# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional, Tuple, Type import torch from torch import nn from sam2.modeling.sam2_utils import MLP, LayerNorm2d class MaskDecoder(nn.Module): def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, use_high_res_features: bool = False, iou_prediction_use_sigmoid=False, dynamic_multimask_via_stability=False, dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_thresh=0.98, pred_obj_scores: bool = False, pred_obj_scores_mlp: bool = False, use_multimask_token_for_obj_ptr: bool = False, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.pred_obj_scores = pred_obj_scores if self.pred_obj_scores: self.obj_score_token = nn.Embedding(1, transformer_dim) self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr self.output_upscaling = nn.Sequential( nn.ConvTranspose2d( transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 ), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d( transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 ), activation(), ) self.use_high_res_features = use_high_res_features if use_high_res_features: self.conv_s0 = nn.Conv2d( transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 ) self.conv_s1 = nn.Conv2d( transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 ) self.output_hypernetworks_mlps = nn.ModuleList( [ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLP( transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth, sigmoid_output=iou_prediction_use_sigmoid, ) if self.pred_obj_scores: self.pred_obj_score_head = nn.Linear(transformer_dim, 1) if pred_obj_scores_mlp: self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) # When outputting a single mask, optionally we can dynamically fall back to the best # multimask output token if the single mask output token gives low stability scores. self.dynamic_multimask_via_stability = dynamic_multimask_via_stability self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality torch.Tensor: batched SAM token for mask output """ masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, repeat_image=repeat_image, high_res_features=high_res_features, ) # Select the correct mask or masks for output if multimask_output: masks = masks[:, 1:, :, :] iou_pred = iou_pred[:, 1:] elif self.dynamic_multimask_via_stability and not self.training: masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) else: masks = masks[:, 0:1, :, :] iou_pred = iou_pred[:, 0:1] if multimask_output and self.use_multimask_token_for_obj_ptr: sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape else: # Take the mask output token. Here we *always* use the token for single mask output. # At test time, even if we track after 1-click (and using multimask_output=True), # we still take the single mask token here. The rationale is that we always track # after multiple clicks during training, so the past tokens seen during training # are always the single mask token (and we'll let it be the object-memory token). sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape # Prepare output return masks, iou_pred, sam_tokens_out, object_score_logits def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens s = 0 if self.pred_obj_scores: output_tokens = torch.cat( [ self.obj_score_token.weight, self.iou_token.weight, self.mask_tokens.weight, ], dim=0, ) s = 1 else: output_tokens = torch.cat( [self.iou_token.weight, self.mask_tokens.weight], dim=0 ) output_tokens = output_tokens.unsqueeze(0).expand( sparse_prompt_embeddings.size(0), -1, -1 ) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask if repeat_image: src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) else: assert image_embeddings.shape[0] == tokens.shape[0] src = image_embeddings src = src + dense_prompt_embeddings assert ( image_pe.size(0) == 1 ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = src.shape # Run the transformer hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, s, :] mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) if not self.use_high_res_features: upscaled_embedding = self.output_upscaling(src) else: dc1, ln1, act1, dc2, act2 = self.output_upscaling feat_s0, feat_s1 = high_res_features upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append( self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) ) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) if self.pred_obj_scores: assert s == 1 object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) else: # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1 object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) return masks, iou_pred, mask_tokens_out, object_score_logits def _get_stability_scores(self, mask_logits): """ Compute stability scores of the mask logits based on the IoU between upper and lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568. """ mask_logits = mask_logits.flatten(-2) stability_delta = self.dynamic_multimask_stability_delta area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) return stability_scores def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): """ When outputting a single mask, if the stability score from the current single-mask output (based on output token 0) falls below a threshold, we instead select from multi-mask outputs (based on output token 1~3) the mask with the highest predicted IoU score. This is intended to ensure a valid mask for both clicking and tracking. """ # The best mask from multimask output tokens (1~3) multimask_logits = all_mask_logits[:, 1:, :, :] multimask_iou_scores = all_iou_scores[:, 1:] best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) batch_inds = torch.arange( multimask_iou_scores.size(0), device=all_iou_scores.device ) best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] best_multimask_logits = best_multimask_logits.unsqueeze(1) best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) # The mask from singlemask output token 0 and its stability score singlemask_logits = all_mask_logits[:, 0:1, :, :] singlemask_iou_scores = all_iou_scores[:, 0:1] stability_scores = self._get_stability_scores(singlemask_logits) is_stable = stability_scores >= self.dynamic_multimask_stability_thresh # Dynamically fall back to best multimask output upon low stability scores. mask_logits_out = torch.where( is_stable[..., None, None].expand_as(singlemask_logits), singlemask_logits, best_multimask_logits, ) iou_scores_out = torch.where( is_stable.expand_as(singlemask_iou_scores), singlemask_iou_scores, best_multimask_iou_scores, ) return mask_logits_out, iou_scores_out