
+
hatch='//////'
|
215 |
+
elif det_table['label'] == 'table rotated':
|
216 |
+
facecolor = (0.95, 0.6, 0.1)
|
217 |
+
edgecolor = (0.95, 0.6, 0.1)
|
218 |
+
alpha = 0.3
|
219 |
+
linewidth = 2
|
220 |
+
hatch='//////'
|
221 |
+
else:
|
222 |
+
continue
|
223 |
+
|
224 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
|
225 |
+
edgecolor='none',facecolor=facecolor, alpha=0.1)
|
226 |
+
ax.add_patch(rect)
|
227 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
|
228 |
+
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
|
229 |
+
ax.add_patch(rect)
|
230 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
|
231 |
+
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
|
232 |
+
ax.add_patch(rect)
|
233 |
+
|
234 |
+
plt.xticks([], [])
|
235 |
+
plt.yticks([], [])
|
236 |
+
|
237 |
+
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
|
238 |
+
label='Table', hatch='//////', alpha=0.3),
|
239 |
+
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
|
240 |
+
label='Table (rotated)', hatch='//////', alpha=0.3)]
|
241 |
+
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
|
242 |
+
fontsize=10, ncol=2)
|
243 |
+
plt.gcf().set_size_inches(10, 10)
|
244 |
+
plt.axis('off')
|
245 |
+
|
246 |
+
if out_path is not None:
|
247 |
+
plt.savefig(out_path, bbox_inches='tight', dpi=150)
|
248 |
+
|
249 |
+
return fig
|
250 |
+
|
251 |
+
|
252 |
+
def predict(self,image:Image.Image,debugfolder_filename_page_name,denoise=False):
|
253 |
+
|
254 |
+
|
255 |
+
"""
|
256 |
+
0. Locate the table using Table detection
|
257 |
+
1. Unitable
|
258 |
+
"""
|
259 |
+
print("Running table transformer + Unitable Hybrid Model")
|
260 |
+
|
261 |
+
# Step 0 : Locate the table using Table detection TODO
|
262 |
+
|
263 |
+
#First we load a Table Transformer pre-trained for table detection. We use the "no_timm" version here to load the checkpoint with a Transformers-native backbone.
|
264 |
+
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
|
265 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
266 |
+
model.to(device)
|
267 |
+
|
268 |
+
#Preparing the image for the model
|
269 |
+
detection_transform = transforms.Compose([
|
270 |
+
MaxResize(800),
|
271 |
+
transforms.ToTensor(),
|
272 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
273 |
+
])
|
274 |
+
pixel_values = detection_transform(image).unsqueeze(0)
|
275 |
+
pixel_values = pixel_values.to(device)
|
276 |
+
|
277 |
+
# Next, we forward the pixel values through the model.
|
278 |
+
# The model outputs logits of shape (batch_size, num_queries, num_labels + 1). The +1 is for the "no object" class.
|
279 |
+
with torch.no_grad():
|
280 |
+
outputs = model(pixel_values)
|
281 |
+
|
282 |
+
# update id2label to include "no object"
|
283 |
+
id2label = model.config.id2label
|
284 |
+
id2label[len(model.config.id2label)] = "no object"
|
285 |
+
|
286 |
+
#[{'label': 'table', 'score': 0.9999570846557617, 'bbox': [110.24547576904297, 73.31171417236328, 1024.609130859375, 308.7159423828125]}]
|
287 |
+
objects = DetectionAndOcrTable1.outputs_to_objects(outputs, image.size, id2label)
|
288 |
+
|
289 |
+
#Only do these for objects with score greater than 0.8
|
290 |
+
objects = [obj for obj in objects if obj['score'] > 0.95]
|
291 |
+
|
292 |
+
print("detected object from the table transformers are")
|
293 |
+
print(objects)
|
294 |
+
if objects:
|
295 |
+
|
296 |
+
#Next, we crop the table out of the image. For that, the TATR authors employ some padding to make sure the borders of the table are included.
|
297 |
+
|
298 |
+
|
299 |
+
tokens = []
|
300 |
+
detection_class_thresholds = {
|
301 |
+
"table": 0.95, #this is a bit double cause we do up there another filtering but didn't want to modify too much from original code
|
302 |
+
"table rotated": 0.95,
|
303 |
+
"no object": 10
|
304 |
+
}
|
305 |
+
crop_padding = 10
|
306 |
+
|
307 |
+
|
308 |
+
tables_crops = DetectionAndOcrTable1.objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=crop_padding)
|
309 |
+
|
310 |
+
cropped_tables =[]
|
311 |
+
for i in range (len(tables_crops)):
|
312 |
+
cropped_table = tables_crops[i]['image'].convert("RGB")
|
313 |
+
cropped_table.save(debugfolder_filename_page_name+"cropped_table_"+str(i)+".png")
|
314 |
+
cropped_tables.append(cropped_table)
|
315 |
+
|
316 |
+
# Step 1: Unitable
|
317 |
+
#This take PIL Images as input
|
318 |
+
if denoise:
|
319 |
+
cropped_tables =denoisingAndSharpening(cropped_tables)
|
320 |
+
pred_htmls, pred_bboxs = self.unitablePredictor.predict(cropped_tables,debugfolder_filename_page_name)
|
321 |
+
|
322 |
+
table_codes = []
|
323 |
+
for k in range(len(cropped_tables)):
|
324 |
+
pred_html =pred_htmls[k]
|
325 |
+
pred_bbox = pred_bboxs[k]
|
326 |
+
|
327 |
+
# Some tabless have a lot of words in their header
|
328 |
+
# So for the headers, give doctr word ddetector doesn't work when the images aren't square
|
329 |
+
table_header_cells = 0
|
330 |
+
header_exists = False
|
331 |
+
for cell in pred_html:
|
332 |
+
if cell=='>[]</td>' or cell == '<td>[]</td>':
|
333 |
+
table_header_cells += 1
|
334 |
+
if cell =='</thead>':
|
335 |
+
header_exists = True
|
336 |
+
break
|
337 |
+
if not header_exists:
|
338 |
+
table_header_cells = 0
|
339 |
+
pred_cell = []
|
340 |
+
cell_imgs_to_viz = []
|
341 |
+
cell_img_num=0
|
342 |
+
|
343 |
+
# Find what one line should be if there is a cell with a single line
|
344 |
+
one_line_height = 100000
|
345 |
+
for i in range(table_header_cells):
|
346 |
+
box = pred_bbox[i]
|
347 |
+
xmin, ymin, xmax, ymax = box
|
348 |
+
current_box_height = abs(ymax-ymin)
|
349 |
+
if current_box_height<one_line_height:
|
350 |
+
one_line_height = current_box_height
|
351 |
+
|
352 |
+
for box in pred_bbox:
|
353 |
+
xmin, ymin, xmax, ymax = box
|
354 |
+
fourbytwo = np.array([
|
355 |
+
[xmin, ymin],
|
356 |
+
[xmax, ymin],
|
357 |
+
[xmax, ymax],
|
358 |
+
[xmin, ymax]
|
359 |
+
], dtype=np.float32)
|
360 |
+
current_box_height = abs(ymax-ymin)
|
361 |
+
|
362 |
+
# Those are for header cells with more than one line
|
363 |
+
if table_header_cells > 0 and current_box_height>one_line_height+5:
|
364 |
+
|
365 |
+
cell_img= cropImageExtraMargin([fourbytwo],cropped_tables[k],margin=1.4)[0]
|
366 |
+
table_header_cells -= 1
|
367 |
+
|
368 |
+
#List of 4 x 2
|
369 |
+
detection_results = self.wordDetector.predict(cell_img,sort_vertical=True)
|
370 |
+
|
371 |
+
input_to_recog = []
|
372 |
+
if detection_results == []:
|
373 |
+
input_to_recog.append(cell_img)
|
374 |
+
else:
|
375 |
+
|
376 |
+
for wordbox in detection_results:
|
377 |
+
|
378 |
+
cropped_image= crop_an_Image(wordbox.box,cell_img)
|
379 |
+
if cropped_image.shape[0] >0 and cropped_image.shape[1]>0:
|
380 |
+
input_to_recog.append(cropped_image)
|
381 |
+
else:
|
382 |
+
print("Empty image")
|
383 |
+
else:
|
384 |
+
cell_img = crop_an_Image(fourbytwo,cropped_tables[k])
|
385 |
+
if table_header_cells>0:
|
386 |
+
table_header_cells -= 1
|
387 |
+
if cell_img.shape[0] >0 and cell_img.shape[1]>0:
|
388 |
+
input_to_recog =[cell_img]
|
389 |
+
|
390 |
+
cell_imgs_to_viz.append(cell_img)
|
391 |
+
|
392 |
+
|
393 |
+
if input_to_recog != []:
|
394 |
+
words = self.textRecognizer.predict_for_tables(input_to_recog)
|
395 |
+
cell_output = " ".join(words)
|
396 |
+
pred_cell.append(cell_output)
|
397 |
+
else:
|
398 |
+
#Don't lose empty cell
|
399 |
+
pred_cell.append("")
|
400 |
+
|
401 |
+
|
402 |
+
print(pred_cell)
|
403 |
+
#Step3 :
|
404 |
+
pred_code = self.build_table_from_html_and_cell(pred_html, pred_cell)
|
405 |
+
pred_code = "".join(pred_code)
|
406 |
+
pred_code = html_table_template(pred_code)
|
407 |
+
|
408 |
+
|
409 |
+
soup = bs(pred_code)
|
410 |
+
#formatted and indented) string representation of the HTML document
|
411 |
+
table_code = soup.prettify()
|
412 |
+
print(table_code)
|
413 |
+
|
414 |
+
# Append extracted table to table_codes
|
415 |
+
table_codes.append(table_code)
|
416 |
+
|
417 |
+
return table_codes
|
418 |
+
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
|
detectionAndOcrTable2.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, List, Sequence, Optional, Union
|
2 |
+
from torchvision import transforms
|
3 |
+
from torch import nn, Tensor
|
4 |
+
from PIL import Image
|
5 |
+
from pathlib import Path
|
6 |
+
from bs4 import BeautifulSoup as bs
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import numpy.typing as npt
|
10 |
+
from numpy import uint8
|
11 |
+
ImageType = npt.NDArray[uint8]
|
12 |
+
from transformers import AutoModelForObjectDetection
|
13 |
+
import torch
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import matplotlib.patches as patches
|
16 |
+
from matplotlib.patches import Patch
|
17 |
+
|
18 |
+
from unitable import UnitableFullPredictor
|
19 |
+
|
20 |
+
#based on this notebook:https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Table%20Transformer/Inference_with_Table_Transformer_(TATR)_for_parsing_tables.ipynb
|
21 |
+
class MaxResize(object):
|
22 |
+
def __init__(self, max_size=800):
|
23 |
+
self.max_size = max_size
|
24 |
+
|
25 |
+
def __call__(self, image):
|
26 |
+
width, height = image.size
|
27 |
+
current_max_size = max(width, height)
|
28 |
+
scale = self.max_size / current_max_size
|
29 |
+
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
|
30 |
+
|
31 |
+
return resized_image
|
32 |
+
|
33 |
+
def iob(boxA, boxB):
|
34 |
+
"""
|
35 |
+
Calculate the Intersection over Bounding Box (IoB) of two bounding boxes.
