Spaces:
Running
on
Zero
Running
on
Zero
efficient track anything built on sam2
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- sam2/.DS_Store +0 -0
- sam2/__init__.py +11 -0
- sam2/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/__pycache__/automatic_mask_generator.cpython-312.pyc +0 -0
- sam2/__pycache__/build_sam.cpython-312.pyc +0 -0
- sam2/__pycache__/sam2_image_predictor.cpython-312.pyc +0 -0
- sam2/__pycache__/sam2_video_predictor.cpython-312.pyc +0 -0
- sam2/automatic_mask_generator.py +434 -0
- sam2/build_sam.py +111 -0
- sam2/configs/.DS_Store +0 -0
- sam2/configs/__init__.py +5 -0
- sam2/configs/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/configs/efficientam_s.yaml +123 -0
- sam2/configs/efficienttam_s_1.yaml +123 -0
- sam2/configs/efficienttam_s_2.yaml +123 -0
- sam2/configs/efficienttam_s_512x512.yaml +123 -0
- sam2/configs/efficienttam_ti.yaml +123 -0
- sam2/configs/efficienttam_ti_1.yaml +123 -0
- sam2/configs/efficienttam_ti_2.yaml +123 -0
- sam2/configs/efficienttam_ti_512x512.yaml +123 -0
- sam2/configs/sam2_hiera_b+.yaml +113 -0
- sam2/configs/sam2_hiera_l.yaml +117 -0
- sam2/configs/sam2_hiera_s.yaml +116 -0
- sam2/configs/sam2_hiera_t.yaml +118 -0
- sam2/modeling/__init__.py +5 -0
- sam2/modeling/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/memory_attention.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/memory_encoder.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/position_encoding.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/sam2_base.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/sam2_utils.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__init__.py +5 -0
- sam2/modeling/backbones/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__pycache__/hieradet.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__pycache__/image_encoder.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__pycache__/utils.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__pycache__/vitdet.cpython-312.pyc +0 -0
- sam2/modeling/backbones/hieradet.py +294 -0
- sam2/modeling/backbones/image_encoder.py +196 -0
- sam2/modeling/backbones/utils.py +125 -0
- sam2/modeling/backbones/vitdet.py +307 -0
- sam2/modeling/memory_attention.py +170 -0
- sam2/modeling/memory_encoder.py +181 -0
- sam2/modeling/position_encoding.py +215 -0
- sam2/modeling/sam/__init__.py +5 -0
- sam2/modeling/sam/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/modeling/sam/__pycache__/mask_decoder.cpython-312.pyc +0 -0
- sam2/modeling/sam/__pycache__/prompt_encoder.cpython-312.pyc +0 -0
- sam2/modeling/sam/__pycache__/transformer.cpython-312.pyc +0 -0
- sam2/modeling/sam/mask_decoder.py +295 -0
sam2/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
sam2/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from hydra import initialize
|
8 |
+
|
9 |
+
from .build_sam import load_model
|
10 |
+
|
11 |
+
initialize("configs", version_base="1.2")
|
sam2/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (328 Bytes). View file
|
|
sam2/__pycache__/automatic_mask_generator.cpython-312.pyc
ADDED
Binary file (18.9 kB). View file
|
|
sam2/__pycache__/build_sam.cpython-312.pyc
ADDED
Binary file (10.7 kB). View file
|
|
sam2/__pycache__/sam2_image_predictor.cpython-312.pyc
ADDED
Binary file (21.8 kB). View file
|
|
sam2/__pycache__/sam2_video_predictor.cpython-312.pyc
ADDED
Binary file (28.5 kB). View file
|
|
sam2/automatic_mask_generator.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
|
8 |
+
from typing import Any, Dict, List, Optional, Tuple
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_base import SAM2Base
|
15 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
16 |
+
from sam2.utils.amg import (
|
17 |
+
MaskData,
|
18 |
+
area_from_rle,
|
19 |
+
batch_iterator,
|
20 |
+
batched_mask_to_box,
|
21 |
+
box_xyxy_to_xywh,
|
22 |
+
build_all_layer_point_grids,
|
23 |
+
calculate_stability_score,
|
24 |
+
coco_encode_rle,
|
25 |
+
generate_crop_boxes,
|
26 |
+
is_box_near_crop_edge,
|
27 |
+
mask_to_rle_pytorch,
|
28 |
+
remove_small_regions,
|
29 |
+
rle_to_mask,
|
30 |
+
uncrop_boxes_xyxy,
|
31 |
+
uncrop_masks,
|
32 |
+
uncrop_points,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
class SAM2AutomaticMaskGenerator:
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
model: SAM2Base,
|
40 |
+
points_per_side: Optional[int] = 32,
|
41 |
+
points_per_batch: int = 64,
|
42 |
+
pred_iou_thresh: float = 0.8,
|
43 |
+
stability_score_thresh: float = 0.95,
|
44 |
+
stability_score_offset: float = 1.0,
|
45 |
+
mask_threshold: float = 0.0,
|
46 |
+
box_nms_thresh: float = 0.7,
|
47 |
+
crop_n_layers: int = 0,
|
48 |
+
crop_nms_thresh: float = 0.7,
|
49 |
+
crop_overlap_ratio: float = 512 / 1500,
|
50 |
+
crop_n_points_downscale_factor: int = 1,
|
51 |
+
point_grids: Optional[List[np.ndarray]] = None,
|
52 |
+
min_mask_region_area: int = 0,
|
53 |
+
output_mode: str = "binary_mask",
|
54 |
+
use_m2m: bool = False,
|
55 |
+
multimask_output: bool = True,
|
56 |
+
) -> None:
|
57 |
+
"""
|
58 |
+
Using a SAM 2 model, generates masks for the entire image.
|
59 |
+
Generates a grid of point prompts over the image, then filters
|
60 |
+
low quality and duplicate masks. The default settings are chosen
|
61 |
+
for SAM 2 with a HieraL backbone.
|
62 |
+
|
63 |
+
Arguments:
|
64 |
+
model (Sam): The SAM 2 model to use for mask prediction.
|
65 |
+
points_per_side (int or None): The number of points to be sampled
|
66 |
+
along one side of the image. The total number of points is
|
67 |
+
points_per_side**2. If None, 'point_grids' must provide explicit
|
68 |
+
point sampling.
|
69 |
+
points_per_batch (int): Sets the number of points run simultaneously
|
70 |
+
by the model. Higher numbers may be faster but use more GPU memory.
|
71 |
+
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
72 |
+
model's predicted mask quality.
|
73 |
+
stability_score_thresh (float): A filtering threshold in [0,1], using
|
74 |
+
the stability of the mask under changes to the cutoff used to binarize
|
75 |
+
the model's mask predictions.
|
76 |
+
stability_score_offset (float): The amount to shift the cutoff when
|
77 |
+
calculated the stability score.
|
78 |
+
mask_threshold (float): Threshold for binarizing the mask logits
|
79 |
+
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
80 |
+
suppression to filter duplicate masks.
|
81 |
+
crop_n_layers (int): If >0, mask prediction will be run again on
|
82 |
+
crops of the image. Sets the number of layers to run, where each
|
83 |
+
layer has 2**i_layer number of image crops.
|
84 |
+
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
85 |
+
suppression to filter duplicate masks between different crops.
|
86 |
+
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
87 |
+
In the first crop layer, crops will overlap by this fraction of
|
88 |
+
the image length. Later layers with more crops scale down this overlap.
|
89 |
+
crop_n_points_downscale_factor (int): The number of points-per-side
|
90 |
+
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
91 |
+
point_grids (list(np.ndarray) or None): A list over explicit grids
|
92 |
+
of points used for sampling, normalized to [0,1]. The nth grid in the
|
93 |
+
list is used in the nth crop layer. Exclusive with points_per_side.
|
94 |
+
min_mask_region_area (int): If >0, postprocessing will be applied
|
95 |
+
to remove disconnected regions and holes in masks with area smaller
|
96 |
+
than min_mask_region_area. Requires opencv.
|
97 |
+
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
98 |
+
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
99 |
+
For large resolutions, 'binary_mask' may consume large amounts of
|
100 |
+
memory.
|
101 |
+
use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
|
102 |
+
multimask_output (bool): Whether to output multimask at each point of the grid.
|
103 |
+
"""
|
104 |
+
|
105 |
+
assert (points_per_side is None) != (
|
106 |
+
point_grids is None
|
107 |
+
), "Exactly one of points_per_side or point_grid must be provided."
|
108 |
+
if points_per_side is not None:
|
109 |
+
self.point_grids = build_all_layer_point_grids(
|
110 |
+
points_per_side,
|
111 |
+
crop_n_layers,
|
112 |
+
crop_n_points_downscale_factor,
|
113 |
+
)
|
114 |
+
elif point_grids is not None:
|
115 |
+
self.point_grids = point_grids
|
116 |
+
else:
|
117 |
+
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
118 |
+
|
119 |
+
assert output_mode in [
|
120 |
+
"binary_mask",
|
121 |
+
"uncompressed_rle",
|
122 |
+
"coco_rle",
|
123 |
+
], f"Unknown output_mode {output_mode}."
|
124 |
+
if output_mode == "coco_rle":
|
125 |
+
try:
|
126 |
+
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
127 |
+
except ImportError as e:
|
128 |
+
print("Please install pycocotools")
|
129 |
+
raise e
|
130 |
+
|
131 |
+
self.predictor = SAM2ImagePredictor(
|
132 |
+
model,
|
133 |
+
max_hole_area=min_mask_region_area,
|
134 |
+
max_sprinkle_area=min_mask_region_area,
|
135 |
+
)
|
136 |
+
self.points_per_batch = points_per_batch
|
137 |
+
self.pred_iou_thresh = pred_iou_thresh
|
138 |
+
self.stability_score_thresh = stability_score_thresh
|
139 |
+
self.stability_score_offset = stability_score_offset
|
140 |
+
self.mask_threshold = mask_threshold
|
141 |
+
self.box_nms_thresh = box_nms_thresh
|
142 |
+
self.crop_n_layers = crop_n_layers
|
143 |
+
self.crop_nms_thresh = crop_nms_thresh
|
144 |
+
self.crop_overlap_ratio = crop_overlap_ratio
|
145 |
+
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
146 |
+
self.min_mask_region_area = min_mask_region_area
|
147 |
+
self.output_mode = output_mode
|
148 |
+
self.use_m2m = use_m2m
|
149 |
+
self.multimask_output = multimask_output
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
153 |
+
"""
|
154 |
+
Generates masks for the given image.
|
155 |
+
|
156 |
+
Arguments:
|
157 |
+
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
list(dict(str, any)): A list over records for masks. Each record is
|
161 |
+
a dict containing the following keys:
|
162 |
+
segmentation (dict(str, any) or np.ndarray): The mask. If
|
163 |
+
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
164 |
+
is a dictionary containing the RLE.
|
165 |
+
bbox (list(float)): The box around the mask, in XYWH format.
|
166 |
+
area (int): The area in pixels of the mask.
|
167 |
+
predicted_iou (float): The model's own prediction of the mask's
|
168 |
+
quality. This is filtered by the pred_iou_thresh parameter.
|
169 |
+
point_coords (list(list(float))): The point coordinates input
|
170 |
+
to the model to generate this mask.
|
171 |
+
stability_score (float): A measure of the mask's quality. This
|
172 |
+
is filtered on using the stability_score_thresh parameter.
|
173 |
+
crop_box (list(float)): The crop of the image used to generate
|
174 |
+
the mask, given in XYWH format.
|
175 |
+
"""
|
176 |
+
|
177 |
+
# Generate masks
|
178 |
+
mask_data = self._generate_masks(image)
|
179 |
+
|
180 |
+
# Encode masks
|
181 |
+
if self.output_mode == "coco_rle":
|
182 |
+
mask_data["segmentations"] = [
|
183 |
+
coco_encode_rle(rle) for rle in mask_data["rles"]
|
184 |
+
]
|
185 |
+
elif self.output_mode == "binary_mask":
|
186 |
+
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
187 |
+
else:
|
188 |
+
mask_data["segmentations"] = mask_data["rles"]
|
189 |
+
|
190 |
+
# Write mask records
|
191 |
+
curr_anns = []
|
192 |
+
for idx in range(len(mask_data["segmentations"])):
|
193 |
+
ann = {
|
194 |
+
"segmentation": mask_data["segmentations"][idx],
|
195 |
+
"area": area_from_rle(mask_data["rles"][idx]),
|
196 |
+
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
197 |
+
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
198 |
+
"point_coords": [mask_data["points"][idx].tolist()],
|
199 |
+
"stability_score": mask_data["stability_score"][idx].item(),
|
200 |
+
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
201 |
+
}
|
202 |
+
curr_anns.append(ann)
|
203 |
+
|
204 |
+
return curr_anns
|
205 |
+
|
206 |
+
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
207 |
+
orig_size = image.shape[:2]
|
208 |
+
crop_boxes, layer_idxs = generate_crop_boxes(
|
209 |
+
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
210 |
+
)
|
211 |
+
|
212 |
+
# Iterate over image crops
|
213 |
+
data = MaskData()
|
214 |
+
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
215 |
+
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
216 |
+
data.cat(crop_data)
|
217 |
+
|
218 |
+
# Remove duplicate masks between crops
|
219 |
+
if len(crop_boxes) > 1:
|
220 |
+
# Prefer masks from smaller crops
|
221 |
+
scores = 1 / box_area(data["crop_boxes"])
|
222 |
+
scores = scores.to(data["boxes"].device)
|
223 |
+
keep_by_nms = batched_nms(
|
224 |
+
data["boxes"].float(),
|
225 |
+
scores,
|
226 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
227 |
+
iou_threshold=self.crop_nms_thresh,
|
228 |
+
)
|
229 |
+
data.filter(keep_by_nms)
|
230 |
+
data.to_numpy()
|
231 |
+
return data
|
232 |
+
|
233 |
+
def _process_crop(
|
234 |
+
self,
|
235 |
+
image: np.ndarray,
|
236 |
+
crop_box: List[int],
|
237 |
+
crop_layer_idx: int,
|
238 |
+
orig_size: Tuple[int, ...],
|
239 |
+
) -> MaskData:
|
240 |
+
# Crop the image and calculate embeddings
|
241 |
+
x0, y0, x1, y1 = crop_box
|
242 |
+
cropped_im = image[y0:y1, x0:x1, :]
|
243 |
+
cropped_im_size = cropped_im.shape[:2]
|
244 |
+
self.predictor.set_image(cropped_im)
|
245 |
+
|
246 |
+
# Get points for this crop
|
247 |
+
points_scale = np.array(cropped_im_size)[None, ::-1]
|
248 |
+
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
249 |
+
|
250 |
+
# Generate masks for this crop in batches
|
251 |
+
data = MaskData()
|
252 |
+
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
253 |
+
batch_data = self._process_batch(
|
254 |
+
points, cropped_im_size, crop_box, orig_size, normalize=True
|
255 |
+
)
|
256 |
+
data.cat(batch_data)
|
257 |
+
del batch_data
|
258 |
+
self.predictor.reset_predictor()
