yunyangx commited on
Commit
4942755
1 Parent(s): 67ba492

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +638 -0
app.py ADDED
@@ -0,0 +1,638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ import re
3
+ from typing import List, Tuple, Optional
4
+
5
+ import gradio as gr
6
+ from datetime import datetime
7
+ import os
8
+ os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
9
+ import torch
10
+ import numpy as np
11
+ import cv2
12
+ import matplotlib.pyplot as plt
13
+ from PIL import Image, ImageFilter
14
+ from sam2.build_sam import build_sam2_video_predictor
15
+
16
+ from moviepy.editor import ImageSequenceClip
17
+
18
+ # Description
19
+ title = "<center><strong><font size='8'>Efficient Track Anything (EfficientTAM)<font></strong></center>"
20
+
21
+ description_e = """This is a demo of [Efficient Track Anything (EfficientTAM) Model](https://github.com/yformer/EfficientTAM).
22
+ """
23
+
24
+ description_p = """# Interactive Video Segmentation
25
+ - Built our demo based on [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor). Thanks to Sylvain Filoni.
26
+ - Instruction
27
+ <ol>
28
+ <li> Upload one video or click one example video</li>
29
+ <li> Click 'include' point type, select the object to segment and track</li>
30
+ <li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
31
+ <li> Click the 'Segment' button, obtain the mask of the first frame </li>
32
+ <li> Click the 'coarse' level and the 'Track' button, segment and track the object every 15 frames </li>
33
+ <li> Click the corresponding frame to add points on the object for mask refining (optional) </li>
34
+ <li> Click the 'fine' level and the 'Track' button, obtain masklet and masked video </li>
35
+ <li> Click the 'Reset' button to restart </li>
36
+ </ol>
37
+ - Github [link](https://github.com/yformer/EfficientTAM)
38
+ """
39
+
40
+ # examples
41
+ examples = [
42
+ ["examples/videos/cat.mp4"],
43
+ ["examples/videos/coffee.mp4"],
44
+ ["examples/videos/car.mp4"],
45
+ ["examples/videos/chick.mp4"],
46
+ ["examples/videos/cups.mp4"],
47
+ ["examples/videos/dog.mp4"],
48
+ ["examples/videos/goat.mp4"],
49
+ ["examples/videos/juggle.mp4"],
50
+ ["examples/videos/street.mp4"],
51
+ ["examples/videos/yacht.mp4"],
52
+ ]
53
+
54
+ default_example = examples[0]
55
+
56
+ def get_video_fps(video_path):
57
+ # Open the video file
58
+ cap = cv2.VideoCapture(video_path)
59
+
60
+ if not cap.isOpened():
61
+ print("Error: Could not open video.")
62
+ return None
63
+
64
+ # Get the FPS of the video
65
+ fps = cap.get(cv2.CAP_PROP_FPS)
66
+
67
+ return fps
68
+
69
+ def clear_points(image):
70
+ # we clean all
71
+ return [
72
+ image, # first_frame_path
73
+ gr.State([]), # tracking_points
74
+ gr.State([]), # trackings_input_label
75
+ image, # points_map
76
+ #gr.State() # stored_inference_state
77
+ ]
78
+
79
+ def preprocess_video_in(video_path):
80
+ if video_path is None:
81
+ return None, gr.State([]), gr.State([]), None, None, None, None, None, None, gr.update(open=True)
82
+
83
+ # Generate a unique ID based on the current date and time
84
+ unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
85
+
86
+ # Set directory with this ID to store video frames
87
+ extracted_frames_output_dir = f'frames_{unique_id}'
88
+
89
+ # Create the output directory
90
+ os.makedirs(extracted_frames_output_dir, exist_ok=True)
91
+
92
+ ### Process video frames ###
93
+ # Open the video file
94
+ cap = cv2.VideoCapture(video_path)
95
+
96
+ if not cap.isOpened():
97
+ print("Error: Could not open video.")
