Spaces:
Running
Running
import os | |
import json | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import reverse_geocoder | |
from os.path import join, dirname | |
class QuadTree(object): | |
def __init__( | |
self, data, mins=None, maxs=None, id="", depth=3, min_split=0, do_split=1000 | |
): | |
self.id = id | |
self.data = data | |
if mins is None: | |
mins = data[["latitude", "longitude"]].to_numpy().min(0) | |
if maxs is None: | |
maxs = data[["latitude", "longitude"]].to_numpy().max(0) | |
self.mins = np.asarray(mins) | |
self.maxs = np.asarray(maxs) | |
self.sizes = self.maxs - self.mins | |
self.children = [] | |
mids = 0.5 * (self.mins + self.maxs) | |
xmin, ymin = self.mins | |
xmax, ymax = self.maxs | |
xmid, ymid = mids | |
if depth > 0 and len(self.data) >= do_split: | |
# split the data into four quadrants | |
data_q1 = data[(data["latitude"] < mids[0]) & (data["longitude"] < mids[1])] | |
data_q2 = data[ | |
(data["latitude"] < mids[0]) & (data["longitude"] >= mids[1]) | |
] | |
data_q3 = data[ | |
(data["latitude"] >= mids[0]) & (data["longitude"] < mids[1]) | |
] | |
data_q4 = data[ | |
(data["latitude"] >= mids[0]) & (data["longitude"] >= mids[1]) | |
] | |
# recursively build a quad tree on each quadrant which has data | |
if data_q1.shape[0] > min_split: | |
self.children.append( | |
QuadTree(data_q1, [xmin, ymin], [xmid, ymid], id + "0", depth - 1) | |
) | |
if data_q2.shape[0] > min_split: | |
self.children.append( | |
QuadTree(data_q2, [xmin, ymid], [xmid, ymax], id + "1", depth - 1) | |
) | |
if data_q3.shape[0] > min_split: | |
self.children.append( | |
QuadTree(data_q3, [xmid, ymin], [xmax, ymid], id + "2", depth - 1) | |
) | |
if data_q4.shape[0] > min_split: | |
self.children.append( | |
QuadTree(data_q4, [xmid, ymid], [xmax, ymax], id + "3", depth - 1) | |
) | |
def unwrap(self): | |
if len(self.children) == 0: | |
return {self.id: [self.mins, self.maxs, self.data.copy()]} | |
else: | |
d = dict() | |
for child in self.children: | |
d.update(child.unwrap()) | |
return d | |
def extract(qt): | |
cluster = qt.unwrap() | |
boundaries, data = {}, [] | |
for id, vs in cluster.items(): | |
(min_lat, min_lon), (max_lat, max_lon), points = vs | |
points["category"] = id | |
data.append(points) | |
boundaries[id] = ( | |
float(min_lat), | |
float(min_lon), | |
float(max_lat), | |
float(max_lon), | |
) | |
data = pd.concat(data) | |
return boundaries, data | |
if __name__ == "__main__": | |
# merge into one DataFrame | |
data_path = join(dirname(dirname(__file__)), "datasets", "osv5m") | |
train_fp = join(data_path, f"train.csv") | |
test_fp = join(data_path, f"test.csv") | |
df_train = pd.read_csv(train_fp) | |
df_train["split"] = "train" | |
df_test = pd.read_csv(test_fp) | |
df_test["split"] = "test" | |
df = pd.concat([df_train, df_test]) | |
size_before = df.shape[0] | |
qt = QuadTree(df, depth=15) | |
boundaries, df = extract(qt) | |
assert df.shape[0] == size_before | |
location = reverse_geocoder.search( | |
[(lat, lon) for lat, lon in zip(df["latitude"], df["longitude"])] | |
) | |
df["city"] = [l.get("name", "") for l in location] | |
df["country"] = [l.get("cc", "") for l in location] | |
del location | |
df_train = df[df["split"] == "train"].drop(["split"], axis=1) | |
df_test = df[df["split"] == "test"].drop(["split"], axis=1) | |
assert (df_train.shape[0] + df_test.shape[0]) == size_before | |
json.dump(boundaries, open(join(data_path, "borders.json"), "w")) | |
df_train.to_csv(train_fp, index=False) | |
df_test.to_csv(test_fp, index=False) | |