Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import re | |
from typing import List, Tuple, Optional | |
import gradio as gr | |
from datetime import datetime | |
import os | |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7" | |
import torch | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
from PIL import Image, ImageFilter | |
from sam2.build_sam import build_sam2_video_predictor | |
from moviepy.editor import ImageSequenceClip | |
# Description | |
title = "<center><strong><font size='8'>Efficient Track Anything (EfficientTAM)<font></strong></center>" | |
description_e = """This is a demo of [Efficient Track Anything (EfficientTAM) Model](https://github.com/yformer/EfficientTAM). | |
""" | |
description_p = """# Interactive Video Segmentation | |
- Built our demo based on [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor). Thanks to Sylvain Filoni. | |
- Instruction | |
<ol> | |
<li> Upload one video or click one example video</li> | |
<li> Click 'include' point type, select the object to segment and track</li> | |
<li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li> | |
<li> Click the 'Segment' button, obtain the mask of the first frame </li> | |
<li> Click the 'coarse' level and the 'Track' button, segment and track the object every 15 frames </li> | |
<li> Click the corresponding frame to add points on the object for mask refining (optional) </li> | |
<li> Click the 'fine' level and the 'Track' button, obtain masklet and masked video </li> | |
<li> Click the 'Reset' button to restart </li> | |
</ol> | |
- Github [link](https://github.com/yformer/EfficientTAM) | |
""" | |
# examples | |
examples = [ | |
["examples/videos/cat.mp4"], | |
["examples/videos/coffee.mp4"], | |
["examples/videos/car.mp4"], | |
["examples/videos/chick.mp4"], | |
["examples/videos/cups.mp4"], | |
["examples/videos/dog.mp4"], | |
["examples/videos/goat.mp4"], | |
["examples/videos/juggle.mp4"], | |
["examples/videos/street.mp4"], | |
["examples/videos/yacht.mp4"], | |
] | |
default_example = examples[0] | |
def get_video_fps(video_path): | |
# Open the video file | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
print("Error: Could not open video.") | |
return None | |
# Get the FPS of the video | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
return fps | |
def clear_points(image): | |
# we clean all | |
return [ | |
image, # first_frame_path | |
gr.State([]), # tracking_points | |
gr.State([]), # trackings_input_label | |
image, # points_map | |
] | |
def preprocess_video_in(video_path): | |
if video_path is None: | |
return None, gr.State([]), gr.State([]), None, None, None, None, None, None, gr.update(open=True) | |
# Generate a unique ID based on the current date and time | |
unique_id = datetime.now().strftime('%Y%m%d%H%M%S') | |
# Set directory with this ID to store video frames | |
extracted_frames_output_dir = f'frames_{unique_id}' | |
# Create the output directory | |
os.makedirs(extracted_frames_output_dir, exist_ok=True) | |
### Process video frames ### | |
# Open the video file | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
print("Error: Could not open video.") | |
return None | |
# Get the frames per second (FPS) of the video | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
# Calculate the number of frames to process (10 seconds of video) | |
max_frames = int(fps * 10) | |
frame_number = 0 | |
first_frame = None | |
while True: | |
ret, frame = cap.read() | |
if not ret or frame_number >= max_frames: | |
break | |
# Format the frame filename as '00000.jpg' | |
frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg') | |
# Save the frame as a JPEG file | |
cv2.imwrite(frame_filename, frame) | |
# Store the first frame | |
if frame_number == 0: | |
first_frame = frame_filename | |
frame_number += 1 | |
# Release the video capture object | |
cap.release() | |
# scan all the JPEG frame names in this directory | |
scanned_frames = [ | |
p for p in os.listdir(extracted_frames_output_dir) | |
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] | |
] | |
scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0])) | |
# print(f"SCANNED_FRAMES: {scanned_frames}") | |
return [ | |
first_frame, # first_frame_path | |
gr.State([]), # tracking_points | |
gr.State([]), # trackings_input_label | |
