import spaces import subprocess import re from typing import List, Tuple, Optional import gradio as gr from datetime import datetime import os os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7" import torch import numpy as np import cv2 import matplotlib.pyplot as plt from PIL import Image, ImageFilter from sam2.build_sam import build_sam2_video_predictor from moviepy.editor import ImageSequenceClip # Description title = "
Efficient Track Anything (EfficientTAM)
" description_e = """This is a demo of [Efficient Track Anything (EfficientTAM) Model](https://github.com/yformer/EfficientTAM). """ description_p = """# Interactive Video Segmentation - Built our demo based on [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor). Thanks to Sylvain Filoni. - Instruction
  1. Upload one video or click one example video
  2. Click 'include' point type, select the object to segment and track
  3. Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking
  4. Click the 'Segment' button, obtain the mask of the first frame
  5. Click the 'coarse' level and the 'Track' button, segment and track the object every 15 frames
  6. Click the corresponding frame to add points on the object for mask refining (optional)
  7. Click the 'fine' level and the 'Track' button, obtain masklet and masked video
  8. Click the 'Reset' button to restart
- Github [link](https://github.com/yformer/EfficientTAM) """ # examples examples = [ ["examples/videos/cat.mp4"], ["examples/videos/coffee.mp4"], ["examples/videos/car.mp4"], ["examples/videos/chick.mp4"], ["examples/videos/cups.mp4"], ["examples/videos/dog.mp4"], ["examples/videos/goat.mp4"], ["examples/videos/juggle.mp4"], ["examples/videos/street.mp4"], ["examples/videos/yacht.mp4"], ] default_example = examples[0] def get_video_fps(video_path): # Open the video file cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print("Error: Could not open video.") return None # Get the FPS of the video fps = cap.get(cv2.CAP_PROP_FPS) return fps def clear_points(image): # we clean all return [ image, # first_frame_path gr.State([]), # tracking_points gr.State([]), # trackings_input_label image, # points_map ] @spaces.GPU @torch.inference_mode() @torch.autocast(device_type="cuda", dtype=torch.bfloat16) def preprocess_video_in(video_path): if video_path is None: return None, gr.State([]), gr.State([]), None, None, None, None, None, None, gr.update(open=True) # Generate a unique ID based on the current date and time unique_id = datetime.now().strftime('%Y%m%d%H%M%S') # Set directory with this ID to store video frames extracted_frames_output_dir = f'frames_{unique_id}' # Create the output directory os.makedirs(extracted_frames_output_dir, exist_ok=True) ### Process video frames ### # Open the video file cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print("Error: Could not open video.") return None # Get the frames per second (FPS) of the video fps = cap.get(cv2.CAP_PROP_FPS) # Calculate the number of frames to process (10 seconds of video) max_frames = int(fps * 10) frame_number = 0 first_frame = None while True: ret, frame = cap.read() if not ret or frame_number >= max_frames: break # Format the frame filename as '00000.jpg' frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg') # Save the frame as a JPEG file cv2.imwrite(frame_filename, frame) # Store the first frame if frame_number == 0: first_frame = frame_filename frame_number += 1 # Release the video capture object cap.release() # scan all the JPEG frame names in this directory scanned_frames = [ p for p in os.listdir(extracted_frames_output_dir) if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] ] scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0])) # print(f"SCANNED_FRAMES: {scanned_frames}") return [ first_frame, # first_frame_path gr.State([]), # tracking_points gr.State([]), # trackings_input_label first_frame, # input_first_frame_image first_frame, # points_map extracted_frames_output_dir, # video_frames_dir scanned_frames, # scanned_frames None, # stored_inference_state None, # stored_frame_names gr.update(open=False) # video_in_drawer ] @spaces.GPU @torch.inference_mode() @torch.autocast(device_type="cuda", dtype=torch.bfloat16) def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData): if input_first_frame_image is None: return gr.State([]), gr.State([]), None print(f"You selected {evt.value} at {evt.index} from {evt.target}") tracking_points.value.append(evt.index) print(f"TRACKING POINT: {tracking_points.value}") if point_type == "include": trackings_input_label.value.append(1) elif point_type == "exclude": trackings_input_label.value.append(0) print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") # Open the image and get its dimensions transparent_background = Image.open(input_first_frame_image).convert('RGBA') w, h = transparent_background.size # Define the circle radius as a fraction of the smaller dimension fraction = 0.02 # You can adjust this value as needed radius = int(fraction * min(w, h)) # Create a transparent layer to draw on transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) for index, track in enumerate(tracking_points.value): if trackings_input_label.value[index] == 1: cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) else: cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) # Convert the transparent layer back to an image transparent_layer = Image.fromarray(transparent_layer, 'RGBA') selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) return tracking_points, trackings_input_label, selected_point_map DEVICE = 'cuda' # use bfloat16 for the entire notebook torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() if torch.cuda.get_device_properties(0).major >= 8: # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True @spaces.GPU def show_mask(mask, ax, obj_id=None, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: cmap = plt.get_cmap("tab10") cmap_idx = 0 if obj_id is None else obj_id color = np.array([*cmap(cmap_idx)[:3], 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.axis('off') ax.imshow(mask_image) @spaces.GPU def show_points(coords, labels, ax, marker_size=200): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) @spaces.GPU def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) @spaces.GPU def load_model(checkpoint): # Load model accordingly to user's choice if checkpoint == "efficienttam_s": efficienttam_checkpoint = "./checkpoints/efficienttam_s.pt" model_cfg = "efficienttam_s.yaml" return [efficienttam_checkpoint, model_cfg] elif checkpoint == "efficienttam_ti": efficienttam_checkpoint = "./checkpoints/efficienttam_ti.pt" model_cfg = "efficienttam-ti.yaml" return [efficienttam_checkpoint, model_cfg] elif checkpoint == "efficienttam_s_512x512": efficienttam_checkpoint = "./checkpoints/efficienttam_s_512x512.pt" model_cfg = "efficienttam_s_512x512.yaml" return [efficienttam_checkpoint, model_cfg] elif checkpoint == "efficienttam_ti_512x512": efficienttam_checkpoint = "./checkpoints/efficienttam_ti_512x512.pt" model_cfg = "efficienttam_ti_512x512.yaml" return [efficienttam_checkpoint, model_cfg] elif checkpoint == "efficienttam_s_1": efficienttam_checkpoint = "./checkpoints/efficienttam_s_1.pt" model_cfg = "efficienttam_s_1.yaml" return [efficienttam_checkpoint, model_cfg] elif checkpoint == "efficienttam_s_2": efficienttam_checkpoint = "./checkpoints/efficienttam_s_2.pt" model_cfg = "efficienttam_s_2.yaml" return [efficienttam_checkpoint, model_cfg] elif checkpoint == "efficienttam_ti_1": efficienttam_checkpoint = "./checkpoints/efficienttam_ti_1.pt" model_cfg = "efficienttam_ti_1.yaml" return [efficienttam_checkpoint, model_cfg] elif checkpoint == "efficienttam_ti_2": efficienttam_checkpoint = "./checkpoints/efficienttam_ti_2.pt" model_cfg = "efficienttam_ti_2.yaml" return [efficienttam_checkpoint, model_cfg] else: efficienttam_checkpoint = "./checkpoints/demo/efficienttam_s.pt" model_cfg = "efficienttam_s.yaml" return [efficienttam_checkpoint, model_cfg] @spaces.GPU @torch.inference_mode() @torch.autocast(device_type="cuda", dtype=torch.bfloat16) def get_mask_sam_process( stored_inference_state, input_first_frame_image, checkpoint, tracking_points, trackings_input_label, video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function scanned_frames, working_frame: str = None, # current frame being added points available_frames_to_check: List[str] = [], ): if len(tracking_points.value) == 0: return gr.update(visible=False), None, gr.State(), None, stored_inference_state, working_frame # get model and model config paths print(f"USER CHOSEN CHECKPOINT: {checkpoint}") sam2_checkpoint, model_cfg = load_model(checkpoint) print("MODEL LOADED") # set predictor predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda") print("PREDICTOR READY") # `video_dir` a directory of JPEG frames with filenames like `.jpg` # print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}") video_dir = video_frames_dir # scan all the JPEG frame names in this directory frame_names = scanned_frames # print(f"STORED INFERENCE STEP: {stored_inference_state}") if stored_inference_state is None: # Init SAM2 inference_state inference_state = predictor.init_state(video_path=video_dir, device="cuda") print("NEW INFERENCE_STATE INITIATED") else: inference_state = stored_inference_state # segment and track one object # predictor.reset_state(inference_state) # if any previous tracking, reset ### HANDLING WORKING FRAME # new_working_frame = None # Add new point if working_frame is None: ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame working_frame = "frame_0.jpg" else: # Use a regular expression to find the integer match = re.search(r'frame_(\d+)', working_frame) if match: # Extract the integer from the match frame_number = int(match.group(1)) ann_frame_idx = frame_number print(f"NEW_WORKING_FRAME PATH: {working_frame}") ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers) # Let's add a positive click at (x, y) = (210, 350) to get started points = np.array(tracking_points.value, dtype=np.float32) # for labels, `1` means positive click and `0` means negative click labels = np.array(trackings_input_label.value, np.int32) _, out_obj_ids, out_mask_logits = predictor.add_new_points( inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, points=points, labels=labels, ) # Create the plot plt.figure(figsize=(12, 8)) plt.title(f"frame {ann_frame_idx}") plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx]))) show_points(points, labels, plt.gca()) show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0]) # Save the plot as a JPG file first_frame_output_filename = "output_first_frame.jpg" plt.savefig(first_frame_output_filename, format='jpg') plt.close() torch.cuda.empty_cache() # Assuming available_frames_to_check.value is a list if working_frame not in available_frames_to_check: available_frames_to_check.append(working_frame) print(available_frames_to_check) return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True) @spaces.GPU @torch.inference_mode() @torch.autocast(device_type="cuda", dtype=torch.bfloat16) def propagate_to_all(tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame): if tracking_points is None or video_in is None or checkpoint is None or stored_inference_state is None: return gr.update(value=None), gr.update(value=None), gr.update(value=None), available_frames_to_check, gr.update(visible=False) #### PROPAGATION #### sam2_checkpoint, model_cfg = load_model(checkpoint) predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda") inference_state = stored_inference_state frame_names = stored_frame_names video_dir = video_frames_dir # Define a directory to save the JPEG images frames_output_dir = "frames_output_images" os.makedirs(frames_output_dir, exist_ok=True) # Initialize a list to store file paths of saved images jpeg_images = [] # run propagation throughout the video and collect the results in a dict video_segments = {} # video_segments contains the per-frame segmentation results print("starting propagate_in_video") for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): video_segments[out_frame_idx] = { out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() for i, out_obj_id in enumerate(out_obj_ids) } # obtain the segmentation results every few frames if vis_frame_type == "coarse": vis_frame_stride = 15 elif vis_frame_type == "fine": vis_frame_stride = 1 plt.close("all") for out_frame_idx in range(0, len(frame_names), vis_frame_stride): plt.figure(figsize=(6, 4)) plt.title(f"frame {out_frame_idx}") plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx]))) for out_obj_id, out_mask in video_segments[out_frame_idx].items(): show_mask(out_mask, plt.gca(), obj_id=out_obj_id) # Define the output filename and save the figure as a JPEG file output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg") plt.savefig(output_filename, format='jpg') # Close the plot plt.close() # Append the file path to the list jpeg_images.append(output_filename) if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check: available_frames_to_check.append(f"frame_{out_frame_idx}.jpg") torch.cuda.empty_cache() print(f"JPEG_IMAGES: {jpeg_images}") if vis_frame_type == "coarse": return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True) elif vis_frame_type == "fine": # Create a video clip from the image sequence original_fps = get_video_fps(video_in) fps = original_fps # Frames per second total_frames = len(jpeg_images) clip = ImageSequenceClip(jpeg_images, fps=fps) # Write the result to a file final_vid_output_path = "output_video.mp4" # Write the result to a file clip.write_videofile( final_vid_output_path, codec='libx264' ) return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True) @spaces.GPU def update_ui(vis_frame_type): if vis_frame_type == "coarse": return gr.update(visible=True), gr.update(visible=False) elif vis_frame_type == "fine": return gr.update(visible=False), gr.update(visible=True) @spaces.GPU def switch_working_frame(working_frame, scanned_frames, video_frames_dir): new_working_frame = None if working_frame == None: new_working_frame = os.path.join(video_frames_dir, scanned_frames[0]) else: # Use a regular expression to find the integer match = re.search(r'frame_(\d+)', working_frame) if match: # Extract the integer from the match frame_number = int(match.group(1)) ann_frame_idx = frame_number new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx]) return gr.State([]), gr.State([]), new_working_frame, new_working_frame @spaces.GPU def reset_propagation(first_frame_path, predictor, stored_inference_state): predictor.reset_state(stored_inference_state) # print(f"RESET State: {stored_inference_state} ") return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False) with gr.Blocks() as demo: first_frame_path = gr.State() tracking_points = gr.State([]) trackings_input_label = gr.State([]) video_frames_dir = gr.State() scanned_frames = gr.State() loaded_predictor = gr.State() stored_inference_state = gr.State() stored_frame_names = gr.State() available_frames_to_check = gr.State([]) with gr.Column(): # Title gr.Markdown(title) with gr.Row(): with gr.Column(): # Instructions gr.Markdown(description_p) # video_exp = gr.Video(label="Input Example", format="mp4", visible=False) with gr.Accordion("Input Video", open=True) as video_in_drawer: video_in = gr.Video(label="Input Video", format="mp4") with gr.Row(): point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2) clear_points_btn = gr.Button("Clear Points", scale=1) input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) points_map = gr.Image( label="Frame with Point Prompt", type="filepath", interactive=False ) with gr.Row(): checkpoint = gr.Dropdown(label="Checkpoint", choices=["efficienttam_s", "efficienttam_ti", "efficienttam_s_512x512", "efficienttam_ti_512x512", "efficienttam_s_1", "efficienttam_s_2", "efficienttam_ti_1", "efficienttam_ti_2"], value="efficienttam_s") submit_btn = gr.Button("Segment", size="lg") with gr.Column(): gr.Markdown("# Try some of the examples below ⬇️") gr.Examples( examples=examples, inputs=[video_in,], ) gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n') gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n') gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n') with gr.Row(): working_frame = gr.Dropdown(label="Frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True) change_current = gr.Button("change current", visible=False) output_result = gr.Image(label="Reference Mask") with gr.Row(): vis_frame_type = gr.Radio(label="Track level", choices=["coarse", "fine"], value="coarse", scale=2) propagate_btn = gr.Button("Track", scale=1) reset_prpgt_brn = gr.Button("Reset", visible=False) output_propagated = gr.Gallery(label="Masklets", columns=4, visible=False) output_video = gr.Video(visible=False) # When new video is uploaded video_in.upload( fn = preprocess_video_in, inputs = [video_in], outputs = [ first_frame_path, tracking_points, # update Tracking Points in the gr.State([]) object trackings_input_label, # update Tracking Labels in the gr.State([]) object input_first_frame_image, # hidden component used as ref when clearing points points_map, # Image component where we add new tracking points video_frames_dir, # Array where frames from video_in are deep stored scanned_frames, # Scanned frames by EfficientTAM stored_inference_state, # EfficientTAM inference state stored_frame_names, # video_in_drawer, # Accordion to hide uploaded video player ], queue = False ) video_in.change( fn = preprocess_video_in, inputs = [video_in], outputs = [ first_frame_path, tracking_points, # update Tracking Points in the gr.State([]) object trackings_input_label, # update Tracking Labels in the gr.State([]) object input_first_frame_image, # hidden component used as ref when clearing points points_map, # Image component where we add new tracking points video_frames_dir, # Array where frames from video_in are deep stored scanned_frames, # Scanned frames by EfficientTAM stored_inference_state, # EfficientTAM inference state stored_frame_names, # video_in_drawer, # Accordion to hide uploaded video player ], queue = False ) # triggered when we click on image to add new points points_map.select( fn = get_point, inputs = [ point_type, # "include" or "exclude" tracking_points, # get tracking_points values trackings_input_label, # get tracking label values input_first_frame_image, # gr.State() first frame path ], outputs = [ tracking_points, # updated with new points trackings_input_label, # updated with corresponding labels points_map, # updated image with points ], queue = False ) # Clear every points clicked and added to the map clear_points_btn.click( fn = clear_points, inputs = input_first_frame_image, # we get the untouched hidden image outputs = [ first_frame_path, tracking_points, trackings_input_label, points_map, ], queue=False ) change_current.click( fn = switch_working_frame, inputs = [working_frame, scanned_frames, video_frames_dir], outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map], queue=False ) submit_btn.click( fn = get_mask_sam_process, inputs = [ stored_inference_state, input_first_frame_image, checkpoint, tracking_points, trackings_input_label, video_frames_dir, scanned_frames, working_frame, available_frames_to_check, ], outputs = [ change_current, output_result, stored_frame_names, loaded_predictor, stored_inference_state, working_frame, ], concurrency_limit=10, queue=False ) reset_prpgt_brn.click( fn = reset_propagation, inputs = [first_frame_path, loaded_predictor, stored_inference_state], outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn], queue=False ) propagate_btn.click( fn = update_ui, inputs = [vis_frame_type], outputs = [output_propagated, output_video], queue=False ).then( fn = propagate_to_all, inputs = [tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame], outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn], concurrency_limit=10, queue=False ) demo.queue() demo.launch()