98
+ return None
99
+
100
+ # Get the frames per second (FPS) of the video
101
+ fps = cap.get(cv2.CAP_PROP_FPS)
102
+
103
+ # Calculate the number of frames to process (10 seconds of video)
104
+ max_frames = int(fps * 10)
105
+
106
+ frame_number = 0
107
+ first_frame = None
108
+
109
+ while True:
110
+ ret, frame = cap.read()
111
+ if not ret or frame_number >= max_frames:
112
+ break
113
+
114
+ # Format the frame filename as '00000.jpg'
115
+ frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
116
+
117
+ # Save the frame as a JPEG file
118
+ cv2.imwrite(frame_filename, frame)
119
+
120
+ # Store the first frame
121
+ if frame_number == 0:
122
+ first_frame = frame_filename
123
+
124
+ frame_number += 1
125
+
126
+ # Release the video capture object
127
+ cap.release()
128
+
129
+ # scan all the JPEG frame names in this directory
130
+ scanned_frames = [
131
+ p for p in os.listdir(extracted_frames_output_dir)
132
+ if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
133
+ ]
134
+ scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
135
+ # print(f"SCANNED_FRAMES: {scanned_frames}")
136
+
137
+ return [
138
+ first_frame, # first_frame_path
139
+ gr.State([]), # tracking_points
140
+ gr.State([]), # trackings_input_label
141
+ first_frame, # input_first_frame_image
142
+ first_frame, # points_map
143
+ extracted_frames_output_dir, # video_frames_dir
144
+ scanned_frames, # scanned_frames
145
+ None, # stored_inference_state
146
+ None, # stored_frame_names
147
+ gr.update(open=False) # video_in_drawer
148
+ ]
149
+
150
+
151
+ def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
152
+ if input_first_frame_image is None:
153
+ return gr.State([]), gr.State([]), None
154
+ print(f"You selected {evt.value} at {evt.index} from {evt.target}")
155
+
156
+ tracking_points.value.append(evt.index)
157
+ print(f"TRACKING POINT: {tracking_points.value}")
158
+
159
+ if point_type == "include":
160
+ trackings_input_label.value.append(1)
161
+ elif point_type == "exclude":
162
+ trackings_input_label.value.append(0)
163
+ print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
164
+
165
+ # Open the image and get its dimensions
166
+ transparent_background = Image.open(input_first_frame_image).convert('RGBA')
167
+ w, h = transparent_background.size
168
+
169
+ # Define the circle radius as a fraction of the smaller dimension
170
+ fraction = 0.02 # You can adjust this value as needed
171
+ radius = int(fraction * min(w, h))
172
+
173
+ # Create a transparent layer to draw on
174
+ transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
175
+
176
+ for index, track in enumerate(tracking_points.value):
177
+ if trackings_input_label.value[index] == 1:
178
+ cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
179
+ else:
180
+ cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
181
+
182
+ # Convert the transparent layer back to an image
183
+ transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
184
+ selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
185
+
186
+ return tracking_points, trackings_input_label, selected_point_map
187
+
188
+ DEVICE = 'cuda'
189
+ # use bfloat16 for the entire notebook
190
+ torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
191
+ if torch.cuda.get_device_properties(0).major >= 8:
192
+ # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
193
+ torch.backends.cuda.matmul.allow_tf32 = True
194
+ torch.backends.cudnn.allow_tf32 = True
195
+
196
+ def show_mask(mask, ax, obj_id=None, random_color=False):
197
+ if random_color:
198
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
199
+ else:
200
+ cmap = plt.get_cmap("tab10")
201
+ cmap_idx = 0 if obj_id is None else obj_id
202
+ color = np.array([*cmap(cmap_idx)[:3], 0.6])
203
+ h, w = mask.shape[-2:]
204
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
205
+ ax.axis('off')
206
+ ax.imshow(mask_image)
207
+
208
+
209
+ def show_points(coords, labels, ax, marker_size=200):
210
+ pos_points = coords[labels==1]
211
+ neg_points = coords[labels==0]
212
+ ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
213
+ ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
214
+
215
+ def show_box(box, ax):
216
+ x0, y0 = box[0], box[1]
217
+ w, h = box[2] - box[0], box[3] - box[1]
218
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
219
+
220
+
221
+ def load_model(checkpoint):
222
+ # Load model accordingly to user's choice
223
+ if checkpoint == "efficienttam_s":
224
+ efficienttam_checkpoint = "./checkpoints/efficienttam_s.pt"
225
+ model_cfg = "efficienttam_s.yaml"
226
+ return [efficienttam_checkpoint, model_cfg]
227
+ elif checkpoint == "efficienttam_ti":
228
+ efficienttam_checkpoint = "./checkpoints/efficienttam_ti.pt"
229
+ model_cfg = "efficienttam-ti.yaml"
230
+ return [efficienttam_checkpoint, model_cfg]
231
+ elif checkpoint == "efficienttam_s_512x512":
232
+ efficienttam_checkpoint = "./checkpoints/efficienttam_s_512x512.pt"
233
+ model_cfg = "efficienttam_s_512x512.yaml"
234
+ return [efficienttam_checkpoint, model_cfg]
235
+ elif checkpoint == "efficienttam_ti_512x512":
236
+ efficienttam_checkpoint = "./checkpoints/efficienttam_ti_512x512.pt"
237
+ model_cfg = "efficienttam_ti_512x512.yaml"
238
+ return [efficienttam_checkpoint, model_cfg]
239
+ elif checkpoint == "efficienttam_s_1":
240
+ efficienttam_checkpoint = "./checkpoints/efficienttam_s_1.pt"
241
+ model_cfg = "efficienttam_s_1.yaml"
242
+ return [efficienttam_checkpoint, model_cfg]
243
+ elif checkpoint == "efficienttam_s_2":
244
+ efficienttam_checkpoint = "./checkpoints/efficienttam_s_2.pt"
245
+ model_cfg = "efficienttam_s_2.yaml"
246
+ return [efficienttam_checkpoint, model_cfg]
247
+ elif checkpoint == "efficienttam_ti_1":
248
+ efficienttam_checkpoint = "./checkpoints/efficienttam_ti_1.pt"
249
+ model_cfg = "efficienttam_ti_1.yaml"
250
+ return [efficienttam_checkpoint, model_cfg]
251
+ elif checkpoint == "efficienttam_ti_2":
252
+ efficienttam_checkpoint = "./checkpoints/efficienttam_ti_2.pt"
253
+ model_cfg = "efficienttam_ti_2.yaml"
254
+ return [efficienttam_checkpoint, model_cfg]
255
+ else:
256
+ efficienttam_checkpoint = "./checkpoints/demo/efficienttam_s.pt"
257
+ model_cfg = "efficienttam_s.yaml"
258
+ return [efficienttam_checkpoint, model_cfg]
259
+
260
+ def get_mask_sam_process(
261
+ stored_inference_state,
262
+ input_first_frame_image,
263
+ checkpoint,
264
+ tracking_points,
265
+ trackings_input_label,
266
+ video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
267
+ scanned_frames,
268
+ working_frame: str = None, # current frame being added points
269
+ available_frames_to_check: List[str] = [],
270
+ ):
271
+
272
+ if len(tracking_points.value) == 0:
273
+ return gr.update(visible=False), None, gr.State(), None, stored_inference_state, working_frame
274
+ # get model and model config paths
275
+ print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
276
+ sam2_checkpoint, model_cfg = load_model(checkpoint)
277
+ print("MODEL LOADED")
278
+
279
+ # set predictor
280
+ predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
281
+ print("PREDICTOR READY")
282
+
283
+ # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
284
+ # print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
285
+ video_dir = video_frames_dir
286
+
287
+ # scan all the JPEG frame names in this directory
288
+ frame_names = scanned_frames
289
+
290
+ # print(f"STORED INFERENCE STEP: {stored_inference_state}")
291
+ if stored_inference_state is None:
292
+ # Init SAM2 inference_state
293
+ inference_state = predictor.init_state(video_path=video_dir, device="cuda")
294
+ print("NEW INFERENCE_STATE INITIATED")
295
+ else:
296
+ inference_state = stored_inference_state
297
+
298
+ # segment and track one object
299
+ # predictor.reset_state(inference_state) # if any previous tracking, reset
300
+
301
+ ### HANDLING WORKING FRAME
302
+ # new_working_frame = None
303
+ # Add new point
304
+ if working_frame is None:
305
+ ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame
306
+ working_frame = "frame_0.jpg"
307
+ else:
308
