import spaces import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) MAX_PRODUCT_DIGITS = 100 def preprocess(num): num = str(num).strip().replace(' ', '') reversed_num = ' '.join(num[::-1]) return reversed_num def postprocess(raw_output): prediction = raw_output.replace(' ', '')[::-1] return prediction @spaces.GPU def predict_product(num1, num2): input_text = f'{preprocess(num1)} * {preprocess(num2)} =' inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu') model.to('cuda' if torch.cuda.is_available() else 'cpu') eos_token_id = tokenizer.eos_token_id input_ids = inputs['input_ids'] input_len = input_ids.shape[-1] prediction = "" correct_product = "" valid_input = True try: num1_int = int(num1) num2_int = int(num2) correct_product = str(num1_int * num2_int) except ValueError: valid_input = False generated_ids = inputs['input_ids'] past_key_values = None for _ in range(MAX_PRODUCT_DIGITS): # Set a maximum limit to prevent infinite loops outputs = model( input_ids=generated_ids, past_key_values=past_key_values, use_cache=True ) logits = outputs.logits next_token_id = torch.argmax(logits[:, -1, :], dim=-1) generated_ids = torch.cat((generated_ids, next_token_id.view(1,-1)), dim=-1) if next_token_id.item() == eos_token_id: break past_key_values = outputs.past_key_values output_text = tokenizer.decode(generated_ids[0, input_len:], skip_special_tokens=True) #prediction = postprocess(output_text) predicted_digits_reversed = output_text.strip().split(' ') correct_digits_reversed = ' '.join(correct_product)[::-1] # Create the diff for HighlightedText diff = [] correct_digits = [] is_correct_sofar = True for i in range(len(predicted_digits_reversed)): predicted_digit = predicted_digits_reversed[i] correct_digit = correct_digits_reversed[i] correct_digits.append((correct_digit, None)) if i >= len(correct_digits_reversed): if predicted_digit == '0' and is_correct_sofar: is_correct_digit = True else: is_correct_digit = True else: if predicted_digit == correct_digit: is_correct_digit = True else: is_correct_digit = False if not is_correct_digit: is_correct_sofar = False if is_correct_digit: diff.append((correct_product[i], "-")) else: diff.append((predicted_digit, "+")) diff = diff[::-1] correct_digits = correct_digits[::-1] yield correct_digits, diff, "" #if valid_input: # is_correct = prediction == correct_product # result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}." #else: # result_message = "Invalid input. Could not evaluate correctness." ## Final diff for the complete prediction #final_diff = [] #for i in range(max(len(prediction), len(correct_product))): # if i < len(prediction) and i < len(correct_product) and prediction[i] == correct_product[i]: # final_diff.append((prediction[i], None)) # No highlight for correct digits # elif i < len(prediction) and (i >= len(correct_product) or prediction[i] != correct_product[i]): # final_diff.append((prediction[i], "+")) # Highlight incorrect digits in red # if i < len(correct_product) and (i >= len(prediction) or prediction[i] != correct_product[i]): # final_diff.append((correct_product[i], "-")) # Highlight missing/incorrect digits in green #yield final_diff, result_message demo = gr.Interface( fn=predict_product, inputs=[ gr.Textbox(label='First Number (up to 12 digits)', value='12345'), gr.Textbox(label='Second Number (up to 12 digits)', value='67890'), ], outputs=[ gr.Textbox(label='Ground Truth Product'), gr.HighlightedText(label='Predicted Product', combine_adjacent=False, show_legend=False, color_map={"-": "green", "+": "red"}), gr.HTML(label='Result Message') ], title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)', description='This demo uses GPT2 to directly predict the product of two numbers without using any intermediate reasoning steps. The GPT2 model has been fine-tuned to internalize chain-of-thought reasoning within its hidden states, following our stepwise internalization approach detailed in the paper linked at the bottom of this page.', article=""" - [Paper: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838) - [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step) - [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036) """, clear_btn=None, submit_btn="Multiply!", live=False ) demo.launch()