|
36 |
+
|
37 |
+
Parameters:
|
38 |
+
- boxA: list or tuple with [xmin, ymin, xmax, ymax] of the first box
|
39 |
+
- boxB: list or tuple with [xmin, ymin, xmax, ymax] of the second box
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
- iob: float, the IoB ratio
|
43 |
+
"""
|
44 |
+
# Determine the coordinates of the intersection rectangle
|
45 |
+
xA = max(boxA[0], boxB[0])
|
46 |
+
yA = max(boxA[1], boxB[1])
|
47 |
+
xB = min(boxA[2], boxB[2])
|
48 |
+
yB = min(boxA[3], boxB[3])
|
49 |
+
|
50 |
+
# Compute the area of intersection rectangle
|
51 |
+
interWidth = max(0, xB - xA)
|
52 |
+
interHeight = max(0, yB - yA)
|
53 |
+
interArea = interWidth * interHeight
|
54 |
+
|
55 |
+
# Compute the area of boxB (the second box)
|
56 |
+
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
57 |
+
|
58 |
+
# Compute the Intersection over Bounding Box (IoB) ratio
|
59 |
+
iob = interArea / float(boxBArea)
|
60 |
+
|
61 |
+
return iob
|
62 |
+
|
63 |
+
class DetectionAndOcrTable2():
|
64 |
+
#This components can take in entire pdf page as input , scan for tables and return the table in html format
|
65 |
+
#Uses the full unitable model - different to DetectionAndOcrTable1
|
66 |
+
def __init__(self):
|
67 |
+
self.unitableFullPredictor = UnitableFullPredictor()
|
68 |
+
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'):
|
72 |
+
i = 0
|
73 |
+
for img in detected_lines_images:
|
74 |
+
pilimg = Image.fromarray(img)
|
75 |
+
pilimg.save(prefix+str(i)+'.png')
|
76 |
+
i=i+1
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
# for output bounding box post-processing
|
80 |
+
def box_cxcywh_to_xyxy(x):
|
81 |
+
x_c, y_c, w, h = x.unbind(-1)
|
82 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
|
83 |
+
return torch.stack(b, dim=1)
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def rescale_bboxes(out_bbox, size):
|
87 |
+
img_w, img_h = size
|
88 |
+
b = DetectionAndOcrTable2.box_cxcywh_to_xyxy(out_bbox)
|
89 |
+
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
|
90 |
+
return b
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def outputs_to_objects(outputs, img_size, id2label):
|
94 |
+
m = outputs.logits.softmax(-1).max(-1)
|
95 |
+
pred_labels = list(m.indices.detach().cpu().numpy())[0]
|
96 |
+
pred_scores = list(m.values.detach().cpu().numpy())[0]
|
97 |
+
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
|
98 |
+
pred_bboxes = [elem.tolist() for elem in DetectionAndOcrTable2.rescale_bboxes(pred_bboxes, img_size)]
|
99 |
+
|
100 |
+
objects = []
|
101 |
+
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
|
102 |
+
class_label = id2label[int(label)]
|
103 |
+
if not class_label == 'no object':
|
104 |
+
objects.append({'label': class_label, 'score': float(score),
|
105 |
+
'bbox': [float(elem) for elem in bbox]})
|
106 |
+
|
107 |
+
return objects
|
108 |
+
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def visualize_detected_tables(img, det_tables, out_path=None):
|
112 |
+
plt.imshow(img, interpolation="lanczos")
|
113 |
+
fig = plt.gcf()
|
114 |
+
fig.set_size_inches(20, 20)
|
115 |
+
ax = plt.gca()
|
116 |
+
|
117 |
+
for det_table in det_tables:
|
118 |
+
bbox = det_table['bbox']
|
119 |
+
|
120 |
+
if det_table['label'] == 'table':
|
121 |
+
facecolor = (1, 0, 0.45)
|
122 |
+
edgecolor = (1, 0, 0.45)
|
123 |
+
alpha = 0.3
|
124 |
+
linewidth = 2
|
125 |
+
hatch='//////'
|
126 |
+
elif det_table['label'] == 'table rotated':
|
127 |
+
facecolor = (0.95, 0.6, 0.1)
|
128 |
+
edgecolor = (0.95, 0.6, 0.1)
|
129 |
+
alpha = 0.3
|
130 |
+
linewidth = 2
|
131 |
+
hatch='//////'
|
132 |
+
else:
|
133 |
+
continue
|
134 |
+
|
135 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
|
136 |
+
edgecolor='none',facecolor=facecolor, alpha=0.1)
|
137 |
+
ax.add_patch(rect)
|
138 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
|
139 |
+
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
|
140 |
+
ax.add_patch(rect)
|
141 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
|
142 |
+
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
|
143 |
+
ax.add_patch(rect)
|
144 |
+
|
145 |
+
plt.xticks([], [])
|
146 |
+
plt.yticks([], [])
|
147 |
+
|
148 |
+
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
|
149 |
+
label='Table', hatch='//////', alpha=0.3),
|
150 |
+
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
|
151 |
+
label='Table (rotated)', hatch='//////', alpha=0.3)]
|
152 |
+
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
|
153 |
+
fontsize=10, ncol=2)
|
154 |
+
plt.gcf().set_size_inches(10, 10)
|
155 |
+
plt.axis('off')
|
156 |
+
|
157 |
+
if out_path is not None:
|
158 |
+
plt.savefig(out_path, bbox_inches='tight', dpi=150)
|
159 |
+
|
160 |
+
return fig
|
161 |
+
|
162 |
+
#For that, the TATR authors employ some padding to make sure the borders of the table are included.
|
163 |
+
@staticmethod
|
164 |
+
def objects_to_crops(img, tokens, objects, class_thresholds, padding=10):
|
165 |
+
"""
|
166 |
+
Process the bounding boxes produced by the table detection model into
|
167 |
+
cropped table images and cropped tokens.