|
259 |
+
|
260 |
+
# Remove duplicates within this crop.
|
261 |
+
keep_by_nms = batched_nms(
|
262 |
+
data["boxes"].float(),
|
263 |
+
data["iou_preds"],
|
264 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
265 |
+
iou_threshold=self.box_nms_thresh,
|
266 |
+
)
|
267 |
+
data.filter(keep_by_nms)
|
268 |
+
|
269 |
+
# Return to the original image frame
|
270 |
+
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
271 |
+
data["points"] = uncrop_points(data["points"], crop_box)
|
272 |
+
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
273 |
+
|
274 |
+
return data
|
275 |
+
|
276 |
+
def _process_batch(
|
277 |
+
self,
|
278 |
+
points: np.ndarray,
|
279 |
+
im_size: Tuple[int, ...],
|
280 |
+
crop_box: List[int],
|
281 |
+
orig_size: Tuple[int, ...],
|
282 |
+
normalize=False,
|
283 |
+
) -> MaskData:
|
284 |
+
orig_h, orig_w = orig_size
|
285 |
+
|
286 |
+
# Run model on this batch
|
287 |
+
points = torch.as_tensor(points, device=self.predictor.device)
|
288 |
+
in_points = self.predictor._transforms.transform_coords(
|
289 |
+
points, normalize=normalize, orig_hw=im_size
|
290 |
+
)
|
291 |
+
in_labels = torch.ones(
|
292 |
+
in_points.shape[0], dtype=torch.int, device=in_points.device
|
293 |
+
)
|
294 |
+
masks, iou_preds, low_res_masks = self.predictor._predict(
|
295 |
+
in_points[:, None, :],
|
296 |
+
in_labels[:, None],
|
297 |
+
multimask_output=self.multimask_output,
|
298 |
+
return_logits=True,
|
299 |
+
)
|
300 |
+
|
301 |
+
# Serialize predictions and store in MaskData
|
302 |
+
data = MaskData(
|
303 |
+
masks=masks.flatten(0, 1),
|
304 |
+
iou_preds=iou_preds.flatten(0, 1),
|
305 |
+
points=points.repeat_interleave(masks.shape[1], dim=0),
|
306 |
+
low_res_masks=low_res_masks.flatten(0, 1),
|
307 |
+
)
|
308 |
+
del masks
|
309 |
+
|
310 |
+
if not self.use_m2m:
|
311 |
+
# Filter by predicted IoU
|
312 |
+
if self.pred_iou_thresh > 0.0:
|
313 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
314 |
+
data.filter(keep_mask)
|
315 |
+
|
316 |
+
# Calculate and filter by stability score
|
317 |
+
data["stability_score"] = calculate_stability_score(
|
318 |
+
data["masks"], self.mask_threshold, self.stability_score_offset
|
319 |
+
)
|
320 |
+
if self.stability_score_thresh > 0.0:
|
321 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
322 |
+
data.filter(keep_mask)
|
323 |
+
else:
|
324 |
+
# One step refinement using previous mask predictions
|
325 |
+
in_points = self.predictor._transforms.transform_coords(
|
326 |
+
data["points"], normalize=normalize, orig_hw=im_size
|
327 |
+
)
|
328 |
+
labels = torch.ones(
|
329 |
+
in_points.shape[0], dtype=torch.int, device=in_points.device
|
330 |
+
)
|
331 |
+
masks, ious = self.refine_with_m2m(
|
332 |
+
in_points, labels, data["low_res_masks"], self.points_per_batch
|
333 |
+
)
|
334 |
+
data["masks"] = masks.squeeze(1)
|
335 |
+
data["iou_preds"] = ious.squeeze(1)
|
336 |
+
|
337 |
+
if self.pred_iou_thresh > 0.0:
|
338 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
339 |
+
data.filter(keep_mask)
|
340 |
+
|
341 |
+
data["stability_score"] = calculate_stability_score(
|
342 |
+
data["masks"], self.mask_threshold, self.stability_score_offset
|
343 |
+
)
|
344 |
+
if self.stability_score_thresh > 0.0:
|
345 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
346 |
+
data.filter(keep_mask)
|
347 |
+
|
348 |
+
# Threshold masks and calculate boxes
|
349 |
+
data["masks"] = data["masks"] > self.mask_threshold
|
350 |
+
data["boxes"] = batched_mask_to_box(data["masks"])
|
351 |
+
|
352 |
+
# Filter boxes that touch crop boundaries
|
353 |
+
keep_mask = ~is_box_near_crop_edge(
|
354 |
+
data["boxes"], crop_box, [0, 0, orig_w, orig_h]
|
355 |
+
)
|
356 |
+
if not torch.all(keep_mask):
|
357 |
+
data.filter(keep_mask)
|
358 |
+
|
359 |
+
# Compress to RLE
|
360 |
+
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
361 |
+
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
362 |
+
del data["masks"]
|
363 |
+
|
364 |
+
return data
|
365 |
+
|
366 |
+
@staticmethod
|
367 |
+
def postprocess_small_regions(
|
368 |
+
mask_data: MaskData, min_area: int, nms_thresh: float
|
369 |
+
) -> MaskData:
|
370 |
+
"""
|
371 |
+
Removes small disconnected regions and holes in masks, then reruns
|
372 |
+
box NMS to remove any new duplicates.
|
373 |
+
|
374 |
+
Edits mask_data in place.
|
375 |
+
|
376 |
+
Requires open-cv as a dependency.
|
377 |
+
"""
|
378 |
+
if len(mask_data["rles"]) == 0:
|
379 |
+
return mask_data
|
380 |
+
|
381 |
+
# Filter small disconnected regions and holes
|
382 |
+
new_masks = []
|
383 |
+
scores = []
|
384 |
+
for rle in mask_data["rles"]:
|
385 |
+
mask = rle_to_mask(rle)
|
386 |
+
|
387 |
+
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
388 |
+
unchanged = not changed
|
389 |
+
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
390 |
+
unchanged = unchanged and not changed
|
391 |
+
|
392 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
393 |
+
# Give score=0 to changed masks and score=1 to unchanged masks
|
394 |
+
# so NMS will prefer ones that didn't need postprocessing
|
395 |
+
scores.append(float(unchanged))
|
396 |
+
|
397 |
+
# Recalculate boxes and remove any new duplicates
|
398 |
+
masks = torch.cat(new_masks, dim=0)
|
399 |
+
boxes = batched_mask_to_box(masks)
|
400 |
+
keep_by_nms = batched_nms(
|
401 |
+
boxes.float(),
|
402 |
+
torch.as_tensor(scores),
|
403 |
+
torch.zeros_like(boxes[:, 0]), # categories
|
404 |
+
iou_threshold=nms_thresh,
|
405 |
+
)
|
406 |
+
|
407 |
+
# Only recalculate RLEs for masks that have changed
|
408 |
+
for i_mask in keep_by_nms:
|
409 |
+
if scores[i_mask] == 0.0:
|
410 |
+
mask_torch = masks[i_mask].unsqueeze(0)
|
411 |
+
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
412 |
+
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
413 |
+
mask_data.filter(keep_by_nms)
|
414 |
+
|
415 |
+
return mask_data
|
416 |
+
|
417 |
+
def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
|
418 |
+
new_masks = []
|
419 |
+
new_iou_preds = []
|
420 |
+
|
421 |
+
for cur_points, cur_point_labels, low_res_mask in batch_iterator(
|
422 |
+
points_per_batch, points, point_labels, low_res_masks
|
423 |
+
):
|
424 |
+
best_masks, best_iou_preds, _ = self.predictor._predict(
|
425 |
+
cur_points[:, None, :],
|
426 |
+
cur_point_labels[:, None],
|
427 |
+
mask_input=low_res_mask[:, None, :],
|
428 |
+
multimask_output=False,
|
429 |
+
return_logits=True,
|
430 |
+
)
|
431 |
+
new_masks.append(best_masks)
|
432 |
+
new_iou_preds.append(best_iou_preds)
|
433 |
+
masks = torch.cat(new_masks, dim=0)
|
434 |
+
return masks, torch.cat(new_iou_preds, dim=0)
|
sam2/build_sam.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import logging
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from hydra import compose
|
11 |
+
from hydra.utils import instantiate
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
|
14 |
+
from .utils.misc import VARIANTS, variant_to_config_mapping
|
15 |
+
|
16 |
+
|
17 |
+
def load_model(
|
18 |
+
variant: str,
|
19 |
+
ckpt_path=None,
|
20 |
+
device="cuda",
|
21 |
+
mode="eval",
|
22 |
+
hydra_overrides_extra=[],
|
23 |
+
apply_postprocessing=True,
|
24 |
+
) -> torch.nn.Module:
|
25 |
+
assert variant in VARIANTS, f"only accepted variants are {VARIANTS}"
|
26 |
+
|
27 |
+
return build_sam2(
|
28 |
+
config_file=variant_to_config_mapping[variant],
|
29 |
+
ckpt_path=ckpt_path,
|
30 |
+
device=device,
|
31 |
+
mode=mode,
|
32 |
+
hydra_overrides_extra=hydra_overrides_extra,
|
33 |
+
apply_postprocessing=apply_postprocessing,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def build_sam2(
|
38 |
+
config_file,
|
39 |
+
ckpt_path=None,
|
40 |
+
device="cuda",
|
41 |
+
mode="eval",
|
42 |
+
hydra_overrides_extra=[],
|
43 |
+
apply_postprocessing=True,
|
44 |
+
):
|
45 |
+
|
46 |
+
if apply_postprocessing:
|
47 |
+
hydra_overrides_extra = hydra_overrides_extra.copy()
|
48 |
+
hydra_overrides_extra += [
|
49 |
+
# dynamically fall back to multi-mask if the single mask is not stable
|
50 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
51 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
52 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
53 |
+
]
|
54 |
+
# Read config and init model
|
55 |
+
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
|
56 |
+
OmegaConf.resolve(cfg)
|
57 |
+
model = instantiate(cfg.model, _recursive_=True)
|
58 |
+
_load_checkpoint(model, ckpt_path)
|
59 |
+
model = model.to(device)
|
60 |
+
if mode == "eval":
|
61 |
+
model.eval()
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
def build_sam2_video_predictor(
|
66 |
+
config_file,
|
67 |
+
ckpt_path=None,
|
68 |
+
device="cuda",
|
69 |
+
mode="eval",
|
70 |
+
hydra_overrides_extra=[],
|
71 |
+
apply_postprocessing=True,
|
72 |
+
):
|
73 |
+
hydra_overrides = [
|
74 |
+
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
|
75 |
+
]
|
76 |
+
if apply_postprocessing:
|
77 |
+
hydra_overrides_extra = hydra_overrides_extra.copy()
|
78 |
+
hydra_overrides_extra += [
|
79 |
+
# dynamically fall back to multi-mask if the single mask is not stable
|
80 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
81 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
82 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
83 |
+
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
|
84 |
+
"++model.binarize_mask_from_pts_for_mem_enc=true",
|
85 |
+
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
|
86 |
+
# "++model.fill_hole_area=8",
|
87 |
+
]
|
88 |
+
hydra_overrides.extend(hydra_overrides_extra)
|
89 |
+
|
90 |
+
# Read config and init model
|
91 |
+
cfg = compose(config_name=config_file, overrides=hydra_overrides)
|
92 |
+
OmegaConf.resolve(cfg)
|
93 |
+
model = instantiate(cfg.model, _recursive_=True)
|
94 |
+
_load_checkpoint(model, ckpt_path)
|
95 |
+
model = model.to(device)
|
96 |
+
if mode == "eval":
|
97 |
+
model.eval()
|
98 |
+
return model
|
99 |
+
|
100 |
+
|
101 |
+
def _load_checkpoint(model, ckpt_path):
|
102 |
+
if ckpt_path is not None:
|
103 |
+
sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
|
104 |
+
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
105 |
+
if missing_keys:
|
106 |
+
logging.error(missing_keys)
|
107 |
+
raise RuntimeError()
|
108 |
+
if unexpected_keys:
|
109 |
+
logging.error(unexpected_keys)
|
110 |
+
raise RuntimeError()
|
111 |
+
logging.info("Loaded checkpoint sucessfully")
|
sam2/configs/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
sam2/configs/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/configs/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (181 Bytes). View file
|
|
sam2/configs/efficientam_s.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 384
|
13 |
+
depth: 12
|
14 |
+
num_heads: 6
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [384,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 1024
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/efficienttam_s_1.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 384
|
13 |
+
depth: 12
|
14 |
+
num_heads: 6
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [384,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.EfficientRoPEAttention1
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 1024
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/efficienttam_s_2.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 384
|
13 |
+
depth: 12
|
14 |
+
num_heads: 6
