Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
import folium | |
from io import BytesIO | |
from GPT4o_class import GPT4o | |
# Initialize the GPT4v2Loc object | |
geo_locator = GPT4o(device="cuda" if torch.cuda.is_available() else "cpu") | |
# Function to handle the main processing logic | |
def process_image(uploaded_file, openai_api_key, num_nearest_neighbors, num_farthest_neighbors): | |
if not openai_api_key: | |
return "Please add your API key to continue.", None | |
if uploaded_file is None: | |
return "Please upload an image.", None | |
# Use the set_image_app method to process the uploaded image | |
geo_locator.set_image_app( | |
file_uploader=uploaded_file, | |
imformat='jpeg', | |
use_database_search=True, # Assuming you want to use the nearest/farthest neighbors | |
num_neighbors=num_nearest_neighbors, | |
num_farthest=num_farthest_neighbors | |
) | |
# Get the location from the OPENAI API | |
coordinates = geo_locator.get_location( | |
OPENAI_API_KEY=openai_api_key, | |
use_database_search=True # Assuming you want to use the nearest/farthest neighbors | |
) | |
lat_str, lon_str = coordinates.split(',') | |
lat_str = lat_str.strip("() ") | |
lon_str = lon_str.strip("() ") | |
latitude = float(lat_str) | |
longitude = float(lon_str) | |
# Generate the prediction map | |
prediction_map = folium.Map(location=[latitude, longitude], zoom_start=12) | |
folium.Marker([latitude, longitude], tooltip='Img2Loc Location', | |
popup=f'latitude: {latitude}, longitude: {longitude}', | |
icon=folium.Icon(color="red", icon="map-pin", prefix="fa")).add_to(prediction_map) | |
folium.TileLayer('cartodbpositron').add_to(prediction_map) | |
# Generate the nearest neighbor map | |
nearest_map = None | |
if geo_locator.neighbor_locations_array: | |
nearest_map = folium.Map(location=geo_locator.neighbor_locations_array[0], zoom_start=4) | |
folium.TileLayer('cartodbpositron').add_to(nearest_map) | |
for i in geo_locator.neighbor_locations_array: | |
folium.Marker(i, tooltip=f'({i[0]}, {i[1]})', | |
icon=folium.Icon(color="green", icon="compass", prefix="fa")).add_to(nearest_map) | |
# Generate the farthest neighbor map | |
farthest_map = None | |
if geo_locator.farthest_locations_array: | |
farthest_map = folium.Map(location=geo_locator.farthest_locations_array[0], zoom_start=3) | |
folium.TileLayer('cartodbpositron').add_to(farthest_map) | |
for i in geo_locator.farthest_locations_array: | |
folium.Marker(i, tooltip=f'({i[0]}, {i[1]})', | |
icon=folium.Icon(color="blue", icon="compass", prefix="fa")).add_to(farthest_map) | |
# Convert maps to HTML representations | |
prediction_map_html = map_to_html(prediction_map) | |
nearest_map_html = map_to_html(nearest_map) if nearest_map else "" | |
farthest_map_html = map_to_html(farthest_map) if farthest_map else "" | |
# Create a combined HTML output for Gradio | |
combined_html = f""" | |
<div style="text-align: center;"> | |
<h3>Prediction Map</h3> | |
{prediction_map_html} | |
<div style="display: flex; justify-content: space-between; margin-top: 20px;"> | |
<div style="flex: 1; margin-right: 10px;"> | |
<h4>Nearest Neighbor Points Map</h4> | |
{nearest_map_html} | |
</div> | |
<div style="flex: 1; margin-left: 10px;"> | |
<h4>Farthest Neighbor Points Map</h4> | |
{farthest_map_html} | |
</div> | |
</div> | |
</div> | |
""" | |
# Return the coordinates (location information) and the combined HTML with maps | |
return coordinates, combined_html | |
def map_to_html(map_obj): | |
""" | |
Convert a Folium map to an HTML representation. | |
""" | |
return map_obj._repr_html_() | |
# Gradio Interface | |
with gr.Blocks() as vision_app: | |
with gr.Row(): | |
with gr.Column(): | |
uploaded_file = gr.Image(label="Upload an image") | |
openai_api_key = gr.Textbox(label="API Key", placeholder="xxxxxxxxx", type="password") | |
with gr.Accordion("Advanced Options", open=False): | |
num_nearest_neighbors = gr.Number(label="Number of nearest neighbors", value=16) | |
num_farthest_neighbors = gr.Number(label="Number of farthest neighbors", value=16) | |
submit = gr.Button("Submit") | |
with gr.Column(): | |
status = gr.Textbox(label="Predicted Location") | |
maps_display = gr.HTML(label="Generated Maps") # Using HTML for correct map rendering | |
submit.click( | |
process_image, | |
inputs=[ | |
uploaded_file, | |
openai_api_key, | |
num_nearest_neighbors, | |
num_farthest_neighbors | |
], | |
outputs=[status, maps_display] | |
) | |
vision_app.launch() | |