defaults: - _self_ - train/lr_scheduler: step - train/optimizer: adam mode: train img_size: [448,448] max_seq_len: 512 label_type: html+cell+bbox train: target: ${trainer.label_type} img_size: ${trainer.img_size} loss_weights: table: 0 html: 0 cell: 0 bbox: 0 grad_clip: 5 epochs: 24 save_every: 1 max_seq_len: ${trainer.max_seq_len} dataloader: _target_: src.datamodule.dataloader_html batch_size: 48 label_type: ${trainer.label_type} valid: target: ${trainer.label_type} img_size: ${trainer.img_size} loss_weights: ${trainer.train.loss_weights} max_seq_len: ${trainer.max_seq_len} dataloader: _target_: src.datamodule.dataloader_html batch_size: 48 label_type: ${trainer.label_type} test: target: ${trainer.train.target} img_size: ${trainer.img_size} loss_weights: ${trainer.train.loss_weights} metrics: teds max_seq_len: ${trainer.max_seq_len} sampling: greedy save_to_prefix: html_table_result dataloader: _target_: src.datamodule.dataloader_html batch_size: 96 label_type: ${trainer.label_type} trainer: _target_: src.trainer.TableTrainer snapshot: null model_weights: null beit_pretrained_weights: null freeze_beit_epoch: null