da03
.
6cc23f5
raw
history blame
3.8 kB
import spaces
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def preprocess(num):
num = str(num).strip().replace(' ', '')
reversed_num = ' '.join(num[::-1])
return reversed_num
def postprocess(raw_output):
prediction = raw_output.replace(' ', '')[::-1]
return prediction
@spaces.GPU
def predict_product(num1, num2):
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
model.to('cuda' if torch.cuda.is_available() else 'cpu')
generated_ids = inputs['input_ids']
prediction = ""
correct_product = ""
valid_input = True
try:
num1_int = int(num1)
num2_int = int(num2)
correct_product = str(num1_int * num2_int)
except ValueError:
valid_input = False
for _ in range(40): # Adjust the range to control the maximum number of generated tokens
outputs = model.generate(generated_ids, max_new_tokens=1, do_sample=False)
generated_ids = torch.cat((generated_ids, outputs[:, -1:]), dim=-1)
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
prediction = postprocess(output_text)
# Manually create the diff for HighlightedText
diff = []
for i in range(len(prediction)):
if i < len(correct_product) and prediction[i] == correct_product[i]:
diff.append((prediction[i], None)) # No highlight for correct digits
else:
diff.append((prediction[i], "+")) # Highlight incorrect digits in red
yield diff, ""
if valid_input:
is_correct = prediction == correct_product
result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}."
else:
result_message = "Invalid input. Could not evaluate correctness."
# Final diff for the complete prediction
final_diff = []
for i in range(len(prediction)):
if i < len(correct_product) and prediction[i] == correct_product[i]:
final_diff.append((prediction[i], None)) # No highlight for correct digits
else:
final_diff.append((prediction[i], "+")) # Highlight incorrect digits in red
yield final_diff, result_message
demo = gr.Interface(
fn=predict_product,
inputs=[
gr.Textbox(label='First Number (up to 12 digits)', value='12345'),
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
],
outputs=[
gr.HighlightedText(label='Predicted Product with Matching Digits Highlighted', combine_adjacent=True, show_legend=True, color_map={"+": "red"}),
gr.HTML(label='Result Message')
],
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
description='This demo uses GPT2 to directly predict the product of two numbers without using any intermediate reasoning steps. The GPT2 model has been fine-tuned to internalize chain-of-thought reasoning within its hidden states, following our stepwise internalization approach detailed in the paper linked at the bottom of this page.',
article="""
- [Paper: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838)
- [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step)
- [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036)
""",
clear_btn=None,
submit_btn="Multiply!",
live=False
)
demo.launch()