|
168 |
+
"""
|
169 |
+
|
170 |
+
table_crops = []
|
171 |
+
for obj in objects:
|
172 |
+
# abit unecessary here cause i crop them anywyas
|
173 |
+
if obj['score'] < class_thresholds[obj['label']]:
|
174 |
+
print('skipping object with score', obj['score'])
|
175 |
+
continue
|
176 |
+
|
177 |
+
cropped_table = {}
|
178 |
+
|
179 |
+
bbox = obj['bbox']
|
180 |
+
bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding]
|
181 |
+
|
182 |
+
cropped_img = img.crop(bbox)
|
183 |
+
|
184 |
+
# Add padding to the cropped image
|
185 |
+
padded_width = cropped_img.width + 40
|
186 |
+
padded_height = cropped_img.height +40
|
187 |
+
|
188 |
+
new_img_np = np.full((padded_height, padded_width, 3), fill_value=255, dtype=np.uint8)
|
189 |
+
y_offset = (padded_height - cropped_img.height) // 2
|
190 |
+
x_offset = (padded_width - cropped_img.width) // 2
|
191 |
+
new_img_np[y_offset:y_offset + cropped_img.height, x_offset:x_offset+cropped_img.width] = np.array(cropped_img)
|
192 |
+
|
193 |
+
padded_img = Image.fromarray(new_img_np,'RGB')
|
194 |
+
|
195 |
+
|
196 |
+
table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5]
|
197 |
+
for token in table_tokens:
|
198 |
+
token['bbox'] = [token['bbox'][0]-bbox[0] + padding,
|
199 |
+
token['bbox'][1]-bbox[1] + padding,
|
200 |
+
token['bbox'][2]-bbox[0] + padding,
|
201 |
+
token['bbox'][3]-bbox[1] + padding]
|
202 |
+
|
203 |
+
# If table is predicted to be rotated, rotate cropped image and tokens/words:
|
204 |
+
if obj['label'] == 'table rotated':
|
205 |
+
padded_img = padded_img.rotate(270, expand=True)
|
206 |
+
for token in table_tokens:
|
207 |
+
bbox = token['bbox']
|
208 |
+
bbox = [padded_img.size[0]-bbox[3]-1,
|
209 |
+
bbox[0],
|
210 |
+
padded_img.size[0]-bbox[1]-1,
|
211 |
+
bbox[2]]
|
212 |
+
token['bbox'] = bbox
|
213 |
+
|
214 |
+
cropped_table['image'] = padded_img
|
215 |
+
cropped_table['tokens'] = table_tokens
|
216 |
+
|
217 |
+
table_crops.append(cropped_table)
|
218 |
+
|
219 |
+
return table_crops
|
220 |
+
|
221 |
+
def predict(self,image:Image.Image,debugfolder_filename_page_name):
|
222 |
+
|
223 |
+
|
224 |
+
"""
|
225 |
+
0. Locate the table using Table detection
|
226 |
+
1. Unitable
|
227 |
+
"""
|
228 |
+
|
229 |
+
# Step 0 : Locate the table using Table detection TODO
|
230 |
+
|
231 |
+
#First we load a Table Transformer pre-trained for table detection. We use the "no_timm" version here to load the checkpoint with a Transformers-native backbone.
|
232 |
+
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
|
233 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
234 |
+
model.to(device)
|
235 |
+
|
236 |
+
#Preparing the image for the model
|
237 |
+
detection_transform = transforms.Compose([
|
238 |
+
MaxResize(800),
|
239 |
+
transforms.ToTensor(),
|
240 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
241 |
+
])
|
242 |
+
pixel_values = detection_transform(image).unsqueeze(0)
|
243 |
+
pixel_values = pixel_values.to(device)
|
244 |
+
|
245 |
+
# Next, we forward the pixel values through the model.
|
246 |
+
# The model outputs logits of shape (batch_size, num_queries, num_labels + 1). The +1 is for the "no object" class.
|
247 |
+
with torch.no_grad():
|
248 |
+
outputs = model(pixel_values)
|
249 |
+
|
250 |
+
# update id2label to include "no object"
|
251 |
+
id2label = model.config.id2label
|
252 |
+
id2label[len(model.config.id2label)] = "no object"
|
253 |
+
|
254 |
+
#[{'label': 'table', 'score': 0.9999570846557617, 'bbox': [110.24547576904297, 73.31171417236328, 1024.609130859375, 308.7159423828125]}]
|
255 |
+
objects = DetectionAndOcrTable2.outputs_to_objects(outputs, image.size, id2label)
|
256 |
+
|
257 |
+
#Only do these for objects with score greater than 0.8
|
258 |
+
objects = [obj for obj in objects if obj['score'] > 0.95]
|
259 |
+
|
260 |
+
print(objects)
|
261 |
+
if objects:
|
262 |
+
fig = DetectionAndOcrTable2.visualize_detected_tables(image, objects,out_path = "./res/table_debug/table_former_detection.jpg")
|
263 |
+
|
264 |
+
#Next, we crop the table out of the image. For that, the TATR authors employ some padding to make sure the borders of the table are included.
|
265 |
+
|
266 |
+
|
267 |
+
tokens = []
|
268 |
+
detection_class_thresholds = {
|
269 |
+
"table": 0.95,
|
270 |
+
"table rotated": 0.95,
|
271 |
+
"no object": 10
|
272 |
+
}
|
273 |
+
crop_padding = 10
|
274 |
+
|
275 |
+
|
276 |
+
tables_crops = DetectionAndOcrTable2.objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=crop_padding)
|
277 |
+
|
278 |
+
#[{'image': <PIL.Image.Image image mode=RGB size=1392x903 at 0x7F71B02BCB50>, 'tokens': []}]
|
279 |
+
#print(tables_crops)
|
280 |
+
|
281 |
+
#TODO: Handle the case where there are multiple tables
|
282 |
+
cropped_tables =[]
|
283 |
+
for i in range (len(tables_crops)):
|
284 |
+
cropped_table = tables_crops[i]['image'].convert("RGB")
|
285 |
+
cropped_table.save(debugfolder_filename_page_name +"cropped_table_"+str(i)+".png")
|
286 |
+
cropped_tables.append(cropped_table)
|
287 |
+
|
288 |
+
print("number of cropped tables found: "+str(len(cropped_tables)))
|
289 |
+
|
290 |
+
|
291 |
+
# Step 1: Unitable
|
292 |
+
#This take PIL Images as input
|
293 |
+
table_codes = self.unitableFullPredictor.predict(cropped_tables,debugfolder_filename_page_name)
|
294 |
+
|
295 |
+
else:
|
296 |
+
return
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
detectionAndOcrTable3.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, List, Sequence, Optional, Union
|
2 |
+
from torchvision import transforms
|
3 |
+
from torch import nn, Tensor
|
4 |
+
from PIL import Image
|
5 |
+
from pathlib import Path
|
6 |
+
from bs4 import BeautifulSoup as bs
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import numpy.typing as npt
|
10 |
+
from numpy import uint8
|
11 |
+
ImageType = npt.NDArray[uint8]
|
12 |
+
from transformers import AutoModelForObjectDetection
|
13 |
+
import torch
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import matplotlib.patches as patches
|
16 |
+
from matplotlib.patches import Patch
|
17 |
+
from utils import draw_only_box
|
18 |
+
|
19 |
+
from unitable import UnitablePredictor
|
20 |
+
from ultralyticsplus import YOLO, render_result
|
21 |
+
from doctrfiles import DoctrWordDetector,DoctrTextRecognizer
|
22 |
+
from utils import crop_an_Image,cropImageExtraMargin
|
23 |
+
from utils import denoisingAndSharpening
|
24 |
+
"""
|
25 |
+
USES YOLO FOR DETECITON INSTEAD OF TABLE TRANSFORMER
|
26 |
+
Table TransFORMER
|
27 |
+
"""
|
28 |
+
|
29 |
+
|
30 |
+
html_table_template = (
|
31 |
+
|
32 |
+
lambda table: f"""<html>
|
33 |
+
<head> <meta charset="UTF-8">
|
34 |
+
<style>
|
35 |
+
table, th, td {{
|
36 |
+
border: 1px solid black;
|
37 |
+
font-size: 10px;
|
38 |
+
}}
|
39 |
+
</style> </head>
|
40 |
+
<body>
|
41 |
+
<table frame="hsides" rules="groups" width="100%%">
|
42 |
+
{table}
|
43 |
+
</table> </body> </html>"""
|
44 |
+
)
|
45 |
+
|
46 |
+
class DetectionAndOcrTable3():
|
47 |
+
#This components can take in entire pdf page as input , scan for tables and return the table in html format
|
48 |
+
#Uses the full unitable model - different to DetectionAndOcrTable1
|
49 |
+
def __init__(self,englishFlag = True):
|
50 |
+
self.unitablePredictor = UnitablePredictor()
|
51 |
+
self.detector = YOLO('foduucom/table-detection-and-extraction')
|
52 |
+
# set model parameters
|
53 |
+
self.detector.overrides['conf'] = 0.25 # NMS confidence threshold
|
54 |
+
self.detector.overrides['iou'] = 0.45 # NMS IoU threshold
|
55 |
+
self.detector.overrides['agnostic_nms'] = False # NMS class-agnostic
|
56 |
+
self.detector.overrides['max_det'] = 1000 # maximum number of detections per image
|
57 |
+
|
58 |
+
self.wordDetector = DoctrWordDetector(architecture="db_resnet50",
|
59 |
+
path_weights="doctrfiles/models/db_resnet50-79bd7d70.pt",
|
60 |
+
path_config_json ="doctrfiles/models/db_resnet50_config.json")
|
61 |
+
|
62 |
+
|
63 |
+
if englishFlag:
|
64 |
+
self.textRecognizer = DoctrTextRecognizer(architecture="master", path_weights="./doctrfiles/models/master-fde31e4a.pt",
|
65 |
+
path_config_json="./doctrfiles/models/master.json")
|
66 |
+
else:
|
67 |
+
self.textRecognizer = DoctrTextRecognizer(architecture="parseq", path_weights="./doctrfiles/models/doctr-multilingual-parseq.bin",
|
68 |
+
path_config_json="./doctrfiles/models/multilingual-parseq-config.json")
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'):
|
74 |
+
i = 0
|
75 |
+
for img in detected_lines_images:
|
76 |
+
pilimg = Image.fromarray(img)
|
77 |
+
pilimg.save(prefix+str(i)+'.png')
|
78 |
+
i=i+1
|
79 |
+
|
80 |
+
@staticmethod
|
81 |
+
def build_table_from_html_and_cell(
|
82 |
+
structure: List[str], content: List[str] = None
|
83 |
+
) -> List[str]:
|
84 |
+
"""Build table from html and cell token list"""
|
85 |
+
assert structure is not None
|
86 |
+
html_code = list()
|
87 |
+
|
88 |
+
# deal with empty table
|
89 |
+
if content is None:
|
90 |
+
content = ["placeholder"] * len(structure)
|
91 |
+
|
92 |
+
for tag in structure:
|
93 |
+
if tag in ("<td>[]</td>", ">[]</td>"):
|
94 |
+
if len(content) == 0:
|
95 |
+
continue
|
96 |
+
cell = content.pop(0)
|
97 |
+
html_code.append(tag.replace("[]", cell))
|
98 |
+
else:
|
99 |
+
html_code.append(tag)
|
100 |
+
|
101 |
+
return html_code
|
102 |
+
"""
|
103 |
+
Valid 'Boxes' object attributes and properties are:
|
104 |
+
|
105 |
+
Attributes:
|
106 |
+
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
107 |
+
with shape (num_boxes, 6).