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [384,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.EfficientRoPEAttention2
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 1024
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/efficienttam_s_512x512.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 384
|
13 |
+
depth: 12
|
14 |
+
num_heads: 6
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [384,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 512
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/efficienttam_ti.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 192
|
13 |
+
depth: 12
|
14 |
+
num_heads: 3
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [192,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 1024
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/efficienttam_ti_1.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 192
|
13 |
+
depth: 12
|
14 |
+
num_heads: 3
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [192,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.EfficientRoPEAttention1
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 1024
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/efficienttam_ti_2.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 192
|
13 |
+
depth: 12
|
14 |
+
num_heads: 3
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [192,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.EfficientRoPEAttention2
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 1024
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/efficienttam_ti_512x512.yaml
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 0
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.vitdet.ViT
|
11 |
+
patch_size: 16
|
12 |
+
embed_dim: 192
|
13 |
+
depth: 12
|
14 |
+
num_heads: 3
|
15 |
+
mlp_ratio: 4.0
|
16 |
+
qkv_bias: true
|
17 |
+
drop_path_rate: 0.0
|
18 |
+
use_rel_pos: false
|
19 |
+
window_size: 14
|
20 |
+
window_block_indexes: [0, 1, 3, 4, 6, 7, 9, 10]
|
21 |
+
neck:
|
22 |
+
_target_: sam2.modeling.backbones.image_encoder.ViTDetNeck
|
23 |
+
position_encoding:
|
24 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
25 |
+
num_pos_feats: 256
|
26 |
+
normalize: true
|
27 |
+
scale: null
|
28 |
+
temperature: 10000
|
29 |
+
d_model: 256
|
30 |
+
backbone_channel_list: [192,]
|
31 |
+
neck_norm: LN
|
32 |
+
|
33 |
+
memory_attention:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
35 |
+
d_model: 256
|
36 |
+
pos_enc_at_input: true
|
37 |
+
layer:
|
38 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
39 |
+
activation: relu
|
40 |
+
dim_feedforward: 2048
|
41 |
+
dropout: 0.1
|
42 |
+
pos_enc_at_attn: false
|
43 |
+
self_attention:
|
44 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
45 |
+
rope_theta: 10000.0
|
46 |
+
feat_sizes: [32, 32]
|
47 |
+
embedding_dim: 256
|
48 |
+
num_heads: 1
|
49 |
+
downsample_rate: 1
|
50 |
+
dropout: 0.1
|
51 |
+
d_model: 256
|
52 |
+
pos_enc_at_cross_attn_keys: true
|
53 |
+
pos_enc_at_cross_attn_queries: false
|
54 |
+
cross_attention:
|
55 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
56 |
+
rope_theta: 10000.0
|
57 |
+
feat_sizes: [32, 32]
|
58 |
+
rope_k_repeat: True
|
59 |
+
embedding_dim: 256
|
60 |
+
num_heads: 1
|
61 |
+
downsample_rate: 1
|
62 |
+
dropout: 0.1
|
63 |
+
kv_in_dim: 64
|
64 |
+
num_layers: 4
|
65 |
+
|
66 |
+
memory_encoder:
|
67 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
68 |
+
out_dim: 64
|
69 |
+
position_encoding:
|
70 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
71 |
+
num_pos_feats: 64
|
72 |
+
normalize: true
|
73 |
+
scale: null
|
74 |
+
temperature: 10000
|
75 |
+
mask_downsampler:
|
76 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
77 |
+
kernel_size: 3
|
78 |
+
stride: 2
|
79 |
+
padding: 1
|
80 |
+
fuser:
|
81 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
82 |
+
layer:
|
83 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
84 |
+
dim: 256
|
85 |
+
kernel_size: 7
|
86 |
+
padding: 3
|
87 |
+
layer_scale_init_value: 1e-6
|
88 |
+
use_dwconv: True # depth-wise convs
|
89 |
+
num_layers: 2
|
90 |
+
|
91 |
+
num_maskmem: 7
|
92 |
+
image_size: 512
|
93 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
94 |
+
# SAM decoder
|
95 |
+
sigmoid_scale_for_mem_enc: 20.0
|
96 |
+
sigmoid_bias_for_mem_enc: -10.0
|
97 |
+
use_mask_input_as_output_without_sam: true
|
98 |
+
# Memory
|
99 |
+
directly_add_no_mem_embed: true
|
100 |
+
# use high-resolution feature map in the SAM mask decoder
|
101 |
+
# use_high_res_features_in_sam: true
|
102 |
+
use_high_res_features_in_sam: false
|
103 |
+
# output 3 masks on the first click on initial conditioning frames
|
104 |
+
multimask_output_in_sam: true
|
105 |
+
# SAM heads
|
106 |
+
iou_prediction_use_sigmoid: True
|
107 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
108 |
+
use_obj_ptrs_in_encoder: true
|
109 |
+
add_tpos_enc_to_obj_ptrs: false
|
110 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
111 |
+
# object occlusion prediction
|
112 |
+
pred_obj_scores: true
|
113 |
+
pred_obj_scores_mlp: true
|
114 |
+
fixed_no_obj_ptr: true
|
115 |
+
# multimask tracking settings
|
116 |
+
multimask_output_for_tracking: true
|
117 |
+
use_multimask_token_for_obj_ptr: true
|
118 |
+
multimask_min_pt_num: 0
|
119 |
+
multimask_max_pt_num: 1
|
120 |
+
use_mlp_for_obj_ptr_proj: true
|
121 |
+
# Compilation flag
|
122 |
+
# HieraT does not currently support compilation, should always be set to False
|
123 |
+
compile_image_encoder: false
|
sam2/configs/sam2_hiera_b+.yaml
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 112
|
12 |
+
num_heads: 2
|
13 |
+
neck:
|
14 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
15 |
+
position_encoding:
|
16 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
17 |
+
num_pos_feats: 256
|
18 |
+
normalize: true
|
19 |
+
scale: null
|
20 |
+
temperature: 10000
|
21 |
+
d_model: 256
|
22 |
+
backbone_channel_list: [896, 448, 224, 112]
|
23 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
24 |
+
fpn_interp_model: nearest
|
25 |
+
|
26 |
+
memory_attention:
|
27 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
28 |
+
d_model: 256
|
29 |
+
pos_enc_at_input: true
|
30 |
+
layer:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
32 |
+
activation: relu
|
33 |
+
dim_feedforward: 2048
|
34 |
+
dropout: 0.1
|
35 |
+
pos_enc_at_attn: false
|
36 |
+
self_attention:
|
37 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
38 |
+
rope_theta: 10000.0
|
39 |
+
feat_sizes: [32, 32]
|
40 |
+
embedding_dim: 256
|
41 |
+
num_heads: 1
|
42 |
+
downsample_rate: 1
|
43 |
+
dropout: 0.1
|
44 |
+
d_model: 256
|
45 |
+
pos_enc_at_cross_attn_keys: true
|
46 |
+
pos_enc_at_cross_attn_queries: false
|
47 |
+
cross_attention:
|
48 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
49 |
+
rope_theta: 10000.0
|
50 |
+
feat_sizes: [32, 32]
|
51 |
+
rope_k_repeat: True
|
52 |
+
embedding_dim: 256
|
53 |
+
num_heads: 1
|
54 |
+
downsample_rate: 1
|
55 |
+
dropout: 0.1
|
56 |
+
kv_in_dim: 64
|
57 |
+
num_layers: 4
|
58 |
+
|
59 |
+
memory_encoder:
|
60 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
61 |
+
out_dim: 64
|
62 |
+
position_encoding:
|
63 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
64 |
+
num_pos_feats: 64
|
65 |
+
normalize: true
|
66 |
+
scale: null
|
67 |
+
temperature: 10000
|
68 |
+
mask_downsampler:
|
69 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
70 |
+
kernel_size: 3
|
71 |
+
stride: 2
|
72 |
+
padding: 1
|
73 |
+
fuser:
|
74 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
75 |
+
layer:
|
76 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
77 |
+
dim: 256
|
78 |
+
kernel_size: 7
|
79 |
+
padding: 3
|
80 |
+
layer_scale_init_value: 1e-6
|
81 |
+
use_dwconv: True # depth-wise convs
|
82 |
+
num_layers: 2
|
83 |
+
|
84 |
+
num_maskmem: 7
|
85 |
+
image_size: 1024
|
86 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
87 |
+
sigmoid_scale_for_mem_enc: 20.0
|
88 |
+
sigmoid_bias_for_mem_enc: -10.0
|
89 |
+
use_mask_input_as_output_without_sam: true
|
90 |
+
# Memory
|
91 |
+
directly_add_no_mem_embed: true
|
92 |
+
# use high-resolution feature map in the SAM mask decoder
|
93 |
+
use_high_res_features_in_sam: true
|
94 |
+
# output 3 masks on the first click on initial conditioning frames
|
95 |
+
multimask_output_in_sam: true
|
96 |
+
# SAM heads
|
97 |
+
iou_prediction_use_sigmoid: True
|
98 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
99 |
+
use_obj_ptrs_in_encoder: true
|
100 |
+
add_tpos_enc_to_obj_ptrs: false
|
101 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
102 |
+
# object occlusion prediction
|
103 |
+
pred_obj_scores: true
|
104 |
+
pred_obj_scores_mlp: true
|
105 |
+
fixed_no_obj_ptr: true
|
106 |
+
# multimask tracking settings
|
107 |
+
multimask_output_for_tracking: true
|
108 |
+
use_multimask_token_for_obj_ptr: true
|
109 |
+
multimask_min_pt_num: 0
|
110 |
+
multimask_max_pt_num: 1
|
111 |
+
use_mlp_for_obj_ptr_proj: true
|
112 |
+
# Compilation flag
|
113 |
+
compile_image_encoder: False
|
sam2/configs/sam2_hiera_l.yaml
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 144
|
12 |
+
num_heads: 2
|
13 |
+
stages: [2, 6, 36, 4]
|
14 |
+
global_att_blocks: [23, 33, 43]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
window_spec: [8, 4, 16, 8]
|
17 |
+
neck:
|
18 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
19 |
+
position_encoding:
|
20 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
21 |
+
num_pos_feats: 256
|
22 |
+
normalize: true
|
23 |
+
scale: null
|
24 |
+
temperature: 10000
|
25 |
+
d_model: 256
|
26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
28 |
+
fpn_interp_model: nearest
|
29 |
+
|
30 |
+
memory_attention:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
32 |
+
d_model: 256
|
33 |
+
pos_enc_at_input: true
|
34 |
+
layer:
|
35 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
36 |
+
activation: relu
|
37 |
+
dim_feedforward: 2048
|
38 |
+
dropout: 0.1
|
39 |
+
pos_enc_at_attn: false
|
40 |
+
self_attention:
|
41 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
42 |
+
rope_theta: 10000.0
|
43 |
+
feat_sizes: [32, 32]
|
44 |
+
embedding_dim: 256
|
45 |
+
num_heads: 1
|
46 |
+
downsample_rate: 1
|
47 |
+
dropout: 0.1
|
48 |
+
d_model: 256
|
49 |
+
pos_enc_at_cross_attn_keys: true
|
50 |
+
pos_enc_at_cross_attn_queries: false
|
51 |
+
cross_attention:
|
52 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
53 |
+
rope_theta: 10000.0
|
54 |
+
feat_sizes: [32, 32]
|
55 |
+
rope_k_repeat: True
|
56 |
+
embedding_dim: 256
|
57 |
+
num_heads: 1
|
58 |
+
downsample_rate: 1
|
59 |
+
dropout: 0.1
|
60 |
+
kv_in_dim: 64
|
61 |
+
num_layers: 4
|
62 |
+
|
63 |
+
memory_encoder:
|
64 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
65 |
+
out_dim: 64
|
66 |
+
position_encoding:
|
67 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
68 |
+
num_pos_feats: 64
|
69 |
+
normalize: true
|
70 |
+
scale: null
|
71 |
+
temperature: 10000
|
72 |
+
mask_downsampler:
|
73 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
74 |
+
kernel_size: 3
|
75 |
+
stride: 2
|
76 |
+
padding: 1
|
77 |
+
fuser:
|
78 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
79 |
+
layer:
|
80 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
81 |
+
dim: 256
|
82 |
+
kernel_size: 7
|
83 |
+
padding: 3
|
84 |
+
layer_scale_init_value: 1e-6
|
85 |
+
use_dwconv: True # depth-wise convs
|
86 |
+
num_layers: 2
|
87 |
+
|
88 |
+
num_maskmem: 7
|
89 |
+
image_size: 1024
|
90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