+ # Use a regular expression to find the integer
309
+ match = re.search(r'frame_(\d+)', working_frame)
310
+ if match:
311
+ # Extract the integer from the match
312
+ frame_number = int(match.group(1))
313
+ ann_frame_idx = frame_number
314
+
315
+ print(f"NEW_WORKING_FRAME PATH: {working_frame}")
316
+
317
+ ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
318
+
319
+ # Let's add a positive click at (x, y) = (210, 350) to get started
320
+ points = np.array(tracking_points.value, dtype=np.float32)
321
+ # for labels, `1` means positive click and `0` means negative click
322
+ labels = np.array(trackings_input_label.value, np.int32)
323
+ _, out_obj_ids, out_mask_logits = predictor.add_new_points(
324
+ inference_state=inference_state,
325
+ frame_idx=ann_frame_idx,
326
+ obj_id=ann_obj_id,
327
+ points=points,
328
+ labels=labels,
329
+ )
330
+
331
+ # Create the plot
332
+ plt.figure(figsize=(12, 8))
333
+ plt.title(f"frame {ann_frame_idx}")
334
+ plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
335
+ show_points(points, labels, plt.gca())
336
+ show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
337
+
338
+ # Save the plot as a JPG file
339
+ first_frame_output_filename = "output_first_frame.jpg"
340
+ plt.savefig(first_frame_output_filename, format='jpg')
341
+ plt.close()
342
+ torch.cuda.empty_cache()
343
+
344
+ # Assuming available_frames_to_check.value is a list
345
+ if working_frame not in available_frames_to_check:
346
+ available_frames_to_check.append(working_frame)
347
+ print(available_frames_to_check)
348
+
349
+ return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
350
+
351
+ def propagate_to_all(tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame):
352
+ if tracking_points is None or video_in is None or checkpoint is None or stored_inference_state is None:
353
+ return gr.update(value=None), gr.update(value=None), gr.update(value=None), available_frames_to_check, gr.update(visible=False)
354
+ #### PROPAGATION ####
355
+ sam2_checkpoint, model_cfg = load_model(checkpoint)
356
+ predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
357
+
358
+ inference_state = stored_inference_state
359
+ frame_names = stored_frame_names
360
+ video_dir = video_frames_dir
361
+
362
+ # Define a directory to save the JPEG images
363
+ frames_output_dir = "frames_output_images"
364
+ os.makedirs(frames_output_dir, exist_ok=True)
365
+
366
+ # Initialize a list to store file paths of saved images
367
+ jpeg_images = []
368
+
369
+ # run propagation throughout the video and collect the results in a dict
370
+ video_segments = {} # video_segments contains the per-frame segmentation results
371
+ print("starting propagate_in_video")
372
+ for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
373
+ video_segments[out_frame_idx] = {
374
+ out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
375
+ for i, out_obj_id in enumerate(out_obj_ids)
376
+ }
377
+
378
+ # obtain the segmentation results every few frames
379
+ if vis_frame_type == "coarse":
380
+ vis_frame_stride = 15
381
+ elif vis_frame_type == "fine":
382
+ vis_frame_stride = 1
383
+
384
+ plt.close("all")
385
+ for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
386
+ plt.figure(figsize=(6, 4))
387
+ plt.title(f"frame {out_frame_idx}")
388
+ plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
389
+ for out_obj_id, out_mask in video_segments[out_frame_idx].items():
390
+ show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
391
+
392
+ # Define the output filename and save the figure as a JPEG file
393
+ output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
394
+ plt.savefig(output_filename, format='jpg')
395
+
396
+ # Close the plot
397
+ plt.close()
398
+
399
+ # Append the file path to the list
400
+ jpeg_images.append(output_filename)
401
+
402
+ if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
403
+ available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")
404
+
405
+ torch.cuda.empty_cache()
406
+ print(f"JPEG_IMAGES: {jpeg_images}")
407
+
408