|
108 |
+
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
|
109 |
+
|
110 |
+
Properties:
|
111 |
+
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
|
112 |
+
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
|
113 |
+
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
|
114 |
+
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
115 |
+
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
116 |
+
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
117 |
+
"""
|
118 |
+
# Image is page image
|
119 |
+
def predict(self,image:Image.Image,debugfolder_filename_page_name = None,denoise =False):
|
120 |
+
|
121 |
+
results = self.detector.predict(image)
|
122 |
+
|
123 |
+
#Array of bboxes
|
124 |
+
bbxs = results[0].boxes.xyxy.int().tolist()
|
125 |
+
#Array of confidences
|
126 |
+
conf = results[0].boxes.conf.float().tolist()
|
127 |
+
print(bbxs)
|
128 |
+
print(conf)
|
129 |
+
|
130 |
+
#images_to_recognizer = cropImage(bxs, img)
|
131 |
+
img_to_save = draw_only_box(image, bbxs)
|
132 |
+
img_to_save.save(debugfolder_filename_page_name+"detectionBoxRes.png", quality=95)
|
133 |
+
|
134 |
+
# we need something to draw the detection
|
135 |
+
|
136 |
+
|
137 |
+
cropped_tables =[]
|
138 |
+
for i in range (len(bbxs)):
|
139 |
+
# TODO: find the right confidence and padding values
|
140 |
+
if conf[i]< 0.65:
|
141 |
+
continue
|
142 |
+
|
143 |
+
padded = [bbxs[i][0]-10,bbxs[i][1]-10,bbxs[i][2]+10,bbxs[i][3]+10]
|
144 |
+
|
145 |
+
cropped_table = image.convert("RGB").crop(padded)
|
146 |
+
cropped_table.save(debugfolder_filename_page_name +"yolo_cropped_table_"+str(i)+".png")
|
147 |
+
cropped_tables.append(cropped_table)
|
148 |
+
|
149 |
+
print("number of cropped tables found: "+str(len(cropped_tables)))
|
150 |
+
|
151 |
+
# Step 1: Unitable
|
152 |
+
#This take PIL Images as input
|
153 |
+
if cropped_tables != []:
|
154 |
+
if denoise:
|
155 |
+
cropped_tables =denoisingAndSharpening(cropped_tables)
|
156 |
+
pred_htmls, pred_bboxs = self.unitablePredictor.predict(cropped_tables,debugfolder_filename_page_name)
|
157 |
+
table_codes = []
|
158 |
+
|
159 |
+
for k in range(len(cropped_tables)):
|
160 |
+
pred_html =pred_htmls[k]
|
161 |
+
pred_bbox = pred_bboxs[k]
|
162 |
+
|
163 |
+
# Some tabless have a lot of words in their header
|
164 |
+
# So for the headers, give doctr word ddetector doesn't work when the images aren't square
|
165 |
+
table_header_cells = 0
|
166 |
+
header_exists = False
|
167 |
+
for cell in pred_html:
|
168 |
+
if cell=='>[]</td>' or cell == '<td>[]</td>':
|
169 |
+
table_header_cells += 1
|
170 |
+
if cell =='</thead>':
|
171 |
+
header_exists = True
|
172 |
+
break
|
173 |
+
if not header_exists:
|
174 |
+
table_header_cells = 0
|
175 |
+
pred_cell = []
|
176 |
+
cell_imgs_to_viz = []
|
177 |
+
cell_img_num=0
|
178 |
+
|
179 |
+
# Find what one line should be if there is a cell with a single line
|
180 |
+
one_line_height = 100000
|
181 |
+
for i in range(table_header_cells):
|
182 |
+
box = pred_bbox[i]
|
183 |
+
xmin, ymin, xmax, ymax = box
|
184 |
+
current_box_height = abs(ymax-ymin)
|
185 |
+
if current_box_height<one_line_height:
|
186 |
+
one_line_height = current_box_height
|
187 |
+
|
188 |
+
for box in pred_bbox:
|
189 |
+
xmin, ymin, xmax, ymax = box
|
190 |
+
fourbytwo = np.array([
|
191 |
+
[xmin, ymin],
|
192 |
+
[xmax, ymin],
|
193 |
+
[xmax, ymax],
|
194 |
+
[xmin, ymax]
|
195 |
+
], dtype=np.float32)
|
196 |
+
if ymax-ymin == 0:
|
197 |
+
continue
|
198 |
+
current_box_height = abs(ymax-ymin)
|
199 |
+
|
200 |
+
# Those are for header cells with more than one line
|
201 |
+
if table_header_cells > 0 and current_box_height>one_line_height+5:
|
202 |
+
|
203 |
+
cell_img= cropImageExtraMargin([fourbytwo],cropped_tables[k],margin=1.4)[0]
|
204 |
+
table_header_cells -= 1
|
205 |
+
|
206 |
+
#List of 4 x 2
|
207 |
+
detection_results = self.wordDetector.predict(cell_img,sort_vertical=True)
|
208 |
+
|
209 |
+
input_to_recog = []
|
210 |
+
if detection_results == []:
|
211 |
+
input_to_recog.append(cell_img)
|
212 |
+
else:
|
213 |
+
|
214 |
+
for wordbox in detection_results:
|
215 |
+
|
216 |
+
cropped_image= crop_an_Image(wordbox.box,cell_img)
|
217 |
+
if cropped_image.shape[0] >0 and cropped_image.shape[1]>0:
|
218 |
+
input_to_recog.append(cropped_image)
|
219 |
+
else:
|
220 |
+
print("Empty image")
|
221 |
+
else:
|
222 |
+
cell_img = crop_an_Image(fourbytwo,cropped_tables[k])
|
223 |
+
if table_header_cells>0:
|
224 |
+
table_header_cells -= 1
|
225 |
+
if cell_img.shape[0] >0 and cell_img.shape[1]>0:
|
226 |
+
input_to_recog =[cell_img]
|
227 |
+
|
228 |
+
cell_imgs_to_viz.append(cell_img)
|
229 |
+
|
230 |
+
if input_to_recog != []:
|
231 |
+
words = self.textRecognizer.predict_for_tables(input_to_recog)
|
232 |
+
cell_output = " ".join(words)
|
233 |
+
pred_cell.append(cell_output)
|
234 |
+
else:
|
235 |
+
#Don't lose empty cell
|
236 |
+
pred_cell.append("")
|
237 |
+
|
238 |
+
|
239 |
+
#self.save_detection(cell_imgs_to_viz,prefix = './res/test4/cell_imgs_')
|
240 |
+
print(pred_cell)
|
241 |
+
#Step3 :
|
242 |
+
pred_code = self.build_table_from_html_and_cell(pred_html, pred_cell)
|
243 |
+
pred_code = "".join(pred_code)
|
244 |
+
pred_code = html_table_template(pred_code)
|
245 |
+
|
246 |
+
|
247 |
+
soup = bs(pred_code)
|
248 |
+
#formatted and indented) string representation of the HTML document
|
249 |
+
table_code = soup.prettify()
|
250 |
+
print(table_code)
|
251 |
+
table_codes.append(table_code)
|
252 |
+
|
253 |
+
return table_codes
|
254 |
+
return []
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
|
detectionAndOcrTable4.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, List, Sequence, Optional, Union
|
2 |
+
from torchvision import transforms
|
3 |
+
from torch import nn, Tensor
|
4 |
+
from PIL import Image
|
5 |
+