# use high-resolution feature map in the SAM mask decoder
|
97 |
+
use_high_res_features_in_sam: true
|
98 |
+
# output 3 masks on the first click on initial conditioning frames
|
99 |
+
multimask_output_in_sam: true
|
100 |
+
# SAM heads
|
101 |
+
iou_prediction_use_sigmoid: True
|
102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
103 |
+
use_obj_ptrs_in_encoder: true
|
104 |
+
add_tpos_enc_to_obj_ptrs: false
|
105 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
106 |
+
# object occlusion prediction
|
107 |
+
pred_obj_scores: true
|
108 |
+
pred_obj_scores_mlp: true
|
109 |
+
fixed_no_obj_ptr: true
|
110 |
+
# multimask tracking settings
|
111 |
+
multimask_output_for_tracking: true
|
112 |
+
use_multimask_token_for_obj_ptr: true
|
113 |
+
multimask_min_pt_num: 0
|
114 |
+
multimask_max_pt_num: 1
|
115 |
+
use_mlp_for_obj_ptr_proj: true
|
116 |
+
# Compilation flag
|
117 |
+
compile_image_encoder: False
|
sam2/configs/sam2_hiera_s.yaml
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 11, 2]
|
14 |
+
global_att_blocks: [7, 10, 13]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [32, 32]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [32, 32]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
sigmoid_scale_for_mem_enc: 20.0
|
91 |
+
sigmoid_bias_for_mem_enc: -10.0
|
92 |
+
use_mask_input_as_output_without_sam: true
|
93 |
+
# Memory
|
94 |
+
directly_add_no_mem_embed: true
|
95 |
+
# use high-resolution feature map in the SAM mask decoder
|
96 |
+
use_high_res_features_in_sam: true
|
97 |
+
# output 3 masks on the first click on initial conditioning frames
|
98 |
+
multimask_output_in_sam: true
|
99 |
+
# SAM heads
|
100 |
+
iou_prediction_use_sigmoid: True
|
101 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
102 |
+
use_obj_ptrs_in_encoder: true
|
103 |
+
add_tpos_enc_to_obj_ptrs: false
|
104 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
105 |
+
# object occlusion prediction
|
106 |
+
pred_obj_scores: true
|
107 |
+
pred_obj_scores_mlp: true
|
108 |
+
fixed_no_obj_ptr: true
|
109 |
+
# multimask tracking settings
|
110 |
+
multimask_output_for_tracking: true
|
111 |
+
use_multimask_token_for_obj_ptr: true
|
112 |
+
multimask_min_pt_num: 0
|
113 |
+
multimask_max_pt_num: 1
|
114 |
+
use_mlp_for_obj_ptr_proj: true
|
115 |
+
# Compilation flag
|
116 |
+
compile_image_encoder: False
|
sam2/configs/sam2_hiera_t.yaml
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 7, 2]
|
14 |
+
global_att_blocks: [5, 7, 9]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [32, 32]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [32, 32]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
# SAM decoder
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
# use high-resolution feature map in the SAM mask decoder
|
97 |
+
use_high_res_features_in_sam: true
|
98 |
+
# output 3 masks on the first click on initial conditioning frames
|
99 |
+
multimask_output_in_sam: true
|
100 |
+
# SAM heads
|
101 |
+
iou_prediction_use_sigmoid: True
|
102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
103 |
+
use_obj_ptrs_in_encoder: true
|
104 |
+
add_tpos_enc_to_obj_ptrs: false
|
105 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
106 |
+
# object occlusion prediction
|
107 |
+
pred_obj_scores: true
|
108 |
+
pred_obj_scores_mlp: true
|
109 |
+
fixed_no_obj_ptr: true
|
110 |
+
# multimask tracking settings
|
111 |
+
multimask_output_for_tracking: true
|
112 |
+
use_multimask_token_for_obj_ptr: true
|
113 |
+
multimask_min_pt_num: 0
|
114 |
+
multimask_max_pt_num: 1
|
115 |
+
use_mlp_for_obj_ptr_proj: true
|
116 |
+
# Compilation flag
|
117 |
+
# HieraT does not currently support compilation, should always be set to False
|
118 |
+
compile_image_encoder: False
|
sam2/modeling/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (182 Bytes). View file
|
|
sam2/modeling/__pycache__/memory_attention.cpython-312.pyc
ADDED
Binary file (7.27 kB). View file
|
|
sam2/modeling/__pycache__/memory_encoder.cpython-312.pyc
ADDED
Binary file (7.85 kB). View file
|
|
sam2/modeling/__pycache__/position_encoding.cpython-312.pyc
ADDED
Binary file (14.4 kB). View file
|
|
sam2/modeling/__pycache__/sam2_base.cpython-312.pyc
ADDED
Binary file (29.2 kB). View file
|
|
sam2/modeling/__pycache__/sam2_utils.cpython-312.pyc
ADDED
Binary file (11.7 kB). View file
|
|
sam2/modeling/backbones/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/backbones/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (192 Bytes). View file
|
|
sam2/modeling/backbones/__pycache__/hieradet.cpython-312.pyc
ADDED
Binary file (12 kB). View file
|
|
sam2/modeling/backbones/__pycache__/image_encoder.cpython-312.pyc
ADDED
Binary file (8 kB). View file
|
|
sam2/modeling/backbones/__pycache__/utils.cpython-312.pyc
ADDED
Binary file (5.68 kB). View file
|
|
sam2/modeling/backbones/__pycache__/vitdet.cpython-312.pyc
ADDED
Binary file (12.9 kB). View file
|
|
sam2/modeling/backbones/hieradet.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from functools import partial
|
8 |
+
from typing import List, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from sam2.modeling.backbones.utils import (
|
15 |
+
PatchEmbed,
|
16 |
+
window_partition,
|
17 |
+
window_unpartition,
|
18 |
+
)
|
19 |
+
from sam2.modeling.sam2_utils import MLP, DropPath
|
20 |
+
|
21 |
+
|
22 |
+
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
23 |
+
if pool is None:
|
24 |
+
return x
|
25 |
+
# (B, H, W, C) -> (B, C, H, W)
|
26 |
+
x = x.permute(0, 3, 1, 2)
|
27 |
+
x = pool(x)
|
28 |
+
# (B, C, H', W') -> (B, H', W', C)
|
29 |
+
x = x.permute(0, 2, 3, 1)
|
30 |
+
if norm:
|
31 |
+
x = norm(x)
|
32 |
+
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class MultiScaleAttention(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
dim: int,
|
40 |
+
dim_out: int,
|
41 |
+
num_heads: int,
|
42 |
+
q_pool: nn.Module = None,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
|
46 |
+
self.dim = dim
|
47 |
+
self.dim_out = dim_out
|
48 |
+
|
49 |
+
self.num_heads = num_heads
|
50 |
+
head_dim = dim_out // num_heads
|
51 |
+
self.scale = head_dim**-0.5
|
52 |
+
|
53 |
+
self.q_pool = q_pool
|
54 |
+
self.qkv = nn.Linear(dim, dim_out * 3)
|
55 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
56 |
+
|
57 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
58 |
+
B, H, W, _ = x.shape
|
59 |
+
# qkv with shape (B, H * W, 3, nHead, C)
|
60 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
61 |
+
# q, k, v with shape (B, H * W, nheads, C)
|
62 |
+
q, k, v = torch.unbind(qkv, 2)
|
63 |
+
|
64 |
+
# Q pooling (for downsample at stage changes)
|
65 |
+
if self.q_pool:
|
66 |
+
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
67 |
+
H, W = q.shape[1:3] # downsampled shape
|
68 |
+
q = q.reshape(B, H * W, self.num_heads, -1)
|
69 |
+
|
70 |
+
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
71 |
+
x = F.scaled_dot_product_attention(
|
72 |
+
q.transpose(1, 2),
|
73 |
+
k.transpose(1, 2),
|
74 |
+
v.transpose(1, 2),
|
75 |
+
)
|
76 |
+
# Transpose back
|
77 |
+
x = x.transpose(1, 2)
|
78 |
+
x = x.reshape(B, H, W, -1)
|
79 |
+
|
80 |
+
x = self.proj(x)
|
81 |
+
|
82 |
+
return x
|
83 |
+
|
84 |
+
|
85 |
+
class MultiScaleBlock(nn.Module):
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
dim: int,
|
89 |
+
dim_out: int,
|
90 |
+
num_heads: int,
|
91 |
+
mlp_ratio: float = 4.0,
|
92 |
+
drop_path: float = 0.0,
|
93 |
+
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
94 |
+
q_stride: Tuple[int, int] = None,
|
95 |
+
act_layer: nn.Module = nn.GELU,
|
96 |
+
window_size: int = 0,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
if isinstance(norm_layer, str):
|
101 |
+
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
102 |
+
|
103 |
+
self.dim = dim
|
104 |
+
self.dim_out = dim_out
|
105 |
+
self.norm1 = norm_layer(dim)
|
106 |
+
|
107 |
+
self.window_size = window_size
|
108 |
+
|
109 |
+
self.pool, self.q_stride = None, q_stride
|
110 |
+
if self.q_stride:
|
111 |
+
self.pool = nn.MaxPool2d(
|
112 |
+
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
113 |
+
)
|
114 |
+
|
115 |
+
self.attn = MultiScaleAttention(
|
116 |
+
dim,
|
117 |
+
dim_out,
|
118 |
+
num_heads=num_heads,
|
119 |
+
q_pool=self.pool,
|
120 |
+
)
|
121 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
122 |
+
|
123 |
+
self.norm2 = norm_layer(dim_out)
|
124 |
+
self.mlp = MLP(
|
125 |
+
dim_out,
|
126 |
+
int(dim_out * mlp_ratio),
|
127 |
+
dim_out,
|
128 |
+
num_layers=2,
|
129 |
+
activation=act_layer,
|
130 |
+
)
|
131 |
+
|
132 |
+
if dim != dim_out:
|
133 |
+
self.proj = nn.Linear(dim, dim_out)
|
134 |
+
|
135 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
136 |
+
shortcut = x # B, H, W, C
|
137 |
+
x = self.norm1(x)
|
138 |
+
|
139 |
+
# Skip connection
|
140 |
+
if self.dim != self.dim_out:
|
141 |
+
shortcut = do_pool(self.proj(x), self.pool)
|
142 |
+
|
143 |
+
# Window partition
|
144 |
+
window_size = self.window_size
|
145 |
+
if window_size > 0:
|
146 |
+
H, W = x.shape[1], x.shape[2]
|
147 |
+
x, pad_hw = window_partition(x, window_size)
|
148 |
+
|
149 |
+
# Window Attention + Q Pooling (if stage change)
|
150 |
+
x = self.attn(x)
|
151 |
+
if self.q_stride:
|
152 |
+
# Shapes have changed due to Q pooling
|
153 |
+
window_size = self.window_size // self.q_stride[0]
|
154 |
+
H, W = shortcut.shape[1:3]
|
155 |
+
|
156 |
+
pad_h = (window_size - H % window_size) % window_size
|
157 |
+
pad_w = (window_size - W % window_size) % window_size
|
158 |
+
pad_hw = (H + pad_h, W + pad_w)
|
159 |
+
|
160 |
+
# Reverse window partition
|
161 |
+
if self.window_size > 0:
|
162 |
+
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
163 |
+
|
164 |
+
x = shortcut + self.drop_path(x)
|
165 |
+
# MLP
|
166 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
class Hiera(nn.Module):
|
171 |
+
"""
|
172 |
+
Reference: https://arxiv.org/abs/2306.00989
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(
|
176 |
+
self,
|
177 |
+
embed_dim: int = 96, # initial embed dim
|
178 |
+
num_heads: int = 1, # initial number of heads
|
179 |
+
drop_path_rate: float = 0.0, # stochastic depth
|
180 |
+
q_pool: int = 3, # number of q_pool stages
|
181 |
+
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
182 |
+
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
183 |
+
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
184 |
+
head_mul: float = 2.0, # head_mul factor at stage shift
|
185 |
+
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
186 |
+
# window size per stage, when not using global att.
|
187 |
+
window_spec: Tuple[int, ...] = (
|
188 |
+
8,
|
189 |
+
4,
|
190 |
+
14,
|
191 |
+
7,
|
192 |
+
),
|
193 |
+
# global attn in these blocks
|
194 |
+
global_att_blocks: Tuple[int, ...] = (
|
195 |
+
12,
|
196 |
+
16,
|
197 |
+
20,
|
198 |
+
),
|
199 |
+
return_interm_layers=True, # return feats from every stage
|
200 |
+
):
|
201 |
+
super().__init__()
|
202 |
+
|
203 |
+
assert len(stages) == len(window_spec)
|
204 |
+
self.window_spec = window_spec
|
205 |
+
|
206 |
+
depth = sum(stages)
|
207 |
+
self.q_stride = q_stride
|
208 |
+
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
209 |
+
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
210 |
+
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
211 |
+
self.return_interm_layers = return_interm_layers
|
212 |
+
|
213 |
+
self.patch_embed = PatchEmbed(
|
214 |
+
embed_dim=embed_dim,
|
215 |
+
)