first_frame, # input_first_frame_image | |
first_frame, # points_map | |
extracted_frames_output_dir, # video_frames_dir | |
scanned_frames, # scanned_frames | |
None, # stored_inference_state | |
None, # stored_frame_names | |
gr.update(open=False) # video_in_drawer | |
] | |
def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData): | |
if input_first_frame_image is None: | |
return gr.State([]), gr.State([]), None | |
print(f"You selected {evt.value} at {evt.index} from {evt.target}") | |
tracking_points.value.append(evt.index) | |
print(f"TRACKING POINT: {tracking_points.value}") | |
if point_type == "include": | |
trackings_input_label.value.append(1) | |
elif point_type == "exclude": | |
trackings_input_label.value.append(0) | |
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") | |
# Open the image and get its dimensions | |
transparent_background = Image.open(input_first_frame_image).convert('RGBA') | |
w, h = transparent_background.size | |
# Define the circle radius as a fraction of the smaller dimension | |
fraction = 0.02 # You can adjust this value as needed | |
radius = int(fraction * min(w, h)) | |
# Create a transparent layer to draw on | |
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) | |
for index, track in enumerate(tracking_points.value): | |
if trackings_input_label.value[index] == 1: | |
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) | |
else: | |
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) | |
# Convert the transparent layer back to an image | |
transparent_layer = Image.fromarray(transparent_layer, 'RGBA') | |
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) | |
return tracking_points, trackings_input_label, selected_point_map | |
DEVICE = 'cuda' | |
# use bfloat16 for the entire notebook | |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() | |
if torch.cuda.get_device_properties(0).major >= 8: | |
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def show_mask(mask, ax, obj_id=None, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
cmap = plt.get_cmap("tab10") | |
cmap_idx = 0 if obj_id is None else obj_id | |
color = np.array([*cmap(cmap_idx)[:3], 0.6]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.axis('off') | |
ax.imshow(mask_image) | |
def show_points(coords, labels, ax, marker_size=200): | |
pos_points = coords[labels==1] | |
neg_points = coords[labels==0] | |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
def show_box(box, ax): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) | |
def load_model(checkpoint): | |
# Load model accordingly to user's choice | |
if checkpoint == "efficienttam_s": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_s.pt" | |
model_cfg = "efficienttam_s.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
elif checkpoint == "efficienttam_ti": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_ti.pt" | |
model_cfg = "efficienttam-ti.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
elif checkpoint == "efficienttam_s_512x512": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_s_512x512.pt" | |
model_cfg = "efficienttam_s_512x512.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
elif checkpoint == "efficienttam_ti_512x512": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_512x512.pt" | |
model_cfg = "efficienttam_ti_512x512.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
elif checkpoint == "efficienttam_s_1": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_s_1.pt" | |
model_cfg = "efficienttam_s_1.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
elif checkpoint == "efficienttam_s_2": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_s_2.pt" | |
model_cfg = "efficienttam_s_2.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
elif checkpoint == "efficienttam_ti_1": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_1.pt" | |
model_cfg = "efficienttam_ti_1.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
elif checkpoint == "efficienttam_ti_2": | |
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_2.pt" | |
model_cfg = "efficienttam_ti_2.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
else: | |
efficienttam_checkpoint = "./checkpoints/demo/efficienttam_s.pt" | |
model_cfg = "efficienttam_s.yaml" | |
return [efficienttam_checkpoint, model_cfg] | |
def get_mask_sam_process( | |
stored_inference_state, | |