from pathlib import Path
|
6 |
+
from bs4 import BeautifulSoup as bs
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import numpy.typing as npt
|
10 |
+
from numpy import uint8
|
11 |
+
ImageType = npt.NDArray[uint8]
|
12 |
+
from transformers import AutoModelForObjectDetection
|
13 |
+
import torch
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import matplotlib.patches as patches
|
16 |
+
from matplotlib.patches import Patch
|
17 |
+
from utils import draw_only_box
|
18 |
+
|
19 |
+
from unitable import UnitableFullPredictor
|
20 |
+
from ultralyticsplus import YOLO, render_result
|
21 |
+
"""
|
22 |
+
USES YOLO FOR DETECITON INSTEAD OF TABLE TRANSFORMER
|
23 |
+
Table TransFORMER
|
24 |
+
"""
|
25 |
+
|
26 |
+
class DetectionAndOcrTable4():
|
27 |
+
#This components can take in entire pdf page as input , scan for tables and return the table in html format
|
28 |
+
#Uses the full unitable model - different to DetectionAndOcrTable1
|
29 |
+
def __init__(self):
|
30 |
+
self.unitableFullPredictor = UnitableFullPredictor()
|
31 |
+
self.detector = YOLO('foduucom/table-detection-and-extraction')
|
32 |
+
# set model parameters
|
33 |
+
self.detector.overrides['conf'] = 0.25 # NMS confidence threshold
|
34 |
+
self.detector.overrides['iou'] = 0.45 # NMS IoU threshold
|
35 |
+
self.detector.overrides['agnostic_nms'] = False # NMS class-agnostic
|
36 |
+
self.detector.overrides['max_det'] = 1000 # maximum number of detections per image
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
@staticmethod
|
41 |
+
def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'):
|
42 |
+
i = 0
|
43 |
+
for img in detected_lines_images:
|
44 |
+
pilimg = Image.fromarray(img)
|
45 |
+
pilimg.save(prefix+str(i)+'.png')
|
46 |
+
i=i+1
|
47 |
+
"""
|
48 |
+
Valid 'Boxes' object attributes and properties are:
|
49 |
+
|
50 |
+
Attributes:
|
51 |
+
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
52 |
+
with shape (num_boxes, 6).
|
53 |
+
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
|
54 |
+
|
55 |
+
Properties:
|
56 |
+
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
|
57 |
+
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
|
58 |
+
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
|
59 |
+
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
60 |
+
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
61 |
+
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
62 |
+
"""
|
63 |
+
# Image is page image
|
64 |
+
def predict(self,image:Image.Image,debugfolder_filename_page_name = None):
|
65 |
+
|
66 |
+
results = self.detector.predict(image)
|
67 |
+
|
68 |
+
#Array of bboxes
|
69 |
+
bbxs = results[0].boxes.xyxy.int().tolist()
|
70 |
+
#Array of confidences
|
71 |
+
conf = results[0].boxes.conf.float().tolist()
|
72 |
+
print(bbxs)
|
73 |
+
print(conf)
|
74 |
+
|
75 |
+
#images_to_recognizer = cropImage(bxs, img)
|
76 |
+
img_to_save = draw_only_box(image, bbxs)
|
77 |
+
img_to_save.save(debugfolder_filename_page_name+"detectionBoxRes.png", quality=95)
|
78 |
+
|
79 |
+
# we need something to draw the detection
|
80 |
+
|
81 |
+
|
82 |
+
cropped_tables =[]
|
83 |
+
for i in range (len(bbxs)):
|
84 |
+
# TODO: find the right confidence and padding values
|
85 |
+
if conf[i]< 0.65:
|
86 |
+
continue
|
87 |
+
|
88 |
+
padded = [bbxs[i][0]-10,bbxs[i][1]-10,bbxs[i][2]+10,bbxs[i][3]+10]
|
89 |
+
|
90 |
+
cropped_table = image.convert("RGB").crop(padded)
|
91 |
+
cropped_table.save(debugfolder_filename_page_name +"yolo_cropped_table_"+str(i)+".png")
|
92 |
+
cropped_tables.append(cropped_table)
|
93 |
+
|
94 |
+
print("number of cropped tables found: "+str(len(cropped_tables)))
|
95 |
+
|
96 |
+
# Step 1: Unitable
|
97 |
+
#This take PIL Images as input
|
98 |
+
if cropped_tables != []:
|
99 |
+
table_codes = self.unitableFullPredictor.predict(cropped_tables,debugfolder_filename_page_name)
|
100 |
+
return table_codes
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
doctrfiles/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .doctr_recognizer import DoctrTextRecognizer
|
2 |
+
from .word_detector import Wordboxes,DoctrWordDetector
|
3 |
+
|
4 |
+
__all__ = ['DoctrTextRecognizer','DoctrWordDetector','Wordboxes']
|
doctrfiles/doctr_recognizer.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from abc import ABC
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Any, List, Literal, Mapping, Optional, Tuple
|
5 |
+
from zipfile import ZipFile
|
6 |
+
import json
|
7 |
+
from typing import Any, List, Literal, Mapping, Optional,Dict
|
8 |
+
import uuid
|
9 |
+
from doctr.models.preprocessor import PreProcessor
|
10 |
+
from doctr.models.recognition.predictor import RecognitionPredictor # pylint: disable=W0611
|
11 |
+
from doctr.models.recognition.zoo import ARCHS, recognition
|
12 |
+
import torch
|
13 |
+
# Numpy image type
|
14 |
+
import numpy.typing as npt
|
15 |
+
from numpy import uint8
|
16 |
+
ImageType = npt.NDArray[uint8]
|
17 |
+
|
18 |
+
from utils import WordAnnotation,getlogger
|
19 |
+
|
20 |
+
class DoctrTextRecognizer():
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
architecture: str,
|
25 |
+
path_weights: str,
|
26 |
+
path_config_json: str = None,
|
27 |
+
) -> None:
|
28 |
+
"""
|
29 |
+
:param architecture: DocTR supports various text recognition models, e.g. "crnn_vgg16_bn",
|
30 |
+
"crnn_mobilenet_v3_small". The full list can be found here:
|
31 |
+
https://github.com/mindee/doctr/blob/main/doctr/models/recognition/zoo.py#L16.
|
32 |
+
:param path_weights: Path to the weights of the model
|
33 |
+
:param device: "cpu" or "cuda".
|
34 |
+
:param lib: "TF" or "PT" or None. If None, env variables USE_TENSORFLOW, USE_PYTORCH will be used.
|
35 |
+
:param path_config_json: Path to a json file containing the configuration of the model. Useful, if you have
|
36 |
+
a model trained on custom vocab.