|
216 |
+
# Which blocks have global att?
|
217 |
+
self.global_att_blocks = global_att_blocks
|
218 |
+
|
219 |
+
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
220 |
+
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
221 |
+
self.pos_embed = nn.Parameter(
|
222 |
+
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
223 |
+
)
|
224 |
+
self.pos_embed_window = nn.Parameter(
|
225 |
+
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
226 |
+
)
|
227 |
+
|
228 |
+
dpr = [
|
229 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
230 |
+
] # stochastic depth decay rule
|
231 |
+
|
232 |
+
cur_stage = 1
|
233 |
+
self.blocks = nn.ModuleList()
|
234 |
+
|
235 |
+
for i in range(depth):
|
236 |
+
dim_out = embed_dim
|
237 |
+
# lags by a block, so first block of
|
238 |
+
# next stage uses an initial window size
|
239 |
+
# of previous stage and final window size of current stage
|
240 |
+
window_size = self.window_spec[cur_stage - 1]
|
241 |
+
|
242 |
+
if self.global_att_blocks is not None:
|
243 |
+
window_size = 0 if i in self.global_att_blocks else window_size
|
244 |
+
|
245 |
+
if i - 1 in self.stage_ends:
|
246 |
+
dim_out = int(embed_dim * dim_mul)
|
247 |
+
num_heads = int(num_heads * head_mul)
|
248 |
+
cur_stage += 1
|
249 |
+
|
250 |
+
block = MultiScaleBlock(
|
251 |
+
dim=embed_dim,
|
252 |
+
dim_out=dim_out,
|
253 |
+
num_heads=num_heads,
|
254 |
+
drop_path=dpr[i],
|
255 |
+
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
256 |
+
window_size=window_size,
|
257 |
+
)
|
258 |
+
|
259 |
+
embed_dim = dim_out
|
260 |
+
self.blocks.append(block)
|
261 |
+
|
262 |
+
self.channel_list = (
|
263 |
+
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
264 |
+
if return_interm_layers
|
265 |
+
else [self.blocks[-1].dim_out]
|
266 |
+
)
|
267 |
+
|
268 |
+
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
269 |
+
h, w = hw
|
270 |
+
window_embed = self.pos_embed_window
|
271 |
+
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
272 |
+
pos_embed = pos_embed + window_embed.tile(
|
273 |
+
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
274 |
+
)
|
275 |
+
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
276 |
+
return pos_embed
|
277 |
+
|
278 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
279 |
+
x = self.patch_embed(x)
|
280 |
+
# x: (B, H, W, C)
|
281 |
+
|
282 |
+
# Add pos embed
|
283 |
+
x = x + self._get_pos_embed(x.shape[1:3])
|
284 |
+
|
285 |
+
outputs = []
|
286 |
+
for i, blk in enumerate(self.blocks):
|
287 |
+
x = blk(x)
|
288 |
+
if (i == self.stage_ends[-1]) or (
|
289 |
+
i in self.stage_ends and self.return_interm_layers
|
290 |
+
):
|
291 |
+
feats = x.permute(0, 3, 1, 2)
|
292 |
+
outputs.append(feats)
|
293 |
+
|
294 |
+
return outputs
|
sam2/modeling/backbones/image_encoder.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from sam2.modeling.sam2_utils import LayerNorm2d
|
14 |
+
|
15 |
+
class ImageEncoder(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
trunk: nn.Module,
|
19 |
+
neck: nn.Module,
|
20 |
+
scalp: int = 0,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
self.trunk = trunk
|
24 |
+
self.neck = neck
|
25 |
+
self.scalp = scalp
|
26 |
+
assert (
|
27 |
+
self.trunk.channel_list == self.neck.backbone_channel_list
|
28 |
+
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
|
29 |
+
|
30 |
+
def forward(self, sample: torch.Tensor):
|
31 |
+
# Forward through backbone
|
32 |
+
features, pos = self.neck(self.trunk(sample))
|
33 |
+
if self.scalp > 0:
|
34 |
+
# Discard the lowest resolution features
|
35 |
+
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
36 |
+
|
37 |
+
src = features[-1]
|
38 |
+
output = {
|
39 |
+
"vision_features": src,
|
40 |
+
"vision_pos_enc": pos,
|
41 |
+
"backbone_fpn": features,
|
42 |
+
}
|
43 |
+
return output
|
44 |
+
|
45 |
+
|
46 |
+
class FpnNeck(nn.Module):
|
47 |
+
"""
|
48 |
+
A modified variant of Feature Pyramid Network (FPN) neck
|
49 |
+
(we remove output conv and also do bicubic interpolation similar to ViT
|
50 |
+
pos embed interpolation)
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
position_encoding: nn.Module,
|
56 |
+
d_model: int,
|
57 |
+
backbone_channel_list: List[int],
|
58 |
+
kernel_size: int = 1,
|
59 |
+
stride: int = 1,
|
60 |
+
padding: int = 0,
|
61 |
+
fpn_interp_model: str = "bilinear",
|
62 |
+
fuse_type: str = "sum",
|
63 |
+
fpn_top_down_levels: Optional[List[int]] = None,
|
64 |
+
):
|
65 |
+
"""Initialize the neck
|
66 |
+
:param trunk: the backbone
|
67 |
+
:param position_encoding: the positional encoding to use
|
68 |
+
:param d_model: the dimension of the model
|
69 |
+
:param neck_norm: the normalization to use
|
70 |
+
"""
|
71 |
+
super().__init__()
|
72 |
+
self.position_encoding = position_encoding
|
73 |
+
self.convs = nn.ModuleList()
|
74 |
+
self.backbone_channel_list = backbone_channel_list
|
75 |
+
for dim in backbone_channel_list:
|
76 |
+
current = nn.Sequential()
|
77 |
+
current.add_module(
|
78 |
+
"conv",
|
79 |
+
nn.Conv2d(
|
80 |
+
in_channels=dim,
|
81 |
+
out_channels=d_model,
|
82 |
+
kernel_size=kernel_size,
|
83 |
+
stride=stride,
|
84 |
+
padding=padding,
|
85 |
+
),
|
86 |
+
)
|
87 |
+
|
88 |
+
self.convs.append(current)
|
89 |
+
self.fpn_interp_model = fpn_interp_model
|
90 |
+
assert fuse_type in ["sum", "avg"]
|
91 |
+
self.fuse_type = fuse_type
|
92 |
+
|
93 |
+
# levels to have top-down features in its outputs
|
94 |
+
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
95 |
+
# have top-down propagation, while outputs of level 0 and level 1 have only
|
96 |
+
# lateral features from the same backbone level.
|
97 |
+
if fpn_top_down_levels is None:
|
98 |
+
# default is to have top-down features on all levels
|
99 |
+
fpn_top_down_levels = range(len(self.convs))
|
100 |
+
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
101 |
+
|
102 |
+
def forward(self, xs: List[torch.Tensor]):
|
103 |
+
|
104 |
+
out = [None] * len(self.convs)
|
105 |
+
pos = [None] * len(self.convs)
|
106 |
+
assert len(xs) == len(self.convs)
|
107 |
+
# fpn forward pass
|
108 |
+
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
109 |
+
prev_features = None
|
110 |
+
# forward in top-down order (from low to high resolution)
|
111 |
+
n = len(self.convs) - 1
|
112 |
+
for i in range(n, -1, -1):
|
113 |
+
x = xs[i]
|
114 |
+
lateral_features = self.convs[n - i](x)
|
115 |
+
if i in self.fpn_top_down_levels and prev_features is not None:
|
116 |
+
top_down_features = F.interpolate(
|
117 |
+
prev_features.to(dtype=torch.float32),
|
118 |
+
scale_factor=2.0,
|
119 |
+
mode=self.fpn_interp_model,
|
120 |
+
align_corners=(
|
121 |
+
None if self.fpn_interp_model == "nearest" else False
|
122 |
+
),
|
123 |
+
antialias=False,
|
124 |
+
)
|
125 |
+
prev_features = lateral_features + top_down_features
|
126 |
+
if self.fuse_type == "avg":
|
127 |
+
prev_features /= 2
|
128 |
+
else:
|
129 |
+
prev_features = lateral_features
|
130 |
+
x_out = prev_features
|
131 |
+
out[i] = x_out
|
132 |
+
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
133 |
+
|
134 |
+
return out, pos
|
135 |
+
|
136 |
+
class ViTDetNeck(nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
position_encoding: nn.Module,
|
140 |
+
d_model: int,
|
141 |
+
backbone_channel_list: List[int],
|
142 |
+
kernel_size: int = 1,
|
143 |
+
stride: int = 1,
|
144 |
+
padding: int = 0,
|
145 |
+
neck_norm=None,
|
146 |
+
):
|
147 |
+
"""Initialize the neck
|
148 |
+
|
149 |
+
:param trunk: the backbone
|
150 |
+
:param position_encoding: the positional encoding to use
|
151 |
+
:param d_model: the dimension of the model
|
152 |
+
:param neck_norm: the normalization to use
|
153 |
+
"""
|
154 |
+
super().__init__()
|
155 |
+
self.backbone_channel_list = backbone_channel_list
|
156 |
+
self.position_encoding = position_encoding
|
157 |
+
self.convs = nn.ModuleList()
|
158 |
+
use_bias = neck_norm is None
|
159 |
+
for dim in self.backbone_channel_list:
|
160 |
+
current = nn.Sequential()
|
161 |
+
current.add_module(
|
162 |
+
"conv_1x1",
|
163 |
+
nn.Conv2d(
|
164 |
+
in_channels=dim,
|
165 |
+
out_channels=d_model,
|
166 |
+
kernel_size=1,
|
167 |
+
bias=use_bias,
|
168 |
+
),
|
169 |
+
)
|
170 |
+
if neck_norm is not None:
|
171 |
+
current.add_module("norm_0", LayerNorm2d(d_model))
|
172 |
+
current.add_module(
|
173 |
+
"conv_3x3",
|
174 |
+
nn.Conv2d(
|
175 |
+
in_channels=d_model,
|
176 |
+
out_channels=d_model,
|
177 |
+
kernel_size=3,
|
178 |
+
padding=1,
|
179 |
+
bias=use_bias,
|
180 |
+
),
|
181 |
+
)
|
182 |
+
if neck_norm is not None:
|
183 |
+
current.add_module("norm_1", LayerNorm2d(d_model))
|
184 |
+
self.convs.append(current)
|
185 |
+
|
186 |
+
def forward(self, xs: List[torch.Tensor]):
|
187 |
+
out = [None] * len(self.convs)
|
188 |
+
pos = [None] * len(self.convs)
|
189 |
+
assert len(xs) == len(self.convs)
|
190 |
+
|
191 |
+
x = xs[0]
|
192 |
+
x_out = self.convs[0](x)
|
193 |
+
out[0] = x_out
|
194 |
+
pos[0] = self.position_encoding(x_out).to(x_out.dtype)
|
195 |
+
|
196 |
+
return out, pos
|
sam2/modeling/backbones/utils.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""Some utilities for backbones, in particular for windowing"""
|
8 |
+
|
9 |
+
from typing import Tuple
|
10 |
+
import math
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
|
17 |
+
def window_partition(x, window_size):
|
18 |
+
"""
|
19 |
+
Partition into non-overlapping windows with padding if needed.
|
20 |
+
Args:
|
21 |
+
x (tensor): input tokens with [B, H, W, C].
|
22 |
+
window_size (int): window size.
|
23 |
+
Returns:
|
24 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
25 |
+
(Hp, Wp): padded height and width before partition
|
26 |
+
"""
|
27 |
+
B, H, W, C = x.shape
|
28 |
+
|
29 |
+
pad_h = (window_size - H % window_size) % window_size
|
30 |
+
pad_w = (window_size - W % window_size) % window_size
|
31 |
+
if pad_h > 0 or pad_w > 0:
|
32 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
33 |
+
Hp, Wp = H + pad_h, W + pad_w
|
34 |
+
|
35 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
36 |
+
windows = (
|
37 |
+
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
38 |
+
)
|
39 |
+
return windows, (Hp, Wp)
|
40 |
+
|
41 |
+
|
42 |
+
def window_unpartition(windows, window_size, pad_hw, hw):
|
43 |
+
"""
|
44 |
+
Window unpartition into original sequences and removing padding.
|
45 |
+
Args:
|
46 |
+
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
47 |
+
window_size (int): window size.
|
48 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
49 |
+
hw (Tuple): original height and width (H, W) before padding.
|
50 |
+
Returns:
|
51 |
+
x: unpartitioned sequences with [B, H, W, C].
|
52 |
+
"""
|
53 |
+
Hp, Wp = pad_hw
|
54 |
+
H, W = hw
|
55 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
56 |
+
x = windows.view(
|
57 |
+
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
58 |
+
)
|
59 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
60 |
+
|
61 |
+
if Hp > H or Wp > W:
|
62 |
+
x = x[:, :H, :W, :].contiguous()
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class PatchEmbed(nn.Module):
|
67 |
+
"""
|
68 |
+
Image to Patch Embedding.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
kernel_size: Tuple[int, ...] = (7, 7),
|
74 |
+
stride: Tuple[int, ...] = (4, 4),
|
75 |
+
padding: Tuple[int, ...] = (3, 3),
|
76 |
+
in_chans: int = 3,
|
77 |
+
embed_dim: int = 768,
|
78 |
+
):
|
79 |
+
"""
|
80 |
+
Args:
|
81 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
82 |
+
stride (Tuple): stride of the projection layer.
|
83 |
+
padding (Tuple): padding size of the projection layer.
|
84 |
+
in_chans (int): Number of input image channels.
|
85 |
+
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
86 |
+
"""
|
87 |
+
super().__init__()
|
88 |
+
self.proj = nn.Conv2d(
|
89 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
90 |
+
)
|
91 |
+
|
92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
93 |
+
x = self.proj(x)
|
94 |
+
# B C H W -> B H W C
|
95 |
+
x = x.permute(0, 2, 3, 1)
|
96 |
+
return x
|
97 |
+
|
98 |
+
def get_abs_pos(abs_pos, has_cls_token, hw):
|
99 |
+
"""
|
100 |
+
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
|
101 |
+
dimension for the original embeddings.
|
102 |
+
Args:
|
103 |
+
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
|
104 |
+
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
|
105 |
+
hw (Tuple): size of input image tokens.
|
106 |
+
Returns:
|
107 |
+
Absolute positional embeddings after processing with shape (1, H, W, C)
|
108 |
+
"""
|
109 |
+
h, w = hw
|
110 |
+
if has_cls_token:
|
111 |
+
abs_pos = abs_pos[:, 1:]
|
112 |
+
xy_num = abs_pos.shape[1]
|
113 |
+
size = int(math.sqrt(xy_num))
|
114 |
+
assert size * size == xy_num
|
115 |
+
|
116 |
+
if size != h or size != w:
|
117 |
+
new_abs_pos = F.interpolate(
|
118 |
+
abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2),
|
119 |
+
size=(h, w),
|
120 |
+
mode="bicubic",
|
121 |
+
align_corners=False,
|
122 |
+
)
|
123 |
+
return new_abs_pos.permute(0, 2, 3, 1)
|
124 |
+
else:
|
125 |
+
return abs_pos.reshape(1, h, w, -1)
|
sam2/modeling/backbones/vitdet.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""ViTDet backbone adapted from Detectron2"""
|
2 |
+
|
3 |
+
from functools import partial
|
4 |
+
from typing import List, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from sam2.modeling.backbones.utils import (
|
11 |
+
PatchEmbed,
|
12 |
+
window_partition,
|
13 |
+
window_unpartition,
|
14 |
+
get_abs_pos,
|
15 |
+
)
|
16 |
+
|
17 |
+
from sam2.modeling.sam2_utils import DropPath, MLP, LayerScale
|
18 |
+
|
19 |
+
from functools import partial
|
20 |
+
|
21 |
+
|
22 |
+
class Attention(nn.Module):
|
23 |
+
"""Multi-head Attention block with relative position embeddings."""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
dim,
|
28 |
+
num_heads=8,
|
29 |
+
qkv_bias=True,
|
30 |
+
use_rel_pos=False,
|
31 |
+
rel_pos_zero_init=True,
|
32 |
+
input_size=None,
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
dim (int): Number of input channels.
|
37 |
+
num_heads (int): Number of attention heads.
|
38 |
+
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
39 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
40 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
41 |
+
input_size (int or None): Input resolution for calculating the relative positional
|
42 |
+
parameter size.
|
43 |
+
attn_type: Type of attention operation, e.g. "vanilla", "vanilla-xformer".
