EfficientSAM / app.py
yunyangx's picture
demo file with dependency
9516ab6
raw
history blame
2.68 kB
import gradio as gr
import numpy as np
import torch
from torchvision.transforms import ToTensor
from PIL import Image
# loading EfficientSAM model
model_path = "efficientsam_s_cpu.jit"
with open(model_path, "rb") as f:
model = torch.jit.load(f)
# getting mask using points
def get_sam_mask_using_points(img_tensor, pts_sampled, model):
pts_sampled = torch.reshape(torch.tensor(pts_sampled), [1, 1, -1, 2])
max_num_pts = pts_sampled.shape[2]
pts_labels = torch.ones(1, 1, max_num_pts)
predicted_logits, predicted_iou = model(
img_tensor[None, ...],
pts_sampled,
pts_labels,
)
predicted_logits = predicted_logits.cpu()
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
max_predicted_iou = -1
selected_mask_using_predicted_iou = None
for m in range(all_masks.shape[0]):
curr_predicted_iou = predicted_iou[m]
if (
curr_predicted_iou > max_predicted_iou
or selected_mask_using_predicted_iou is None
):
max_predicted_iou = curr_predicted_iou
selected_mask_using_predicted_iou = all_masks[m]
return selected_mask_using_predicted_iou
# examples
examples = [["examples/image1.jpg"], ["examples/image2.jpg"], ["examples/image3.jpg"], ["examples/image4.jpg"],
["examples/image5.jpg"], ["examples/image6.jpg"], ["examples/image7.jpg"], ["examples/image8.jpg"],
["examples/image9.jpg"], ["examples/image10.jpg"], ["examples/image11.jpg"], ["examples/image12.jpg"]
["examples/image13.jpg"], ["examples/image14.jpg"]]
with gr.Blocks() as demo:
with gr.Row():
input_img = gr.Image(label="Input",height=512)
output_img = gr.Image(label="Selected Segment",height=512)
with gr.Row():
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=examples,
inputs=[input_img])
def get_select_coords(img, evt: gr.SelectData):
img_tensor = ToTensor()(img)
_, H, W = img_tensor.shape
visited_pixels = set()
pixels_in_queue = set()
pixels_in_segment = set()
mask = get_sam_mask_using_points(img_tensor, [[evt.index[0], evt.index[1]]], model)
out = img.copy()
out = out.astype(np.uint8)
out *= mask[:,:,None]
for pixel in pixels_in_segment:
out[pixel[0], pixel[1]] = img[pixel[0], pixel[1]]
print(out)
return out
input_img.select(get_select_coords, [input_img], output_img)
if __name__ == "__main__":
demo.launch()