|
37 |
+
"""
|
38 |
+
|
39 |
+
self.architecture = architecture
|
40 |
+
self.path_weights = path_weights
|
41 |
+
|
42 |
+
self.name = self.get_name(self.path_weights, self.architecture)
|
43 |
+
|
44 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
self.path_config_json = path_config_json
|
46 |
+
|
47 |
+
self.built_model = self.build_model(self.architecture, self.path_config_json)
|
48 |
+
self.load_model(self.path_weights, self.built_model, self.device)
|
49 |
+
self.doctr_predictor = self.get_wrapped_model()
|
50 |
+
|
51 |
+
def predict(self, inputs: Dict[uuid.UUID, Tuple[ImageType,WordAnnotation]]) -> List[WordAnnotation]:
|
52 |
+
|
53 |
+
"""
|
54 |
+
Prediction on a batch of text lines
|
55 |
+
|
56 |
+
:param images: Dictionary where key is word's object id and the value is tupe of cropped image and word annotation
|
57 |
+
:return: A list of DetectionResult
|
58 |
+
"""
|
59 |
+
if inputs:
|
60 |
+
|
61 |
+
|
62 |
+
predictor =self.doctr_predictor
|
63 |
+
device = self.device
|
64 |
+
|
65 |
+
word_uuids = list(inputs.keys())
|
66 |
+
cropped_images = [value[0] for value in inputs.values()]
|
67 |
+
|
68 |
+
raw_output = predictor(list(cropped_images))
|
69 |
+
det_results =[]
|
70 |
+
for uuid, output in zip(word_uuids, raw_output):
|
71 |
+
ann = inputs[uuid][1]
|
72 |
+
ann.text = output[0]
|
73 |
+
det_results.append(ann)
|
74 |
+
return det_results
|
75 |
+
return []
|
76 |
+
|
77 |
+
def predict_for_tables(self, inputs: List[ImageType]) -> List[str]:
|
78 |
+
|
79 |
+
if inputs:
|
80 |
+
|
81 |
+
predictor =self.doctr_predictor
|
82 |
+
device = self.device
|
83 |
+
|
84 |
+
raw_output = predictor(list(inputs))
|
85 |
+
det_results =[]
|
86 |
+
for output in raw_output:
|
87 |
+
det_results.append(output[0])
|
88 |
+
return det_results
|
89 |
+
return []
|
90 |
+
|
91 |
+
@staticmethod
|
92 |
+
def load_model(path_weights: str, doctr_predictor: Any, device: torch.device) -> None:
|
93 |
+
"""Loading model weights
|
94 |
+
1. Load the State Dictionary:
|
95 |
+
state_dict = torch.load(path_weights, map_location=device) loads the state dictionary from the specified file path and maps it to the specified device.
|
96 |
+
2. Modify Keys in the State Dictionary:
|
97 |
+
The code prepends "model." to each key in the state dictionary. This is likely necessary to match the keys expected by the doctr_predictor model.
|
98 |
+
3. Load State Dictionary into Model:
|
99 |
+
doctr_predictor.load_state_dict(state_dict) loads the modified state dictionary into the model.
|
100 |
+
4. Move Model to Device:
|
101 |
+
doctr_predictor.to(device) moves the model to the specified device.
|
102 |
+
"""
|
103 |
+
state_dict = torch.load(path_weights, map_location=device)
|
104 |
+
for key in list(state_dict.keys()):
|
105 |
+
state_dict["model." + key] = state_dict.pop(key)
|
106 |
+
doctr_predictor.load_state_dict(state_dict)
|
107 |
+
doctr_predictor.to(device)
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def build_model(architecture: str, path_config_json: Optional[str] = None) -> "RecognitionPredictor":
|
111 |
+
"""Building the model
|
112 |
+
1. Specific keys (arch, url, task) are removed from custom_configs.
|
113 |
+
mean and std values are moved to recognition_configs.
|
114 |
+
2. Creating model
|
115 |
+
Check Architecture Type:
|
116 |
+
Case 1 :
|
117 |
+
If architecture is a string, it checks if it's in the predefined set of architectures (ARCHS).
|
118 |
+
If valid, it creates an instance of the model using the specified architecture and custom configurations.
|
119 |
+
Handle Custom Architecture Instances:
|
120 |
+
Case 2 :
|
121 |
+
If architecture is not a string, it checks if it's an **instance** of one of the recognized model classes (e.g., recognition.CRNN, recognition.SAR, etc.).
|
122 |
+
If valid, it assigns the provided architecture to model.
|
123 |
+
Get Input Shape and Create RecognitionPredictor:
|
124 |
+
|
125 |
+
3. Retrieves the input_shape from the model's configuration.
|
126 |
+
4. Returns an instance of RecognitionPredictor initialized with a PreProcessor and the model.
|
127 |
+
"""
|
128 |
+
|
129 |
+
# inspired and adapted from https://github.com/mindee/doctr/blob/main/doctr/models/recognition/zoo.py
|
130 |
+
custom_configs = {}
|
131 |
+
batch_size = 1024
|
132 |
+
recognition_configs = {}
|
133 |
+
if path_config_json:
|
134 |
+
with open(path_config_json, "r", encoding="utf-8") as f:
|
135 |
+
custom_configs = json.load(f)
|
136 |
+
custom_configs.pop("arch", None)
|
137 |
+
custom_configs.pop("url", None)
|
138 |
+
custom_configs.pop("task", None)
|
139 |
+
recognition_configs["mean"] = custom_configs.pop("mean")
|
140 |
+
recognition_configs["std"] = custom_configs.pop("std")
|
141 |
+
#batch_size = custom_configs.pop("batch_size")
|
142 |
+
recognition_configs["batch_size"] = batch_size
|
143 |
+
|
144 |
+
if isinstance(architecture, str):
|
145 |
+
if architecture not in ARCHS:
|
146 |
+
raise ValueError(f"unknown architecture '{architecture}'")
|
147 |
+
|
148 |
+
model = recognition.__dict__[architecture](pretrained=True, pretrained_backbone=True, **custom_configs)
|
149 |
+
else:
|
150 |
+
if not isinstance(
|
151 |
+
architecture,
|
152 |
+
(recognition.CRNN, recognition.SAR, recognition.MASTER, recognition.ViTSTR, recognition.PARSeq),
|
153 |
+
):
|
154 |
+
raise ValueError(f"unknown architecture: {type(architecture)}")
|
155 |
+
model = architecture
|
156 |
+
|
157 |
+
input_shape = model.cfg["input_shape"][-2:]
|
158 |
+
"""
|
159 |
+
(class) PreProcessor
|
160 |
+
Implements an abstract preprocessor object which performs casting, resizing, batching and normalization.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
output_size: expected size of each page in format (H, W)
|
164 |
+
batch_size: the size of page batches
|
165 |
+
mean: mean value of the training distribution by channel
|
166 |
+
std: standard deviation of the training distribution by channel
|
167 |
+
"""
|
168 |
+
return RecognitionPredictor(PreProcessor(input_shape, preserve_aspect_ratio=True, **recognition_configs), model)
|
169 |
+
|
170 |
+
|
171 |
+
def get_wrapped_model(self) -> Any:
|
172 |
+
"""
|
173 |
+
Get the inner (wrapped) model.