|
44 |
+
"""
|
45 |
+
super().__init__()
|
46 |
+
self.num_heads = num_heads
|
47 |
+
head_dim = dim // num_heads
|
48 |
+
self.scale = head_dim**-0.5
|
49 |
+
|
50 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
51 |
+
self.proj = nn.Linear(dim, dim)
|
52 |
+
|
53 |
+
self.use_rel_pos = use_rel_pos
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
B, H, W, _ = x.shape
|
57 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
58 |
+
qkv = (
|
59 |
+
self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
60 |
+
)
|
61 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
62 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
63 |
+
|
64 |
+
q = q.view(B, self.num_heads, H * W, -1)
|
65 |
+
k = k.view(B, self.num_heads, H * W, -1)
|
66 |
+
v = v.view(B, self.num_heads, H * W, -1)
|
67 |
+
with torch.backends.cuda.sdp_kernel(
|
68 |
+
enable_flash=True,
|
69 |
+
enable_math=True,
|
70 |
+
enable_mem_efficient=True,
|
71 |
+
):
|
72 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
73 |
+
x = (
|
74 |
+
x.view(B, self.num_heads, H, W, -1)
|
75 |
+
.permute(0, 2, 3, 1, 4)
|
76 |
+
.reshape(B, H, W, -1)
|
77 |
+
)
|
78 |
+
x = self.proj(x)
|
79 |
+
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
class Block(nn.Module):
|
84 |
+
"""Transformer blocks with support of window attention"""
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
dim,
|
89 |
+
num_heads,
|
90 |
+
mlp_ratio=4.0,
|
91 |
+
qkv_bias=True,
|
92 |
+
drop_path=0.0,
|
93 |
+
norm_layer=nn.LayerNorm,
|
94 |
+
act_layer=nn.GELU,
|
95 |
+
use_rel_pos=False,
|
96 |
+
rel_pos_zero_init=True,
|
97 |
+
window_size=0,
|
98 |
+
input_size=None,
|
99 |
+
dropout=0.0,
|
100 |
+
init_values=None,
|
101 |
+
):
|
102 |
+
"""
|
103 |
+
Args:
|
104 |
+
dim (int): Number of input channels.
|
105 |
+
num_heads (int): Number of attention heads in each ViT block.
|
106 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
107 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
108 |
+
drop_path (float): Stochastic depth rate.
|
109 |
+
norm_layer (nn.Module): Normalization layer.
|
110 |
+
act_layer (nn.Module): Activation layer.
|
111 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
112 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
113 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then not
|
114 |
+
use window attention.
|
115 |
+
input_size (int or None): Input resolution for calculating the relative positional
|
116 |
+
parameter size.
|
117 |
+
dropout (float): Dropout rate.
|
118 |
+
"""
|
119 |
+
super().__init__()
|
120 |
+
self.norm1 = norm_layer(dim)
|
121 |
+
self.attn = Attention(
|
122 |
+
dim,
|
123 |
+
num_heads=num_heads,
|
124 |
+
qkv_bias=qkv_bias,
|
125 |
+
use_rel_pos=use_rel_pos,
|
126 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
127 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
128 |
+
)
|
129 |
+
self.ls1 = (
|
130 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
131 |
+
)
|
132 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
133 |
+
|
134 |
+
self.norm2 = norm_layer(dim)
|
135 |
+
self.mlp = MLP(
|
136 |
+
dim,
|
137 |
+
int(dim * mlp_ratio),
|
138 |
+
dim,
|
139 |
+
num_layers=2,
|
140 |
+
activation=act_layer,
|
141 |
+
)
|
142 |
+
# self.mlp = Mlp2(
|
143 |
+
# in_features=dim,
|
144 |
+
# hidden_features=int(dim * mlp_ratio),
|
145 |
+
# act_layer=act_layer,
|
146 |
+
# drop=(dropout, 0.0),
|
147 |
+
# )
|
148 |
+
self.ls2 = (
|
149 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
150 |
+
)
|
151 |
+
self.dropout = nn.Dropout(dropout)
|
152 |
+
self.window_size = window_size
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
shortcut = x
|
156 |
+
x = self.norm1(x)
|
157 |
+
# Window partition
|
158 |
+
if self.window_size > 0:
|
159 |
+
H, W = x.shape[1], x.shape[2]
|
160 |
+
x, pad_hw = window_partition(x, self.window_size)
|
161 |
+
|
162 |
+
x = self.ls1(self.attn(x))
|
163 |
+
# Reverse window partition
|
164 |
+
if self.window_size > 0:
|
165 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
166 |
+
|
167 |
+
x = shortcut + self.dropout(self.drop_path(x))
|
168 |
+
x = x + self.dropout(self.drop_path(self.ls2(self.mlp(self.norm2(x)))))
|
169 |
+
|
170 |
+
return x
|
171 |
+
|
172 |
+
|
173 |
+
class ViT(nn.Module):
|
174 |
+
"""
|
175 |
+
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`.
|
176 |
+
"Exploring Plain Vision Transformer Backbones for Object Detection",
|
177 |
+
https://arxiv.org/abs/2203.16527
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
img_size=1024,
|
183 |
+
patch_size=16,
|
184 |
+
in_chans=3,
|
185 |
+
embed_dim=768,
|
186 |
+
depth=12,
|
187 |
+
num_heads=12,
|
188 |
+
mlp_ratio=4.0,
|
189 |
+
qkv_bias=True,
|
190 |
+
drop_path_rate=0.0,
|
191 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
192 |
+
act_layer=nn.GELU,
|
193 |
+
use_abs_pos=True,
|
194 |
+
use_rel_pos=False,
|
195 |
+
rel_pos_zero_init=True,
|
196 |
+
window_size=14,
|
197 |
+
window_block_indexes=(0, 1, 3, 4, 6, 7, 9, 10),
|
198 |
+
use_act_checkpoint=False,
|
199 |
+
pretrain_img_size=224,
|
200 |
+
pretrain_use_cls_token=True,
|
201 |
+
dropout=0.0,
|
202 |
+
weights_path=None,
|
203 |
+
return_interm_layers=False,
|
204 |
+
init_values=None,
|
205 |
+
):
|
206 |
+
"""
|
207 |
+
Args:
|
208 |
+
img_size (int): Input image size. Only relevant for rel pos.
|
209 |
+
patch_size (int): Patch size.
|
210 |
+
in_chans (int): Number of input image channels.
|
211 |
+
embed_dim (int): Patch embedding dimension.
|
212 |
+
depth (int): Depth of ViT.
|
213 |
+
num_heads (int): Number of attention heads in each ViT block.
|
214 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
215 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
216 |
+
drop_path_rate (float): Stochastic depth rate.
|
217 |
+
norm_layer (nn.Module): Normalization layer.
|
218 |
+
act_layer (nn.Module): Activation layer.
|
219 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
220 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
221 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
222 |
+
window_size (int): Window size for window attention blocks.
|
223 |
+
window_block_indexes (list): Indexes for blocks using window attention.
|
224 |
+
residual_block_indexes (list): Indexes for blocks using conv propagation.
|
225 |
+
use_act_checkpoint (bool): If True, use activation checkpointing.
|
226 |
+
pretrain_img_size (int): input image size for pretraining models.
|
227 |
+
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
|
228 |
+
dropout (float): Dropout rate. Applied in residual blocks of attn, mlp and inside the mlp.
|
229 |
+
path (str or None): Path to the pretrained weights.
|
230 |
+
return_interm_layers (bool): Whether to return intermediate layers (all global attention blocks).
|
231 |
+
freezing (BackboneFreezingType): Type of freezing.
|
232 |
+
"""
|
233 |
+
super().__init__()
|
234 |
+
self.pretrain_use_cls_token = pretrain_use_cls_token
|
235 |
+
|
236 |
+
self.patch_embed = PatchEmbed(
|
237 |
+
kernel_size=(patch_size, patch_size),
|
238 |
+
stride=(patch_size, patch_size),
|
239 |
+
padding=(0, 0),
|
240 |
+
in_chans=in_chans,
|
241 |
+
embed_dim=embed_dim,
|
242 |
+
)
|
243 |
+
|
244 |
+
if use_abs_pos:
|
245 |
+
# Initialize absolute positional embedding with pretrain image size.
|
246 |
+
num_patches = (pretrain_img_size // patch_size) * (
|
247 |
+
pretrain_img_size // patch_size
|
248 |
+
)
|
249 |
+
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
|
250 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
|
251 |
+
else:
|
252 |
+
self.pos_embed = None
|
253 |
+
|
254 |
+
# stochastic depth decay rule
|
255 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
|
256 |
+
|
257 |
+
self.blocks = nn.ModuleList()
|
258 |
+
self.full_attn_ids = []
|
259 |
+
cur_stage = 1
|
260 |
+
for i in range(depth):
|
261 |
+
block = Block(
|
262 |
+
dim=embed_dim,
|
263 |
+
num_heads=num_heads,
|
264 |
+
mlp_ratio=mlp_ratio,
|
265 |
+
qkv_bias=qkv_bias,
|
266 |
+
drop_path=dpr[i],
|
267 |
+
norm_layer=norm_layer,
|
268 |
+
act_layer=act_layer,
|
269 |
+
use_rel_pos=use_rel_pos,
|
270 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
271 |
+
window_size=window_size if i in window_block_indexes else 0,
|
272 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
273 |
+
dropout=dropout,
|
274 |
+
init_values=init_values,
|
275 |
+
)
|
276 |
+
if i not in window_block_indexes:
|
277 |
+
self.full_attn_ids.append(i)
|
278 |
+
cur_stage += 1
|
279 |
+
|
280 |
+
self.blocks.append(block)
|
281 |
+
|
282 |
+
self.return_interm_layers = return_interm_layers
|
283 |
+
self.channel_list = (
|
284 |
+
[embed_dim] * len(self.full_attn_ids)
|
285 |
+
if return_interm_layers
|
286 |
+
else [embed_dim]
|
287 |
+
)
|
288 |
+
|
289 |
+
|
290 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
291 |
+
|
292 |
+
x = self.patch_embed(x)
|
293 |
+
if self.pos_embed is not None:
|
294 |
+
x = x + get_abs_pos(
|
295 |
+
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2])
|
296 |
+
)
|
297 |
+
|
298 |
+
outputs = []
|
299 |
+
for i, blk in enumerate(self.blocks):
|
300 |
+
x = blk(x)
|
301 |
+
if (i == self.full_attn_ids[-1]) or (
|
302 |
+
self.return_interm_layers and i in self.full_attn_ids
|
303 |
+
):
|
304 |
+
feats = x.permute(0, 3, 1, 2)
|
305 |
+
outputs.append(feats)
|
306 |
+
|
307 |
+
return outputs
|
sam2/modeling/memory_attention.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import Tensor, nn
|
11 |
+
|
12 |
+
from sam2.modeling.sam2_utils import get_activation_fn, get_clones
|
13 |
+
from sam2.modeling.sam.transformer import RoPEAttention
|
14 |
+
from sam2.modeling.sam.transformer import EfficientRoPEAttention1
|
15 |
+
from sam2.modeling.sam.transformer import EfficientRoPEAttention2
|
16 |
+
|
17 |
+
|
18 |
+
class MemoryAttentionLayer(nn.Module):
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
activation: str,
|
23 |
+
cross_attention: nn.Module,
|
24 |
+
d_model: int,
|
25 |
+
dim_feedforward: int,
|
26 |
+
dropout: float,
|
27 |
+
pos_enc_at_attn: bool,
|
28 |
+
pos_enc_at_cross_attn_keys: bool,
|
29 |
+
pos_enc_at_cross_attn_queries: bool,
|
30 |
+
self_attention: nn.Module,
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.d_model = d_model
|
34 |
+
self.dim_feedforward = dim_feedforward
|
35 |
+
self.dropout_value = dropout
|
36 |
+
self.self_attn = self_attention
|
37 |
+
self.cross_attn_image = cross_attention
|
38 |
+
|
39 |
+
# Implementation of Feedforward model
|
40 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
41 |
+
self.dropout = nn.Dropout(dropout)
|
42 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
43 |
+
|
44 |
+
self.norm1 = nn.LayerNorm(d_model)
|
45 |
+
self.norm2 = nn.LayerNorm(d_model)
|
46 |
+
self.norm3 = nn.LayerNorm(d_model)
|
47 |
+
self.dropout1 = nn.Dropout(dropout)
|
48 |
+
self.dropout2 = nn.Dropout(dropout)
|
49 |
+
self.dropout3 = nn.Dropout(dropout)
|
50 |
+
|
51 |
+
self.activation_str = activation
|
52 |
+
self.activation = get_activation_fn(activation)
|
53 |
+
|
54 |
+
# Where to add pos enc
|
55 |
+
self.pos_enc_at_attn = pos_enc_at_attn
|
56 |
+
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
57 |
+
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
58 |
+
|
59 |
+
def _forward_sa(self, tgt, query_pos):
|
60 |
+
# Self-Attention
|
61 |
+
tgt2 = self.norm1(tgt)
|
62 |
+
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
63 |
+
tgt2 = self.self_attn(q, k, v=tgt2)
|
64 |
+
tgt = tgt + self.dropout1(tgt2)
|
65 |
+
return tgt
|
66 |
+
|
67 |
+
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
68 |
+
kwds = {}
|
69 |
+
if num_k_exclude_rope > 0:
|
70 |
+
assert isinstance(self.cross_attn_image, RoPEAttention) or isinstance(self.cross_attn_image, EfficientRoPEAttention1) or isinstance(self.cross_attn_image, EfficientRoPEAttention2)
|
71 |
+
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
72 |
+
|
73 |
+
# Cross-Attention
|
74 |
+
tgt2 = self.norm2(tgt)
|
75 |
+
tgt2 = self.cross_attn_image(
|
76 |
+
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
77 |
+
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
78 |
+
v=memory,
|
79 |
+
**kwds,
|
80 |
+
)
|
81 |
+
tgt = tgt + self.dropout2(tgt2)
|
82 |
+
return tgt
|
83 |
+
|
84 |
+
def forward(
|
85 |
+
self,
|
86 |
+
tgt,
|
87 |
+
memory,
|
88 |
+
pos: Optional[Tensor] = None,
|
89 |
+
query_pos: Optional[Tensor] = None,
|
90 |
+
num_k_exclude_rope: int = 0,
|
91 |
+
) -> torch.Tensor:
|
92 |
+
|
93 |
+
# Self-Attn, Cross-Attn
|
94 |
+
tgt = self._forward_sa(tgt, query_pos)
|
95 |
+
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
96 |
+
# MLP
|
97 |
+
tgt2 = self.norm3(tgt)
|
98 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
99 |
+
tgt = tgt + self.dropout3(tgt2)
|
100 |
+
return tgt
|
101 |
+
|
102 |
+
|
103 |
+
class MemoryAttention(nn.Module):
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
d_model: int,
|
107 |
+
pos_enc_at_input: bool,
|
108 |
+
layer: nn.Module,
|
109 |
+
num_layers: int,
|
110 |
+
batch_first: bool = True, # Do layers expect batch first input?