+ if vis_frame_type == "coarse":
409
+ return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True)
410
+ elif vis_frame_type == "fine":
411
+ # Create a video clip from the image sequence
412
+ original_fps = get_video_fps(video_in)
413
+ fps = original_fps # Frames per second
414
+ total_frames = len(jpeg_images)
415
+ clip = ImageSequenceClip(jpeg_images, fps=fps)
416
+ # Write the result to a file
417
+ final_vid_output_path = "output_video.mp4"
418
+
419
+ # Write the result to a file
420
+ clip.write_videofile(
421
+ final_vid_output_path,
422
+ codec='libx264'
423
+ )
424
+
425
+ return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)
426
+
427
+ def update_ui(vis_frame_type):
428
+ if vis_frame_type == "coarse":
429
+ return gr.update(visible=True), gr.update(visible=False)
430
+ elif vis_frame_type == "fine":
431
+ return gr.update(visible=False), gr.update(visible=True)
432
+
433
+ def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
434
+ new_working_frame = None
435
+ if working_frame == None:
436
+ new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
437
+
438
+ else:
439
+ # Use a regular expression to find the integer
440
+ match = re.search(r'frame_(\d+)', working_frame)
441
+ if match:
442
+ # Extract the integer from the match
443
+ frame_number = int(match.group(1))
444
+ ann_frame_idx = frame_number
445
+ new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
446
+ return gr.State([]), gr.State([]), new_working_frame, new_working_frame
447
+
448
+ def reset_propagation(first_frame_path, predictor, stored_inference_state):
449
+ predictor.reset_state(stored_inference_state)
450
+ # print(f"RESET State: {stored_inference_state} ")
451
+ return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)
452
+
453
+ with gr.Blocks() as demo:
454
+ first_frame_path = gr.State()
455
+ tracking_points = gr.State([])
456
+ trackings_input_label = gr.State([])
457
+ video_frames_dir = gr.State()
458
+ scanned_frames = gr.State()
459
+ loaded_predictor = gr.State()
460
+ stored_inference_state = gr.State()
461
+ stored_frame_names = gr.State()
462
+ available_frames_to_check = gr.State([])
463
+ with gr.Column():
464
+ # Title
465
+ gr.Markdown(title)
466
+ with gr.Row():
467
+
468
+ with gr.Column():
469
+ # Instructions
470
+ gr.Markdown(description_p)
471
+
472
+ # video_exp = gr.Video(label="Input Example", format="mp4", visible=False)
473
+ with gr.Accordion("Input Video", open=True) as video_in_drawer:
474
+ video_in = gr.Video(label="Input Video", format="mp4")
475
+
476
+ with gr.Row():
477
+ point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
478
+ clear_points_btn = gr.Button("Clear Points", scale=1)
479
+
480
+ input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
481
+
482
+ points_map = gr.Image(
483
+ label="Frame with Point Prompt",
484
+ type="filepath",
485
+ interactive=False
486
+ )
487
+
488
+ with gr.Row():
489
+ checkpoint = gr.Dropdown(label="Checkpoint", choices=["efficienttam_s", "efficienttam_ti", "efficienttam_s_512x512", "efficienttam_ti_512x512", "efficienttam_s_1", "efficienttam_s_2", "efficienttam_ti_1", "efficienttam_ti_2"], value="efficienttam_s")
490
+ submit_btn = gr.Button("Segment", size="lg")
491
+
492
+
493
+ with gr.Column():
494
+ gr.Markdown("# Try some of the examples below ⬇️")
495
+ gr.Examples(
496
+ examples=examples,
497
+ inputs=[video_in,],
498
+ )
499
+ gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
500
+ gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
501
+ gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
502
+ with gr.Row():
503
+ working_frame = gr.Dropdown(label="Frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True)
504
+ change_current = gr.Button("change current", visible=False)
505
+ output_result = gr.Image(label="Reference Mask")
506
+ with gr.Row():
507
+ vis_frame_type = gr.Radio(label="Track level", choices=["coarse", "fine"], value="coarse", scale=2)
508
+ propagate_btn = gr.Button("Track", scale=1)
509
+ reset_prpgt_brn = gr.Button("Reset", visible=False)