|
174 |
+
"""
|
175 |
+
doctr_predictor = self.build_model(self.architecture, self.path_config_json)
|
176 |
+
device_str = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
177 |
+
self.load_model(self.path_weights, doctr_predictor, device_str)
|
178 |
+
return doctr_predictor
|
179 |
+
|
180 |
+
@staticmethod
|
181 |
+
def get_name(path_weights: str, architecture: str) -> str:
|
182 |
+
"""Returns the name of the model"""
|
183 |
+
return f"doctr_{architecture}" + "_".join(Path(path_weights).parts[-2:])
|
doctrfiles/models/config-multi2.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mean": [
|
3 |
+
0.694,
|
4 |
+
0.695,
|
5 |
+
0.693
|
6 |
+
],
|
7 |
+
"std": [
|
8 |
+
0.299,
|
9 |
+
0.296,
|
10 |
+
0.301
|
11 |
+
],
|
12 |
+
"input_shape": [
|
13 |
+
3,
|
14 |
+
32,
|
15 |
+
128
|
16 |
+
],
|
17 |
+
"vocab": "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~°£€¥¢฿äöüßÄÖÜẞàâéèêëîïôùûçÀÂÉÈÊËÎÏÔÙÛǧ",
|
18 |
+
"url": "https://doctr-static.mindee.com/models?id=v0.3.1/crnn_vgg16_bn-9762b0b0.pt&src=0",
|
19 |
+
"arch": "crnn_vgg16_bn",
|
20 |
+
"task": "recognition"
|
21 |
+
}
|
doctrfiles/models/db_mobilenet_v3_large-81e9b152.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e9b152c11e9681f5eb4a2ec72e5f5d67df8ab860a846e1004756badfa5d37a
|
3 |
+
size 16987510
|
doctrfiles/models/db_resnet34-cb6aed9e.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb6aed9e4252c8a92d381de1b15e1e75461f7a125a4262ef16768a4b9f797347
|
3 |
+
size 89991042
|
doctrfiles/models/db_resnet50-79bd7d70.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79bd7d702506703b89cf11afa42d12aebf5cf25c3618e6ffd5f85772240ca483
|
3 |
+
size 102021912
|
doctrfiles/models/db_resnet50_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mean": [
|
3 |
+
0.798,
|
4 |
+
0.785,
|
5 |
+
0.772
|
6 |
+
],
|
7 |
+
"std": [
|
8 |
+
0.264,
|
9 |
+
0.2749,
|
10 |
+
0.287
|
11 |
+
],
|
12 |
+
"input_shape": [
|
13 |
+
3,
|
14 |
+
1024,
|
15 |
+
1024
|
16 |
+
],
|
17 |
+
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/parseq-56125471.pt&src=0",
|
18 |
+
"arch": "db_resnet50",
|
19 |
+
"task": "detection"
|
20 |
+
}
|
doctrfiles/models/doctr-multilingual-parseq.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5b1d3f3b9d8ab994e94c671c47828b9a4079f20b4288eb5f0ba3c6dacf6c237
|
3 |
+
size 47872130
|
doctrfiles/models/master-fde31e4a.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fde31e4a9612670af83daf4b730dd9c56216806589546b09290abc347ca3a49d
|
3 |
+
size 243889428
|
doctrfiles/models/master.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mean": [
|
3 |
+
0.694,
|
4 |
+
0.695,
|
5 |
+
0.693
|
6 |
+
],
|
7 |
+
"std": [
|
8 |
+
0.299,
|
9 |
+
0.296,
|
10 |
+
0.301
|
11 |
+
],
|
12 |
+
"input_shape": [
|
13 |
+
3,
|
14 |
+
32,
|
15 |
+
128
|
16 |
+
],
|
17 |
+
"vocab": "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~°£€¥¢฿àâéèêëîïôùûüçÀÂÉÈÊËÎÏÔÙÛÜÇ",
|
18 |
+
"url": null,
|
19 |
+
"arch": "master",
|
20 |
+
"task": "recognition"
|
21 |
+
}
|
doctrfiles/models/multi2.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bdc3c6922cad527714504b84a9d0efaa6b679d8ca8050a003611076eb514757
|
3 |
+
size 63310142
|
doctrfiles/models/multilingual-parseq-config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mean": [
|
3 |
+
0.694,
|
4 |
+
0.695,
|
5 |
+
0.693
|
6 |
+
],
|
7 |
+
"std": [
|
8 |
+
0.299,
|
9 |
+
0.296,
|
10 |
+
0.301
|
11 |
+
],
|
12 |
+
"input_shape": [
|
13 |
+
3,
|
14 |
+
32,
|
15 |
+
128
|
16 |
+
],
|
17 |
+
"vocab": "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~°£€¥¢฿àâéèêëîïôùûüçÀÂÉÈÊËÎÏÔÙÛÜÇáãíóõúÁÃÍÓÕÚñÑ¡¿äößÄÖẞčďěňřšťůýžČĎĚŇŘŠŤŮÝŽąćęłńśźżĄĆĘŁŃŚŹŻìòÌÒæøåÆØŧ",
|
18 |
+
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/parseq-56125471.pt&src=0",
|
19 |
+
"arch": "parseq",
|
20 |
+
"task": "recognition"
|
21 |
+
}
|
doctrfiles/word_detector.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
from abc import ABC
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Any, List, Literal, Mapping, Optional, Tuple, Union, Dict, Type, Sequence
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
import torch
|
9 |
+
from doctr.models.preprocessor import PreProcessor
|
10 |
+
from doctr.models.detection.predictor import DetectionPredictor # pylint: disable=W0611
|
11 |
+
from doctr.models.detection.zoo import detection_predictor,detection
|
12 |
+
|
13 |
+
import numpy.typing as npt
|
14 |
+
import numpy as np
|
15 |
+
from numpy import uint8
|
16 |
+
ImageType = npt.NDArray[uint8]
|
17 |
+
|
18 |
+
|
19 |
+
from utils import Annotation,getlogger,group_words_into_lines
|
20 |
+
|
21 |
+
ARCHS = [
|
22 |
+
"db_resnet34",
|
23 |
+
"db_resnet50",
|
24 |
+
"db_mobilenet_v3_large",
|
25 |
+
"linknet_resnet18",
|
26 |
+
"linknet_resnet34",
|
27 |
+
"linknet_resnet50",
|
28 |
+
"fast_tiny",
|
29 |
+
"fast_small",
|
30 |
+
"fast_base",
|
31 |
+
]
|
32 |
+
class Wordboxes:
|
33 |
+
def __init__(self,score, box):
|
34 |
+
self.box = box
|
35 |
+
self.score = score
|
36 |
+
|
37 |
+
class DoctrWordDetector():
|
38 |
+
"""
|
39 |
+
A deepdoctection wrapper of DocTr text line detector. We model text line detection as ObjectDetector
|
40 |
+
and assume to use this detector in a ImageLayoutService.
|
41 |
+
DocTr supports several text line detection implementations but provides only a subset of pre-trained models.
|
42 |
+
The most usable one for document OCR for which a pre-trained model exists is DBNet as described in “Real-time Scene
|
43 |
+
Text Detection with Differentiable Binarization”, with a ResNet-50 backbone. This model can be used in either
|
44 |
+
Tensorflow or PyTorch.
|
45 |
+
Some other pre-trained models exist that have not been registered in `ModelCatalog`. Please check the DocTr library
|
46 |
+
and organize the download of the pre-trained model by yourself.
|
47 |
+
|
48 |
+
**Example:**
|
49 |
+
|
50 |
+
path_weights_tl = ModelDownloadManager.maybe_download_weights_and_configs("doctr/db_resnet50/pt
|
51 |
+
/db_resnet50-ac60cadc.pt")
|
52 |
+
# Use "doctr/db_resnet50/tf/db_resnet50-adcafc63.zip" for Tensorflow
|
53 |
+
|
54 |
+
categories = ModelCatalog.get_profile("doctr/db_resnet50/pt/db_resnet50-ac60cadc.pt").categories
|
55 |
+
det = DoctrTextlineDetector("db_resnet50",path_weights_tl,categories,"cpu")
|
56 |
+
layout = ImageLayoutService(det,to_image=True, crop_image=True)
|
57 |
+
|
58 |
+
path_weights_tr = dd.ModelDownloadManager.maybe_download_weights_and_configs("doctr/crnn_vgg16_bn
|
59 |
+
/pt/crnn_vgg16_bn-9762b0b0.pt")
|
60 |
+
rec = DoctrTextRecognizer("crnn_vgg16_bn", path_weights_tr, "cpu")
|
61 |
+
text = TextExtractionService(rec, extract_from_roi="word")
|
62 |
+
|
63 |
+
analyzer = DoctectionPipe(pipeline_component_list=[layout,text])
|
64 |
+
|
65 |
+
path = "/path/to/image_dir"
|
66 |
+
df = analyzer.analyze(path = path)
|
67 |
+
|
68 |
+
for dp in df:
|
69 |
+
...
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
architecture: str,
|
75 |
+
path_weights: str,
|
76 |
+
path_config_json:str
|
77 |
+
) -> None:
|
78 |
+
"""
|
79 |
+
:param architecture: DocTR supports various text line detection models, e.g. "db_resnet50",
|
80 |
+
"db_mobilenet_v3_large". The full list can be found here:
|
81 |
+
https://github.com/mindee/doctr/blob/main/doctr/models/detection/zoo.py#L20
|
82 |
+
:param path_weights: Path to the weights of the model
|
83 |
+
:param categories: A dict with the model output label and value
|
84 |
+
:param device: "cpu" or "cuda" or any tf.device or torch.device. The device must be compatible with the dll
|
85 |
+
:param lib: "TF" or "PT" or None. If None, env variables USE_TENSORFLOW, USE_PYTORCH will be used.
|
86 |
+
"""
|
87 |
+
self.architecture = architecture
|
88 |
+
self.path_weights = path_weights
|
89 |
+
self.path_config_json =path_config_json
|
90 |
+
|
91 |
+
# Ensure the correct device is chosen (either CPU or CUDA if available)
|
92 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
93 |
+
|
94 |
+
# Initialize the model with the given architecture and path to weights
|
95 |
+
self.doctr_predictor = self.get_wrapped_model()
|
96 |
+
|
97 |
+
"""
|
98 |
+
Two static method so that they can be called without creating an instance of the class
|
99 |
+
Also, they don't require any instance specific data
|
100 |
+
"""
|
101 |
+
|
102 |
+
def get_wrapped_model(
|
103 |
+
self
|
104 |
+
) -> Any:
|
105 |
+
"""
|
106 |
+
Get the inner (wrapped) model.