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
self.d_model = d_model
|
114 |
+
self.layers = get_clones(layer, num_layers)
|
115 |
+
self.num_layers = num_layers
|
116 |
+
self.norm = nn.LayerNorm(d_model)
|
117 |
+
self.pos_enc_at_input = pos_enc_at_input
|
118 |
+
self.batch_first = batch_first
|
119 |
+
|
120 |
+
def forward(
|
121 |
+
self,
|
122 |
+
curr: torch.Tensor, # self-attention inputs
|
123 |
+
memory: torch.Tensor, # cross-attention inputs
|
124 |
+
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
125 |
+
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
126 |
+
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
127 |
+
):
|
128 |
+
if isinstance(curr, list):
|
129 |
+
assert isinstance(curr_pos, list)
|
130 |
+
assert len(curr) == len(curr_pos) == 1
|
131 |
+
curr, curr_pos = (
|
132 |
+
curr[0],
|
133 |
+
curr_pos[0],
|
134 |
+
)
|
135 |
+
|
136 |
+
assert (
|
137 |
+
curr.shape[1] == memory.shape[1]
|
138 |
+
), "Batch size must be the same for curr and memory"
|
139 |
+
|
140 |
+
output = curr
|
141 |
+
if self.pos_enc_at_input and curr_pos is not None:
|
142 |
+
output = output + 0.1 * curr_pos
|
143 |
+
|
144 |
+
if self.batch_first:
|
145 |
+
# Convert to batch first
|
146 |
+
output = output.transpose(0, 1)
|
147 |
+
curr_pos = curr_pos.transpose(0, 1)
|
148 |
+
memory = memory.transpose(0, 1)
|
149 |
+
memory_pos = memory_pos.transpose(0, 1)
|
150 |
+
|
151 |
+
for layer in self.layers:
|
152 |
+
kwds = {}
|
153 |
+
if isinstance(layer.cross_attn_image, RoPEAttention) or isinstance(layer.cross_attn_image, EfficientRoPEAttention1) or isinstance(layer.cross_attn_image, EfficientRoPEAttention2):
|
154 |
+
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
155 |
+
|
156 |
+
output = layer(
|
157 |
+
tgt=output,
|
158 |
+
memory=memory,
|
159 |
+
pos=memory_pos,
|
160 |
+
query_pos=curr_pos,
|
161 |
+
**kwds,
|
162 |
+
)
|
163 |
+
normed_output = self.norm(output)
|
164 |
+
|
165 |
+
if self.batch_first:
|
166 |
+
# Convert back to seq first
|
167 |
+
normed_output = normed_output.transpose(0, 1)
|
168 |
+
curr_pos = curr_pos.transpose(0, 1)
|
169 |
+
|
170 |
+
return normed_output
|
sam2/modeling/memory_encoder.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_utils import DropPath, LayerNorm2d, get_clones
|
15 |
+
|
16 |
+
|
17 |
+
class MaskDownSampler(nn.Module):
|
18 |
+
"""
|
19 |
+
Progressively downsample a mask by total_stride, each time by stride.
|
20 |
+
Note that LayerNorm is applied per *token*, like in ViT.
|
21 |
+
|
22 |
+
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
23 |
+
In the end, we linearly project to embed_dim channels.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
embed_dim=256,
|
29 |
+
kernel_size=4,
|
30 |
+
stride=4,
|
31 |
+
padding=0,
|
32 |
+
total_stride=16,
|
33 |
+
activation=nn.GELU,
|
34 |
+
):
|
35 |
+
super().__init__()
|
36 |
+
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
37 |
+
assert stride**num_layers == total_stride
|
38 |
+
self.encoder = nn.Sequential()
|
39 |
+
mask_in_chans, mask_out_chans = 1, 1
|
40 |
+
for _ in range(num_layers):
|
41 |
+
mask_out_chans = mask_in_chans * (stride**2)
|
42 |
+
self.encoder.append(
|
43 |
+
nn.Conv2d(
|
44 |
+
mask_in_chans,
|
45 |
+
mask_out_chans,
|
46 |
+
kernel_size=kernel_size,
|
47 |
+
stride=stride,
|
48 |
+
padding=padding,
|
49 |
+
)
|
50 |
+
)
|
51 |
+
self.encoder.append(LayerNorm2d(mask_out_chans))
|
52 |
+
self.encoder.append(activation())
|
53 |
+
mask_in_chans = mask_out_chans
|
54 |
+
|
55 |
+
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return self.encoder(x)
|
59 |
+
|
60 |
+
|
61 |
+
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
62 |
+
class CXBlock(nn.Module):
|
63 |
+
r"""ConvNeXt Block. There are two equivalent implementations:
|
64 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
65 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
66 |
+
We use (2) as we find it slightly faster in PyTorch
|
67 |
+
|
68 |
+
Args:
|
69 |
+
dim (int): Number of input channels.
|
70 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
71 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
dim,
|
77 |
+
kernel_size=7,
|
78 |
+
padding=3,
|
79 |
+
drop_path=0.0,
|
80 |
+
layer_scale_init_value=1e-6,
|
81 |
+
use_dwconv=True,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
self.dwconv = nn.Conv2d(
|
85 |
+
dim,
|
86 |
+
dim,
|
87 |
+
kernel_size=kernel_size,
|
88 |
+
padding=padding,
|
89 |
+
groups=dim if use_dwconv else 1,
|
90 |
+
) # depthwise conv
|
91 |
+
self.norm = LayerNorm2d(dim, eps=1e-6)
|
92 |
+
self.pwconv1 = nn.Linear(
|
93 |
+
dim, 4 * dim
|
94 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
95 |
+
self.act = nn.GELU()
|
96 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
97 |
+
self.gamma = (
|
98 |
+
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
99 |
+
if layer_scale_init_value > 0
|
100 |
+
else None
|
101 |
+
)
|
102 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
input = x
|
106 |
+
x = self.dwconv(x)
|
107 |
+
x = self.norm(x)
|
108 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
109 |
+
x = self.pwconv1(x)
|
110 |
+
x = self.act(x)
|
111 |
+
x = self.pwconv2(x)
|
112 |
+
if self.gamma is not None:
|
113 |
+
x = self.gamma * x
|
114 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
115 |
+
|
116 |
+
x = input + self.drop_path(x)
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class Fuser(nn.Module):
|
121 |
+
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
122 |
+
super().__init__()
|
123 |
+
self.proj = nn.Identity()
|
124 |
+
self.layers = get_clones(layer, num_layers)
|
125 |
+
|
126 |
+
if input_projection:
|
127 |
+
assert dim is not None
|
128 |
+
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
# normally x: (N, C, H, W)
|
132 |
+
x = self.proj(x)
|
133 |
+
for layer in self.layers:
|
134 |
+
x = layer(x)
|
135 |
+
return x
|
136 |
+
|
137 |
+
|
138 |
+
class MemoryEncoder(nn.Module):
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
out_dim,
|
142 |
+
mask_downsampler,
|
143 |
+
fuser,
|
144 |
+
position_encoding,
|
145 |
+
in_dim=256, # in_dim of pix_feats
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.mask_downsampler = mask_downsampler
|
150 |
+
|
151 |
+
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
152 |
+
self.fuser = fuser
|
153 |
+
self.position_encoding = position_encoding
|
154 |
+
self.out_proj = nn.Identity()
|
155 |
+
if out_dim != in_dim:
|
156 |
+
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
157 |
+
|
158 |
+
def forward(
|
159 |
+
self,
|
160 |
+
pix_feat: torch.Tensor,
|
161 |
+
masks: torch.Tensor,
|
162 |
+
skip_mask_sigmoid: bool = False,
|
163 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
164 |
+
## Process masks
|
165 |
+
# sigmoid, so that less domain shift from gt masks which are bool
|
166 |
+
if not skip_mask_sigmoid:
|
167 |
+
masks = F.sigmoid(masks)
|
168 |
+
masks = self.mask_downsampler(masks)
|
169 |
+
|
170 |
+
## Fuse pix_feats and downsampled masks
|
171 |
+
# in case the visual features are on CPU, cast them to CUDA
|
172 |
+
pix_feat = pix_feat.to(masks.device)
|
173 |
+
|
174 |
+
x = self.pix_feat_proj(pix_feat)
|
175 |
+
x = x + masks
|
176 |
+
x = self.fuser(x)
|
177 |
+
x = self.out_proj(x)
|
178 |
+
|
179 |
+
pos = self.position_encoding(x).to(x.dtype)
|
180 |
+
|
181 |
+
return {"vision_features": x, "vision_pos_enc": [pos]}
|
sam2/modeling/position_encoding.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Any, Optional, Tuple
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
|
15 |
+
class PositionEmbeddingSine(nn.Module):
|
16 |
+
"""
|
17 |
+
This is a more standard version of the position embedding, very similar to the one
|
18 |
+
used by the Attention is all you need paper, generalized to work on images.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
num_pos_feats,
|
24 |
+
temperature: int = 10000,
|
25 |
+
normalize: bool = True,
|
26 |
+
scale: Optional[float] = None,
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
30 |
+
self.num_pos_feats = num_pos_feats // 2
|
31 |
+
self.temperature = temperature
|
32 |
+
self.normalize = normalize
|
33 |
+
if scale is not None and normalize is False:
|
34 |
+
raise ValueError("normalize should be True if scale is passed")
|
35 |
+
if scale is None:
|
36 |
+
scale = 2 * math.pi
|
37 |
+
self.scale = scale
|
38 |
+
|
39 |
+
self.cache = {}
|
40 |
+
|
41 |
+
def _encode_xy(self, x, y):
|
42 |
+
# The positions are expected to be normalized
|
43 |
+
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
44 |
+
x_embed = x * self.scale
|
45 |
+
y_embed = y * self.scale
|
46 |
+
|
47 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
48 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
49 |
+
|
50 |
+
pos_x = x_embed[:, None] / dim_t
|
51 |
+
pos_y = y_embed[:, None] / dim_t
|
52 |
+
pos_x = torch.stack(
|
53 |
+
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
|
54 |
+
).flatten(1)
|
55 |
+
pos_y = torch.stack(
|
56 |
+
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
|
57 |
+
).flatten(1)
|
58 |
+
return pos_x, pos_y
|
59 |
+
|
60 |
+
@torch.no_grad()
|
61 |
+
def encode_boxes(self, x, y, w, h):
|
62 |
+
pos_x, pos_y = self._encode_xy(x, y)
|
63 |
+
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
64 |
+
return pos
|
65 |
+
|
66 |
+
encode = encode_boxes # Backwards compatibility
|
67 |
+
|
68 |
+
@torch.no_grad()
|
69 |
+
def encode_points(self, x, y, labels):
|
70 |
+
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
71 |
+
assert bx == by and nx == ny and bx == bl and nx == nl
|
72 |
+
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
73 |
+
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
74 |
+
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
75 |
+
return pos
|
76 |
+
|
77 |
+
@torch.no_grad()
|
78 |
+
def forward(self, x: torch.Tensor):
|
79 |
+
cache_key = (x.shape[-2], x.shape[-1])
|
80 |
+
if cache_key in self.cache:
|
81 |
+
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
|
82 |
+
y_embed = (
|
83 |
+
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
|
84 |
+
.view(1, -1, 1)
|
85 |
+
.repeat(x.shape[0], 1, x.shape[-1])
|
86 |
+
)
|
87 |
+
x_embed = (
|
88 |
+
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
|
89 |
+
.view(1, 1, -1)
|
90 |
+
.repeat(x.shape[0], x.shape[-2], 1)
|
91 |
+
)
|
92 |
+
|
93 |
+
if self.normalize:
|
94 |
+
eps = 1e-6
|
95 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
96 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
97 |
+
|
98 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
99 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
100 |
+
|
101 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
102 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
103 |
+
pos_x = torch.stack(
|
104 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
105 |
+
).flatten(3)
|
106 |
+
pos_y = torch.stack(
|
107 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
108 |
+
).flatten(3)
|
109 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
110 |
+
self.cache[cache_key] = pos[0]
|
111 |
+
return pos
|
112 |
+
|
113 |
+
|
114 |
+
class PositionEmbeddingRandom(nn.Module):
|
115 |
+
"""
|
116 |
+
Positional encoding using random spatial frequencies.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
120 |
+
super().__init__()
|
121 |
+
if scale is None or scale <= 0.0:
|
122 |
+
scale = 1.0
|
123 |
+
self.register_buffer(
|
124 |
+
"positional_encoding_gaussian_matrix",
|
125 |
+
scale * torch.randn((2, num_pos_feats)),
|
126 |
+
)
|
127 |
+
|
128 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
129 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
130 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
131 |
+
coords = 2 * coords - 1
|
132 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
133 |
+
coords = 2 * np.pi * coords
|
134 |
+
# outputs d_1 x ... x d_n x C shape
|
135 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
136 |
+
|
137 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
138 |
+
"""Generate positional encoding for a grid of the specified size."""