input_first_frame_image, | |
checkpoint, | |
tracking_points, | |
trackings_input_label, | |
video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function | |
scanned_frames, | |
working_frame: str = None, # current frame being added points | |
available_frames_to_check: List[str] = [], | |
): | |
if len(tracking_points.value) == 0: | |
return gr.update(visible=False), None, gr.State(), None, stored_inference_state, working_frame | |
# get model and model config paths | |
print(f"USER CHOSEN CHECKPOINT: {checkpoint}") | |
sam2_checkpoint, model_cfg = load_model(checkpoint) | |
print("MODEL LOADED") | |
# set predictor | |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda") | |
print("PREDICTOR READY") | |
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg` | |
# print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}") | |
video_dir = video_frames_dir | |
# scan all the JPEG frame names in this directory | |
frame_names = scanned_frames | |
# print(f"STORED INFERENCE STEP: {stored_inference_state}") | |
if stored_inference_state is None: | |
# Init SAM2 inference_state | |
inference_state = predictor.init_state(video_path=video_dir, device="cuda") | |
print("NEW INFERENCE_STATE INITIATED") | |
else: | |
inference_state = stored_inference_state | |
# segment and track one object | |
# predictor.reset_state(inference_state) # if any previous tracking, reset | |
### HANDLING WORKING FRAME | |
# new_working_frame = None | |
# Add new point | |
if working_frame is None: | |
ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame | |
working_frame = "frame_0.jpg" | |
else: | |
# Use a regular expression to find the integer | |
match = re.search(r'frame_(\d+)', working_frame) | |
if match: | |
# Extract the integer from the match | |
frame_number = int(match.group(1)) | |
ann_frame_idx = frame_number | |
print(f"NEW_WORKING_FRAME PATH: {working_frame}") | |
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers) | |
# Let's add a positive click at (x, y) = (210, 350) to get started | |
points = np.array(tracking_points.value, dtype=np.float32) | |
# for labels, `1` means positive click and `0` means negative click | |
labels = np.array(trackings_input_label.value, np.int32) | |
_, out_obj_ids, out_mask_logits = predictor.add_new_points( | |
inference_state=inference_state, | |
frame_idx=ann_frame_idx, | |
obj_id=ann_obj_id, | |
points=points, | |
labels=labels, | |
) | |
# Create the plot | |
plt.figure(figsize=(12, 8)) | |
plt.title(f"frame {ann_frame_idx}") | |
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx]))) | |
show_points(points, labels, plt.gca()) | |
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0]) | |
# Save the plot as a JPG file | |
first_frame_output_filename = "output_first_frame.jpg" | |
plt.savefig(first_frame_output_filename, format='jpg') | |
plt.close() | |
torch.cuda.empty_cache() | |
# Assuming available_frames_to_check.value is a list | |
if working_frame not in available_frames_to_check: | |
available_frames_to_check.append(working_frame) | |
print(available_frames_to_check) | |
return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True) | |
def propagate_to_all(tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame): | |
if tracking_points is None or video_in is None or checkpoint is None or stored_inference_state is None: | |
return gr.update(value=None), gr.update(value=None), gr.update(value=None), available_frames_to_check, gr.update(visible=False) | |
#### PROPAGATION #### | |
sam2_checkpoint, model_cfg = load_model(checkpoint) | |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda") | |
inference_state = stored_inference_state | |
frame_names = stored_frame_names | |
video_dir = video_frames_dir | |
# Define a directory to save the JPEG images | |
frames_output_dir = "frames_output_images" | |
os.makedirs(frames_output_dir, exist_ok=True) | |
# Initialize a list to store file paths of saved images | |
jpeg_images = [] | |
# run propagation throughout the video and collect the results in a dict | |
video_segments = {} # video_segments contains the per-frame segmentation results | |
print("starting propagate_in_video") | |
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): | |
video_segments[out_frame_idx] = { | |
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() | |