|
107 |
+
|
108 |
+
:param architecture: DocTR supports various text line detection models, e.g. "db_resnet50",
|
109 |
+
"db_mobilenet_v3_large". The full list can be found here:
|
110 |
+
https://github.com/mindee/doctr/blob/main/doctr/models/detection/zoo.py#L20
|
111 |
+
:param path_weights: Path to the weights of the model
|
112 |
+
|
113 |
+
:return: Inner model which is a "nn.Module" in PyTorch or a "tf.keras.Model" in Tensorflow
|
114 |
+
"""
|
115 |
+
|
116 |
+
"""
|
117 |
+
(function) detection_predictor: ((arch: Any = "db_resnet50", pretrained: bool = False, assume_straight_pages: bool = True, **kwargs: Any) -> DetectionPredictor)
|
118 |
+
"""
|
119 |
+
#doctr_predictor = detection_predictor(arch=architecture, pretrained=False, pretrained_backbone=False)
|
120 |
+
#doctr_predictor = detection_predictor(arch=architecture, pretrained=False)
|
121 |
+
|
122 |
+
doctr_predictor = self.build_model(self.architecture, self.path_config_json)
|
123 |
+
|
124 |
+
self.load_model(self.path_weights, doctr_predictor, self.device)
|
125 |
+
return doctr_predictor
|
126 |
+
@staticmethod
|
127 |
+
def build_model(arch: str, pretrained = False,assume_straight_pages=True, path_config_json: Optional[str] = None) -> "DetectionPredictor":
|
128 |
+
"""Building the model
|
129 |
+
1. Specific keys (arch, url, task) are removed from custom_configs.
|
130 |
+
mean and std values are moved to recognition_configs.
|
131 |
+
2. Creating model
|
132 |
+
Check Architecture Type:
|
133 |
+
Case 1 :
|
134 |
+
If architecture is a string, it checks if it's in the predefined set of architectures (ARCHS).
|
135 |
+
If valid, it creates an instance of the model using the specified architecture and custom configurations.
|
136 |
+
Handle Custom Architecture Instances:
|
137 |
+
Case 2 :
|
138 |
+
If architecture is not a string, it checks if it's an **instance** of one of the recognized model classes (e.g., recognition.CRNN, recognition.SAR, etc.).
|
139 |
+
If valid, it assigns the provided architecture to model.
|
140 |
+
Get Input Shape and Create RecognitionPredictor:
|
141 |
+
|
142 |
+
3. Retrieves the input_shape from the model's configuration.
|
143 |
+
4. Returns an instance of RecognitionPredictor initialized with a PreProcessor and the model.
|
144 |
+
"""
|
145 |
+
|
146 |
+
custom_configs = {}
|
147 |
+
batch_size = 4
|
148 |
+
detection_configs = {}
|
149 |
+
if path_config_json:
|
150 |
+
with open(path_config_json, "r", encoding="utf-8") as f:
|
151 |
+
custom_configs = json.load(f)
|
152 |
+
custom_configs.pop("arch", None)
|
153 |
+
custom_configs.pop("url", None)
|
154 |
+
custom_configs.pop("task", None)
|
155 |
+
detection_configs["mean"] = custom_configs.pop("mean")
|
156 |
+
detection_configs["std"] = custom_configs.pop("std")
|
157 |
+
#batch_size = custom_configs.pop("batch_size")
|
158 |
+
detection_configs["batch_size"] = batch_size
|
159 |
+
if isinstance(arch, str):
|
160 |
+
if arch not in ARCHS:
|
161 |
+
raise ValueError(f"unknown architecture '{arch}'")
|
162 |
+
|
163 |
+
model = detection.__dict__[arch](
|
164 |
+
pretrained=pretrained,
|
165 |
+
assume_straight_pages=assume_straight_pages
|
166 |
+
)
|
167 |
+
|
168 |
+
else:
|
169 |
+
if not isinstance(arch, (detection.DBNet, detection.LinkNet, detection.FAST)):
|
170 |
+
raise ValueError(f"unknown architecture: {type(arch)}")
|
171 |
+
|
172 |
+
model = arch
|
173 |
+
model.assume_straight_pages = assume_straight_pages
|
174 |
+
|
175 |
+
input_shape = model.cfg["input_shape"][-2:]
|
176 |
+
|
177 |
+
predictor = DetectionPredictor(
|
178 |
+
PreProcessor(input_shape, batch_size=batch_size,**detection_configs),
|
179 |
+
model
|
180 |
+
)
|
181 |
+
return predictor
|
182 |
+
|
183 |
+
@staticmethod
|
184 |
+
def load_model(path_weights: str, doctr_predictor: Any, device: torch.device) -> None:
|
185 |
+
"""Loading model weights
|
186 |
+
1. Load the State Dictionary:
|
187 |
+
state_dict = torch.load(path_weights, map_location=device) loads the state dictionary from the specified file path and maps it to the specified device.
|
188 |
+
2. Modify Keys in the State Dictionary:
|
189 |
+
The code prepends "model." to each key in the state dictionary. This is likely necessary to match the keys expected by the doctr_predictor model.
|
190 |
+
3. Load State Dictionary into Model:
|
191 |
+
doctr_predictor.load_state_dict(state_dict) loads the modified state dictionary into the model.
|
192 |
+
4. Move Model to Device:
|
193 |
+
doctr_predictor.to(device) moves the model to the specified device.
|
194 |
+
"""
|
195 |
+
state_dict = torch.load(path_weights, map_location=device)
|
196 |
+
for key in list(state_dict.keys()):
|
197 |
+
state_dict["model." + key] = state_dict.pop(key)
|
198 |
+
doctr_predictor.load_state_dict(state_dict)
|
199 |
+
doctr_predictor.to(device)
|
200 |
+
|
201 |
+
|
202 |
+
def predict(self, np_img: ImageType,sort_vertical = False) -> List[Wordboxes]:
|
203 |
+
"""
|
204 |
+
Prediction per image.
|
205 |
+
|
206 |
+
:param np_img: image as numpy array
|
207 |
+
|
208 |
+
:return: A list of DetectionResult
|
209 |
+
"""
|
210 |
+
|
211 |
+
raw_output =self.doctr_predictor([np_img])
|
212 |
+
height, width = np_img.shape[:2]
|
213 |
+
|
214 |
+
"""
|
215 |
+
raw_output is arrary of dictionary with just one key "words"
|
216 |
+
1-4th element : coordinates You take first 4 elements in this array by doing box[:4]
|
217 |
+
5th element - score
|
218 |
+
But those are 4 point and we need 4X2
|
219 |
+
type(raw_output[0]["words"]) are numpy arrary
|
220 |
+
Okay hypothesis :xmin, ymin, xmax, ymax
|
221 |
+
Points should be ordered in this order :left_lower, right_lower, right_upper, left_upper
|
222 |
+
"""
|
223 |
+
|
224 |
+
logger = getlogger("array")
|
225 |
+
# Check if the logger has any handlers
|
226 |
+
if (logger.hasHandlers()):
|
227 |
+
logger.handlers.clear()
|
228 |
+
|
229 |
+
# Create a handler
|
230 |
+
handler = logging.StreamHandler()
|
231 |
+
|
232 |
+
# Create a formatter and add it to the handler
|
233 |
+
formatter = logging.Formatter('%(levelname)s:%(message)s')
|
234 |
+
handler.setFormatter(formatter)
|
235 |
+
|
236 |
+
# Add the handler to the logger
|
237 |
+
logger.addHandler(handler)
|
238 |
+
#logger.info(raw_output[0]["words"])
|
239 |
+
|
240 |
+
#array is numpy array of shape (n,5) where n is number of words and 5 is size of each element(array) with coordinate(xmin,ymin,xmax,ymax) + score
|
241 |
+
|
242 |
+
array = raw_output[0]["words"]
|
243 |
+
if not sort_vertical:
|
244 |
+
#Only When input has one line
|
245 |
+
sorted_array = array[array[:, 0].argsort()]
|
246 |
+
else:
|
247 |
+
#When input can have multiple lines
|
248 |
+
sorted_array = group_words_into_lines(array)
|
249 |
+
#logger.info(sorted_array)
|
250 |
+
|
251 |
+
|
252 |
+
detection_results = []
|
253 |
+
for box in sorted_array:
|
254 |
+
xmin, ymin, xmax, ymax = box[:4]
|
255 |
+
xmin = xmin*width
|
256 |
+
ymin = ymin*height
|
257 |
+
xmax = xmax*width
|
258 |
+
ymax = ymax*height
|
259 |
+
newb = np.array([
|
260 |
+
[xmin, ymin],
|
261 |
+
[xmax, ymin],
|
262 |
+
[xmax, ymax],
|
263 |
+
[xmin, ymax]
|
264 |
+
], dtype=np.float32)
|
265 |
+
assert newb.shape == (4, 2), f"Points array must be of shape (4, 2), but got {box.shape}"
|
266 |
+
assert newb.dtype == np.float32, f"Points array must be of dtype float32, but got {box.dtype}"
|
267 |
+
|
268 |
+
w = Wordboxes(
|
269 |
+
score=box[4],
|
270 |
+
box = newb
|
271 |
+
)
|
272 |
+
|
273 |
+
detection_results.append(w)
|
274 |
+
|
275 |
+
return detection_results
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
|
282 |
+
|
image-1.png
ADDED
image-2.png
ADDED
image.png
ADDED
june11.jpg
ADDED