|
139 |
+
h, w = size
|
140 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
141 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
142 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
143 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
144 |
+
y_embed = y_embed / h
|
145 |
+
x_embed = x_embed / w
|
146 |
+
|
147 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
148 |
+
return pe.permute(2, 0, 1) # C x H x W
|
149 |
+
|
150 |
+
def forward_with_coords(
|
151 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
152 |
+
) -> torch.Tensor:
|
153 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
154 |
+
coords = coords_input.clone()
|
155 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
156 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
157 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
158 |
+
|
159 |
+
|
160 |
+
# Rotary Positional Encoding, adapted from:
|
161 |
+
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
162 |
+
# 2. https://github.com/naver-ai/rope-vit
|
163 |
+
# 3. https://github.com/lucidrains/rotary-embedding-torch
|
164 |
+
|
165 |
+
|
166 |
+
def init_t_xy(end_x: int, end_y: int):
|
167 |
+
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
168 |
+
t_x = (t % end_x).float()
|
169 |
+
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
170 |
+
return t_x, t_y
|
171 |
+
|
172 |
+
|
173 |
+
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
174 |
+
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
175 |
+
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
176 |
+
|
177 |
+
t_x, t_y = init_t_xy(end_x, end_y)
|
178 |
+
freqs_x = torch.outer(t_x, freqs_x)
|
179 |
+
freqs_y = torch.outer(t_y, freqs_y)
|
180 |
+
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
181 |
+
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
182 |
+
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
183 |
+
|
184 |
+
|
185 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
186 |
+
ndim = x.ndim
|
187 |
+
assert 0 <= 1 < ndim
|
188 |
+
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
189 |
+
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
190 |
+
return freqs_cis.view(*shape)
|
191 |
+
|
192 |
+
|
193 |
+
def apply_rotary_enc(
|
194 |
+
xq: torch.Tensor,
|
195 |
+
xk: torch.Tensor,
|
196 |
+
freqs_cis: torch.Tensor,
|
197 |
+
repeat_freqs_k: bool = False,
|
198 |
+
):
|
199 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
200 |
+
xk_ = (
|
201 |
+
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
202 |
+
if xk.shape[-2] != 0
|
203 |
+
else None
|
204 |
+
)
|
205 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
206 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
207 |
+
if xk_ is None:
|
208 |
+
# no keys to rotate, due to dropout
|
209 |
+
return xq_out.type_as(xq).to(xq.device), xk
|
210 |
+
# repeat freqs along seq_len dim to match k seq_len
|
211 |
+
if repeat_freqs_k:
|
212 |
+
r = xk_.shape[-2] // xq_.shape[-2]
|
213 |
+
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
214 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
215 |
+
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
sam2/modeling/sam/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/sam/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (186 Bytes). View file
|
|
sam2/modeling/sam/__pycache__/mask_decoder.cpython-312.pyc
ADDED
Binary file (12.7 kB). View file
|
|
sam2/modeling/sam/__pycache__/prompt_encoder.cpython-312.pyc
ADDED
Binary file (9.48 kB). View file
|
|
sam2/modeling/sam/__pycache__/transformer.cpython-312.pyc
ADDED
Binary file (23.2 kB). View file
|
|
sam2/modeling/sam/mask_decoder.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import List, Optional, Tuple, Type
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from sam2.modeling.sam2_utils import MLP, LayerNorm2d
|
13 |
+
|
14 |
+
|
15 |
+
class MaskDecoder(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
*,
|
19 |
+
transformer_dim: int,
|
20 |
+
transformer: nn.Module,
|
21 |
+
num_multimask_outputs: int = 3,
|
22 |
+
activation: Type[nn.Module] = nn.GELU,
|
23 |
+
iou_head_depth: int = 3,
|
24 |
+
iou_head_hidden_dim: int = 256,
|
25 |
+
use_high_res_features: bool = False,
|
26 |
+
iou_prediction_use_sigmoid=False,
|
27 |
+
dynamic_multimask_via_stability=False,
|
28 |
+
dynamic_multimask_stability_delta=0.05,
|
29 |
+
dynamic_multimask_stability_thresh=0.98,
|
30 |
+
pred_obj_scores: bool = False,
|
31 |
+
pred_obj_scores_mlp: bool = False,
|
32 |
+
use_multimask_token_for_obj_ptr: bool = False,
|
33 |
+
) -> None:
|
34 |
+
"""
|
35 |
+
Predicts masks given an image and prompt embeddings, using a
|
36 |
+
transformer architecture.
|
37 |
+
|
38 |
+
Arguments:
|
39 |
+
transformer_dim (int): the channel dimension of the transformer
|
40 |
+
transformer (nn.Module): the transformer used to predict masks
|
41 |
+
num_multimask_outputs (int): the number of masks to predict
|
42 |
+
when disambiguating masks
|
43 |
+
activation (nn.Module): the type of activation to use when
|
44 |
+
upscaling masks
|
45 |
+
iou_head_depth (int): the depth of the MLP used to predict
|
46 |
+
mask quality
|
47 |
+
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
48 |
+
used to predict mask quality
|
49 |
+
"""
|
50 |
+
super().__init__()
|
51 |
+
self.transformer_dim = transformer_dim
|
52 |
+
self.transformer = transformer
|
53 |
+
|
54 |
+
self.num_multimask_outputs = num_multimask_outputs
|
55 |
+
|
56 |
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
57 |
+
self.num_mask_tokens = num_multimask_outputs + 1
|
58 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
59 |
+
|
60 |
+
self.pred_obj_scores = pred_obj_scores
|
61 |
+
if self.pred_obj_scores:
|
62 |
+
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
63 |
+
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
64 |
+
|
65 |
+
self.output_upscaling = nn.Sequential(
|
66 |
+
nn.ConvTranspose2d(
|
67 |
+
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
68 |
+
),
|
69 |
+
LayerNorm2d(transformer_dim // 4),
|
70 |
+
activation(),
|
71 |
+
nn.ConvTranspose2d(
|
72 |
+
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
73 |
+
),
|
74 |
+
activation(),
|
75 |
+
)
|
76 |
+
self.use_high_res_features = use_high_res_features
|
77 |
+
if use_high_res_features:
|
78 |
+
self.conv_s0 = nn.Conv2d(
|
79 |
+
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
|
80 |
+
)
|
81 |
+
self.conv_s1 = nn.Conv2d(
|
82 |
+
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
|
83 |
+
)
|
84 |
+
|
85 |
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
86 |
+
[
|
87 |
+
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
88 |
+
for i in range(self.num_mask_tokens)
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
self.iou_prediction_head = MLP(
|
93 |
+
transformer_dim,
|
94 |
+
iou_head_hidden_dim,
|
95 |
+
self.num_mask_tokens,
|
96 |
+
iou_head_depth,
|
97 |
+
sigmoid_output=iou_prediction_use_sigmoid,
|
98 |
+
)
|
99 |
+
if self.pred_obj_scores:
|
100 |
+
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
101 |
+
if pred_obj_scores_mlp:
|
102 |
+
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
103 |
+
|
104 |
+
# When outputting a single mask, optionally we can dynamically fall back to the best
|
105 |
+
# multimask output token if the single mask output token gives low stability scores.
|
106 |
+
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
107 |
+
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
108 |
+
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
109 |
+
|
110 |
+
def forward(
|
111 |
+
self,
|
112 |
+
image_embeddings: torch.Tensor,
|
113 |
+
image_pe: torch.Tensor,
|
114 |
+
sparse_prompt_embeddings: torch.Tensor,
|
115 |
+
dense_prompt_embeddings: torch.Tensor,
|
116 |
+
multimask_output: bool,
|
117 |
+
repeat_image: bool,
|
118 |
+
high_res_features: Optional[List[torch.Tensor]] = None,
|
119 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
120 |
+
"""
|
121 |
+
Predict masks given image and prompt embeddings.
|
122 |
+
|
123 |
+
Arguments:
|
124 |
+
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
125 |
+
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
126 |
+
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
127 |
+
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
128 |
+
multimask_output (bool): Whether to return multiple masks or a single
|
129 |
+
mask.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
torch.Tensor: batched predicted masks
|
133 |
+
torch.Tensor: batched predictions of mask quality
|
134 |
+
torch.Tensor: batched SAM token for mask output
|
135 |
+
"""
|
136 |
+
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
137 |
+
image_embeddings=image_embeddings,
|
138 |
+
image_pe=image_pe,
|
139 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
140 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
141 |
+
repeat_image=repeat_image,
|
142 |
+
high_res_features=high_res_features,
|
143 |
+
)
|
144 |
+
|
145 |
+
# Select the correct mask or masks for output
|
146 |
+
if multimask_output:
|
147 |
+
masks = masks[:, 1:, :, :]
|
148 |
+
iou_pred = iou_pred[:, 1:]
|
149 |
+
elif self.dynamic_multimask_via_stability and not self.training:
|
150 |
+
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
151 |
+
else:
|
152 |
+
masks = masks[:, 0:1, :, :]
|
153 |
+
iou_pred = iou_pred[:, 0:1]
|
154 |
+
|
155 |
+
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
156 |
+
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
157 |
+
else:
|
158 |
+
# Take the mask output token. Here we *always* use the token for single mask output.
|
159 |
+
# At test time, even if we track after 1-click (and using multimask_output=True),
|
160 |
+
# we still take the single mask token here. The rationale is that we always track
|
161 |
+
# after multiple clicks during training, so the past tokens seen during training
|
162 |
+
# are always the single mask token (and we'll let it be the object-memory token).
|
163 |
+
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
164 |
+
|
165 |
+
# Prepare output
|
166 |
+
return masks, iou_pred, sam_tokens_out, object_score_logits
|
167 |
+
|
168 |
+
def predict_masks(
|
169 |
+
self,
|
170 |
+
image_embeddings: torch.Tensor,
|
171 |
+
image_pe: torch.Tensor,
|
172 |
+
sparse_prompt_embeddings: torch.Tensor,
|
173 |
+
dense_prompt_embeddings: torch.Tensor,
|
174 |
+
repeat_image: bool,
|
175 |
+
high_res_features: Optional[List[torch.Tensor]] = None,
|
176 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
177 |
+
"""Predicts masks. See 'forward' for more details."""
|
178 |
+
# Concatenate output tokens
|
179 |
+
s = 0
|
180 |
+
if self.pred_obj_scores:
|
181 |
+
output_tokens = torch.cat(
|
182 |
+
[
|
183 |
+
self.obj_score_token.weight,
|
184 |
+
self.iou_token.weight,
|
185 |
+
self.mask_tokens.weight,
|
186 |
+
],
|
187 |
+
dim=0,
|
188 |
+
)
|
189 |
+
s = 1
|
190 |
+
else:
|
191 |
+
output_tokens = torch.cat(
|
192 |
+
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
193 |
+
)
|
194 |
+
output_tokens = output_tokens.unsqueeze(0).expand(
|
195 |
+
sparse_prompt_embeddings.size(0), -1, -1
|
196 |
+
)
|
197 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
198 |
+
|
199 |
+
# Expand per-image data in batch direction to be per-mask
|
200 |
+
if repeat_image:
|
201 |
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
202 |
+
else:
|
203 |
+
assert image_embeddings.shape[0] == tokens.shape[0]
|
204 |
+
src = image_embeddings
|
205 |
+
src = src + dense_prompt_embeddings
|
206 |
+
assert (
|
207 |
+
image_pe.size(0) == 1
|
208 |
+
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
209 |
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
210 |
+
b, c, h, w = src.shape
|
211 |
+
|
212 |
+
# Run the transformer
|
213 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
214 |
+
iou_token_out = hs[:, s, :]
|
215 |
+
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
216 |
+
|
217 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
218 |
+
src = src.transpose(1, 2).view(b, c, h, w)
|
219 |
+
if not self.use_high_res_features:
|
220 |
+
upscaled_embedding = self.output_upscaling(src)
|
221 |
+
else:
|
222 |
+
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
223 |
+
feat_s0, feat_s1 = high_res_features
|
224 |
+
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
225 |
+
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
226 |
+
|
227 |
+
hyper_in_list: List[torch.Tensor] = []
|
228 |
+
for i in range(self.num_mask_tokens):
|
229 |
+
hyper_in_list.append(
|
230 |
+
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
231 |
+
)
|
232 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
233 |
+
b, c, h, w = upscaled_embedding.shape
|
234 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
235 |
+
|
236 |
+
# Generate mask quality predictions
|
237 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
238 |
+
if self.pred_obj_scores:
|
239 |
+
assert s == 1
|
240 |
+
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
241 |
+
else:
|
242 |
+
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
243 |
+
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
244 |
+
|
245 |
+
return masks, iou_pred, mask_tokens_out, object_score_logits
|
246 |
+
|
247 |
+
def _get_stability_scores(self, mask_logits):
|
248 |
+
"""
|
249 |
+
Compute stability scores of the mask logits based on the IoU between upper and
|
250 |
+
lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568.
|
251 |
+
"""
|
252 |
+
mask_logits = mask_logits.flatten(-2)
|
253 |
+
stability_delta = self.dynamic_multimask_stability_delta
|
254 |
+
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
255 |
+
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
256 |
+
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
257 |
+
return stability_scores
|
258 |
+
|
259 |
+
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
260 |
+
"""
|
261 |
+
When outputting a single mask, if the stability score from the current single-mask
|
262 |
+
output (based on output token 0) falls below a threshold, we instead select from
|
263 |
+
multi-mask outputs (based on output token 1~3) the mask with the highest predicted
|
264 |
+
IoU score. This is intended to ensure a valid mask for both clicking and tracking.
|
265 |
+
"""
|
266 |
+
# The best mask from multimask output tokens (1~3)
|
267 |
+
multimask_logits = all_mask_logits[:, 1:, :, :]
|
268 |
+
multimask_iou_scores = all_iou_scores[:, 1:]
|
269 |
+
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
270 |
+
batch_inds = torch.arange(
|
271 |
+
multimask_iou_scores.size(0), device=all_iou_scores.device
|
272 |
+
)
|
273 |
+
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
274 |
+
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
275 |
+
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
276 |
+
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
277 |
+
|
278 |
+
# The mask from singlemask output token 0 and its stability score
|
279 |
+
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
280 |
+
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
281 |
+
stability_scores = self._get_stability_scores(singlemask_logits)
|
282 |
+
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
283 |
+
|
284 |
+
# Dynamically fall back to best multimask output upon low stability scores.
|
285 |
+
mask_logits_out = torch.where(
|
286 |
+
is_stable[..., None, None].expand_as(singlemask_logits),
|
287 |
+
singlemask_logits,
|
288 |
+
best_multimask_logits,
|
289 |
+
)
|
290 |
+
iou_scores_out = torch.where(
|
291 |
+
is_stable.expand_as(singlemask_iou_scores),
|
292 |
+
singlemask_iou_scores,
|
293 |
+
best_multimask_iou_scores,
|
294 |
+
)
|
295 |
+
return mask_logits_out, iou_scores_out
|