for i, out_obj_id in enumerate(out_obj_ids) | |
} | |
# obtain the segmentation results every few frames | |
if vis_frame_type == "coarse": | |
vis_frame_stride = 15 | |
elif vis_frame_type == "fine": | |
vis_frame_stride = 1 | |
plt.close("all") | |
for out_frame_idx in range(0, len(frame_names), vis_frame_stride): | |
plt.figure(figsize=(6, 4)) | |
plt.title(f"frame {out_frame_idx}") | |
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx]))) | |
for out_obj_id, out_mask in video_segments[out_frame_idx].items(): | |
show_mask(out_mask, plt.gca(), obj_id=out_obj_id) | |
# Define the output filename and save the figure as a JPEG file | |
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg") | |
plt.savefig(output_filename, format='jpg') | |
# Close the plot | |
plt.close() | |
# Append the file path to the list | |
jpeg_images.append(output_filename) | |
if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check: | |
available_frames_to_check.append(f"frame_{out_frame_idx}.jpg") | |
torch.cuda.empty_cache() | |
print(f"JPEG_IMAGES: {jpeg_images}") | |
if vis_frame_type == "coarse": | |
return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True) | |
elif vis_frame_type == "fine": | |
# Create a video clip from the image sequence | |
original_fps = get_video_fps(video_in) | |
fps = original_fps # Frames per second | |
total_frames = len(jpeg_images) | |
clip = ImageSequenceClip(jpeg_images, fps=fps) | |
# Write the result to a file | |
final_vid_output_path = "output_video.mp4" | |
# Write the result to a file | |
clip.write_videofile( | |
final_vid_output_path, | |
codec='libx264' | |
) | |
return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True) | |
def update_ui(vis_frame_type): | |
if vis_frame_type == "coarse": | |
return gr.update(visible=True), gr.update(visible=False) | |
elif vis_frame_type == "fine": | |
return gr.update(visible=False), gr.update(visible=True) | |
def switch_working_frame(working_frame, scanned_frames, video_frames_dir): | |
new_working_frame = None | |
if working_frame == None: | |
new_working_frame = os.path.join(video_frames_dir, scanned_frames[0]) | |
else: | |
# Use a regular expression to find the integer | |
match = re.search(r'frame_(\d+)', working_frame) | |
if match: | |
# Extract the integer from the match | |
frame_number = int(match.group(1)) | |
ann_frame_idx = frame_number | |
new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx]) | |
return gr.State([]), gr.State([]), new_working_frame, new_working_frame | |
def reset_propagation(first_frame_path, predictor, stored_inference_state): | |
predictor.reset_state(stored_inference_state) | |
# print(f"RESET State: {stored_inference_state} ") | |
return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False) | |
with gr.Blocks() as demo: | |
first_frame_path = gr.State() | |
tracking_points = gr.State([]) | |
trackings_input_label = gr.State([]) | |
video_frames_dir = gr.State() | |
scanned_frames = gr.State() | |
loaded_predictor = gr.State() | |
stored_inference_state = gr.State() | |
stored_frame_names = gr.State() | |
available_frames_to_check = gr.State([]) | |
with gr.Column(): | |
# Title | |
gr.Markdown(title) | |
with gr.Row(): | |
with gr.Column(): | |
# Instructions | |
gr.Markdown(description_p) | |
# video_exp = gr.Video(label="Input Example", format="mp4", visible=False) | |
with gr.Accordion("Input Video", open=True) as video_in_drawer: | |
video_in = gr.Video(label="Input Video", format="mp4") | |
with gr.Row(): | |
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2) | |
clear_points_btn = gr.Button("Clear Points", scale=1) | |
input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) | |
points_map = gr.Image( | |
label="Frame with Point Prompt", | |
type="filepath", | |
interactive=False | |
) | |
with gr.Row(): | |
checkpoint = gr.Dropdown(label="Checkpoint", choices=["efficienttam_s", "efficienttam_ti", "efficienttam_s_512x512", "efficienttam_ti_512x512", "efficienttam_s_1", "efficienttam_s_2", "efficienttam_ti_1", "efficienttam_ti_2"], value="efficienttam_s") | |
submit_btn = gr.Button("Segment", size="lg") | |
with gr.Column(): | |
gr.Markdown("# Try some of the examples below ⬇️") | |
gr.Examples( | |
examples=examples, | |
inputs=[video_in,], | |
) | |
gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n') | |
gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n') | |
gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n') | |
with gr.Row(): | |
working_frame = gr.Dropdown(label="Frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True) | |
change_current = gr.Button("change current", visible=False) | |
output_result = gr.Image(label="Reference Mask") | |
with gr.Row(): | |
vis_frame_type = gr.Radio(label="Track level", choices=["coarse", "fine"], value="coarse", scale=2) | |
propagate_btn = gr.Button("Track", scale=1) | |
reset_prpgt_brn = gr.Button("Reset", visible=False) | |
output_propagated = gr.Gallery(label="Masklets", columns=4, visible=False) | |
output_video = gr.Video(visible=False) | |
# When new video is uploaded | |
video_in.upload( | |
fn = preprocess_video_in, | |
inputs = [video_in], | |
outputs = [ | |
first_frame_path, | |
tracking_points, # update Tracking Points in the gr.State([]) object | |
trackings_input_label, # update Tracking Labels in the gr.State([]) object | |
input_first_frame_image, # hidden component used as ref when clearing points | |
points_map, # Image component where we add new tracking points | |
video_frames_dir, # Array where frames from video_in are deep stored | |
scanned_frames, # Scanned frames by EfficientTAM | |
stored_inference_state, # EfficientTAM inference state | |
stored_frame_names, # | |
video_in_drawer, # Accordion to hide uploaded video player | |
], | |
queue = False | |
) | |
video_in.change( | |
fn = preprocess_video_in, | |
inputs = [video_in], | |
outputs = [ | |
first_frame_path, | |
tracking_points, # update Tracking Points in the gr.State([]) object | |
trackings_input_label, # update Tracking Labels in the gr.State([]) object | |
input_first_frame_image, # hidden component used as ref when clearing points | |
points_map, # Image component where we add new tracking points | |
video_frames_dir, # Array where frames from video_in are deep stored | |
scanned_frames, # Scanned frames by EfficientTAM | |
stored_inference_state, # EfficientTAM inference state | |
stored_frame_names, # | |
video_in_drawer, # Accordion to hide uploaded video player | |
], | |
queue = False | |
) | |
# triggered when we click on image to add new points | |
points_map.select( | |
fn = get_point, | |
inputs = [ | |
point_type, # "include" or "exclude" | |
tracking_points, # get tracking_points values | |
trackings_input_label, # get tracking label values | |
input_first_frame_image, # gr.State() first frame path | |
], | |
outputs = [ | |
tracking_points, # updated with new points | |
trackings_input_label, # updated with corresponding labels | |
points_map, # updated image with points | |
], | |
queue = False | |
) | |
# Clear every points clicked and added to the map | |
clear_points_btn.click( | |
fn = clear_points, | |
inputs = input_first_frame_image, # we get the untouched hidden image | |
outputs = [ | |
first_frame_path, | |
tracking_points, | |
trackings_input_label, | |
points_map, | |
], | |
queue=False | |
) | |
change_current.click( | |
fn = switch_working_frame, | |
inputs = [working_frame, scanned_frames, video_frames_dir], | |
outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map], | |
queue=False | |
) | |
submit_btn.click( | |
fn = get_mask_sam_process, | |
inputs = [ | |
stored_inference_state, | |
input_first_frame_image, | |
checkpoint, | |
tracking_points, | |
trackings_input_label, | |
video_frames_dir, | |
scanned_frames, | |
working_frame, | |
available_frames_to_check, | |
], | |
outputs = [ | |
change_current, | |
output_result, | |
stored_frame_names, | |
loaded_predictor, | |
stored_inference_state, | |
working_frame, | |
], | |
concurrency_limit=10, | |
queue=False | |
) | |
reset_prpgt_brn.click( | |
fn = reset_propagation, | |
inputs = [first_frame_path, loaded_predictor, stored_inference_state], | |
outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn], | |
queue=False | |
) | |
propagate_btn.click( | |
fn = update_ui, | |
inputs = [vis_frame_type], | |
outputs = [output_propagated, output_video], | |
queue=False | |
).then( | |
fn = propagate_to_all, | |
inputs = [tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame], | |
outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn], | |
concurrency_limit=10, | |
queue=False | |
) | |
demo.queue() | |
demo.launch() | |