Spaces:
Running
on
Zero
Running
on
Zero
da03
commited on
Commit
•
bf65d9e
1
Parent(s):
0ad2aca
app.py
CHANGED
@@ -6,6 +6,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
6 |
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
9 |
|
10 |
def preprocess(num):
|
11 |
num = str(num).strip().replace(' ', '')
|
@@ -21,8 +22,10 @@ def predict_product(num1, num2):
|
|
21 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
22 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
24 |
|
25 |
-
|
|
|
26 |
prediction = ""
|
27 |
correct_product = ""
|
28 |
valid_input = True
|
@@ -34,55 +37,74 @@ def predict_product(num1, num2):
|
|
34 |
except ValueError:
|
35 |
valid_input = False
|
36 |
|
37 |
-
|
38 |
past_key_values = None
|
39 |
-
for _ in range(
|
40 |
outputs = model(
|
41 |
input_ids=generated_ids,
|
42 |
past_key_values=past_key_values,
|
43 |
use_cache=True
|
44 |
)
|
45 |
logits = outputs.logits
|
46 |
-
past_key_values = outputs.past_key_values
|
47 |
|
48 |
next_token_id = torch.argmax(logits[:, -1, :], dim=-1)
|
49 |
-
generated_ids = torch.cat((generated_ids, next_token_id.
|
50 |
|
51 |
if next_token_id.item() == eos_token_id:
|
52 |
break
|
|
|
53 |
|
54 |
-
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
55 |
-
prediction = postprocess(output_text
|
|
|
|
|
56 |
|
57 |
# Create the diff for HighlightedText
|
58 |
diff = []
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
yield diff, ""
|
68 |
|
69 |
-
if valid_input:
|
70 |
-
|
71 |
-
|
72 |
-
else:
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
final_diff = []
|
77 |
-
for i in range(max(len(prediction), len(correct_product))):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
yield final_diff, result_message
|
86 |
|
87 |
demo = gr.Interface(
|
88 |
fn=predict_product,
|
@@ -91,7 +113,8 @@ demo = gr.Interface(
|
|
91 |
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
|
92 |
],
|
93 |
outputs=[
|
94 |
-
gr.
|
|
|
95 |
gr.HTML(label='Result Message')
|
96 |
],
|
97 |
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
|
|
|
6 |
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
MAX_PRODUCT_DIGITS = 100
|
10 |
|
11 |
def preprocess(num):
|
12 |
num = str(num).strip().replace(' ', '')
|
|
|
22 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
23 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
eos_token_id = tokenizer.eos_token_id
|
26 |
|
27 |
+
input_ids = inputs['input_ids']
|
28 |
+
input_len = input_ids.shape[-1]
|
29 |
prediction = ""
|
30 |
correct_product = ""
|
31 |
valid_input = True
|
|
|
37 |
except ValueError:
|
38 |
valid_input = False
|
39 |
|
40 |
+
generated_ids = inputs['input_ids']
|
41 |
past_key_values = None
|
42 |
+
for _ in range(MAX_PRODUCT_DIGITS): # Set a maximum limit to prevent infinite loops
|
43 |
outputs = model(
|
44 |
input_ids=generated_ids,
|
45 |
past_key_values=past_key_values,
|
46 |
use_cache=True
|
47 |
)
|
48 |
logits = outputs.logits
|
|
|
49 |
|
50 |
next_token_id = torch.argmax(logits[:, -1, :], dim=-1)
|
51 |
+
generated_ids = torch.cat((generated_ids, next_token_id.view(1,-1)), dim=-1)
|
52 |
|
53 |
if next_token_id.item() == eos_token_id:
|
54 |
break
|
55 |
+
past_key_values = outputs.past_key_values
|
56 |
|
57 |
+
output_text = tokenizer.decode(generated_ids[0, input_len:], skip_special_tokens=True)
|
58 |
+
#prediction = postprocess(output_text)
|
59 |
+
predicted_digits_reversed = output_text.strip().split(' ')
|
60 |
+
correct_digits_reversed = ' '.join(correct_product)[::-1]
|
61 |
|
62 |
# Create the diff for HighlightedText
|
63 |
diff = []
|
64 |
+
correct_digits = []
|
65 |
+
is_correct_sofar = True
|
66 |
+
for i in range(len(predicted_digits_reversed)):
|
67 |
+
predicted_digit = predicted_digits_reversed[i]
|
68 |
+
correct_digit = correct_digits_reversed[i]
|
69 |
+
correct_digits.append((correct_digit, None))
|
70 |
+
if i >= len(correct_digits_reversed):
|
71 |
+
if predicted_digit == '0' and is_correct_sofar:
|
72 |
+
is_correct_digit = True
|
73 |
+
else:
|
74 |
+
is_correct_digit = True
|
75 |
+
else:
|
76 |
+
if predicted_digit == correct_digit:
|
77 |
+
is_correct_digit = True
|
78 |
+
else:
|
79 |
+
is_correct_digit = False
|
80 |
+
if not is_correct_digit:
|
81 |
+
is_correct_sofar = False
|
82 |
+
if is_correct_digit:
|
83 |
+
diff.append((correct_product[i], "-"))
|
84 |
+
else:
|
85 |
+
diff.append((predicted_digit, "+"))
|
86 |
+
diff = diff[::-1]
|
87 |
+
correct_digits = correct_digits[::-1]
|
88 |
|
89 |
+
yield correct_digits, diff, ""
|
90 |
|
91 |
+
#if valid_input:
|
92 |
+
# is_correct = prediction == correct_product
|
93 |
+
# result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}."
|
94 |
+
#else:
|
95 |
+
# result_message = "Invalid input. Could not evaluate correctness."
|
96 |
|
97 |
+
## Final diff for the complete prediction
|
98 |
+
#final_diff = []
|
99 |
+
#for i in range(max(len(prediction), len(correct_product))):
|
100 |
+
# if i < len(prediction) and i < len(correct_product) and prediction[i] == correct_product[i]:
|
101 |
+
# final_diff.append((prediction[i], None)) # No highlight for correct digits
|
102 |
+
# elif i < len(prediction) and (i >= len(correct_product) or prediction[i] != correct_product[i]):
|
103 |
+
# final_diff.append((prediction[i], "+")) # Highlight incorrect digits in red
|
104 |
+
# if i < len(correct_product) and (i >= len(prediction) or prediction[i] != correct_product[i]):
|
105 |
+
# final_diff.append((correct_product[i], "-")) # Highlight missing/incorrect digits in green
|
106 |
|
107 |
+
#yield final_diff, result_message
|
108 |
|
109 |
demo = gr.Interface(
|
110 |
fn=predict_product,
|
|
|
113 |
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
|
114 |
],
|
115 |
outputs=[
|
116 |
+
gr.Textbox(label='Ground Truth Product'),
|
117 |
+
gr.HighlightedText(label='Predicted Product', combine_adjacent=False, show_legend=False, color_map={"-": "green", "+": "red"}),
|
118 |
gr.HTML(label='Result Message')
|
119 |
],
|
120 |
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
|