510
+ output_propagated = gr.Gallery(label="Masklets", columns=4, visible=False)
511
+ output_video = gr.Video(visible=False)
512
+
513
+
514
+
515
+ # When new video is uploaded
516
+ video_in.upload(
517
+ fn = preprocess_video_in,
518
+ inputs = [video_in],
519
+ outputs = [
520
+ first_frame_path,
521
+ tracking_points, # update Tracking Points in the gr.State([]) object
522
+ trackings_input_label, # update Tracking Labels in the gr.State([]) object
523
+ input_first_frame_image, # hidden component used as ref when clearing points
524
+ points_map, # Image component where we add new tracking points
525
+ video_frames_dir, # Array where frames from video_in are deep stored
526
+ scanned_frames, # Scanned frames by EfficientTAM
527
+ stored_inference_state, # EfficientTAM inference state
528
+ stored_frame_names, #
529
+ video_in_drawer, # Accordion to hide uploaded video player
530
+ ],
531
+ queue = False
532
+ )
533
+
534
+ video_in.change(
535
+ fn = preprocess_video_in,
536
+ inputs = [video_in],
537
+ outputs = [
538
+ first_frame_path,
539
+ tracking_points, # update Tracking Points in the gr.State([]) object
540
+ trackings_input_label, # update Tracking Labels in the gr.State([]) object
541
+ input_first_frame_image, # hidden component used as ref when clearing points
542
+ points_map, # Image component where we add new tracking points
543
+ video_frames_dir, # Array where frames from video_in are deep stored
544
+ scanned_frames, # Scanned frames by EfficientTAM
545
+ stored_inference_state, # EfficientTAM inference state
546
+ stored_frame_names, #
547
+ video_in_drawer, # Accordion to hide uploaded video player
548
+ ],
549
+ queue = False
550
+ )
551
+
552
+
553
+ # triggered when we click on image to add new points
554
+ points_map.select(
555
+ fn = get_point,
556
+ inputs = [
557
+ point_type, # "include" or "exclude"
558
+ tracking_points, # get tracking_points values
559
+ trackings_input_label, # get tracking label values
560
+ input_first_frame_image, # gr.State() first frame path
561
+ ],
562
+ outputs = [
563
+ tracking_points, # updated with new points
564
+ trackings_input_label, # updated with corresponding labels
565
+ points_map, # updated image with points
566
+ ],
567
+ queue = False
568
+ )
569
+
570
+ # Clear every points clicked and added to the map
571
+ clear_points_btn.click(
572
+ fn = clear_points,
573
+ inputs = input_first_frame_image, # we get the untouched hidden image
574
+ outputs = [
575
+ first_frame_path,
576
+ tracking_points,
577
+ trackings_input_label,
578
+ points_map,
579
+ ],
580
+ queue=False
581
+ )
582
+
583
+
584
+ change_current.click(
585
+ fn = switch_working_frame,
586
+ inputs = [working_frame, scanned_frames, video_frames_dir],
587
+ outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
588
+ queue=False
589
+ )
590
+
591
+
592
+ submit_btn.click(
593
+ fn = get_mask_sam_process,
594
+ inputs = [
595
+ stored_inference_state,
596
+ input_first_frame_image,
597
+ checkpoint,
598
+ tracking_points,
599
+ trackings_input_label,
600
+ video_frames_dir,
601
+ scanned_frames,
602
+ working_frame,
603
+ available_frames_to_check,
604
+ ],
605
+ outputs = [
606
+ change_current,
607
+ output_result,
608
+ stored_frame_names,
609
+ loaded_predictor,
610
+ stored_inference_state,
611
+ working_frame,
612
+ ],
613
+ concurrency_limit=10,
614
+ queue=False
615
+ )
616
+
617
+ reset_prpgt_brn.click(
618
+ fn = reset_propagation,
619
+ inputs = [first_frame_path, loaded_predictor, stored_inference_state],
620
+ outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
621
+ queue=False
622
+ )
623
+
624
+ propagate_btn.click(
625
+ fn = update_ui,
626
+ inputs = [vis_frame_type],
627
+ outputs = [output_propagated, output_video],
628
+ queue=False
629
+ ).then(
630
+ fn = propagate_to_all,
631
+ inputs = [tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
632
+ outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn],
633
+ concurrency_limit=10,
634
+ queue=False
635
+ )
636
+
637
+ demo.queue()
638
+ demo.launch()