File size: 14,105 Bytes
94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 e022247 0fe83e2 94078d1 e022247 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 e022247 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 0fe83e2 94078d1 56aa817 0fe83e2 56aa817 94078d1 56aa817 0fe83e2 56aa817 0fe83e2 94078d1 56aa817 94078d1 56aa817 94078d1 56aa817 94078d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# Importing all the necessary libraries
import os
import gradio as gr
import torch
from PIL import Image
from tqdm import tqdm
from trclip.trclip import Trclip
from trclip.visualizer import image_retrieval_visualize, text_retrieval_visualize
print(f'gr version : {gr.__version__}')
import pickle
import random
import numpy as np
# %%
model_name = 'trclip-vitl14-e10'
if not os.path.exists(model_name):
os.system(f'git clone https://huggingface.co/yusufani/{model_name} --progress')
# %%
if not os.path.exists('TrCaption-trclip-vitl14-e10'):
os.system(f'git clone https://huggingface.co/datasets/yusufani/TrCaption-trclip-vitl14-e10/ --progress')
os.chdir('TrCaption-trclip-vitl14-e10')
os.system(f'git lfs install')
os.system(f' git lfs fetch')
os.system(f' git lfs pull')
os.chdir('..')
# %%
def load_image_embeddings(load_batch=True):
path = os.path.join('TrCaption-trclip-vitl14-e10', 'image_embeddings')
bs = 100_000
if load_batch:
for i in tqdm(range(0, 3_100_000, bs), desc='Loading TrCaption Image embeddings'):
with open(os.path.join(path, f'image_em_{i}.pkl'), 'rb') as f:
yield pickle.load(f)
return
else:
embeddings = []
for i in tqdm(range(0, 3_100_000, bs), desc='Loading TrCaption Image embeddings'):
with open(os.path.join(path, f'image_em_{i}.pkl'), 'rb') as f:
embeddings.append(pickle.load(f))
return torch.cat(embeddings, dim=0)
def load_text_embeddings(load_batch=True):
path = os.path.join('TrCaption-trclip-vitl14-e10', 'text_embeddings')
bs = 100_000
if load_batch:
for i in tqdm(range(0, 3_600_000, bs), desc='Loading TrCaption text embeddings'):
with open(os.path.join(path, f'text_em_{i}.pkl'), 'rb') as f:
yield pickle.load(f)
return
else:
embeddings = []
for i in tqdm(range(0, 3_600_000, bs), desc='Loading TrCaption text embeddings'):
with open(os.path.join(path, f'text_em_{i}.pkl'), 'rb') as f:
embeddings.append(pickle.load(f))
return torch.cat(embeddings, dim=0)
def load_metadata():
path = os.path.join('TrCaption-trclip-vitl14-e10', 'metadata.pkl')
with open(path, 'rb') as f:
metadata = pickle.load(f)
trcap_texts = metadata['texts']
trcap_urls = metadata['image_urls']
return trcap_texts, trcap_urls
def load_spesific_tensor(index, type, bs=100_000):
part = index // bs
idx = index % bs
with open(os.path.join('TrCaption-trclip-vitl14-e10', f'{type}_embeddings', f'{type}_em_{part * bs}.pkl'), 'rb') as f:
embeddings = pickle.load(f)
return embeddings[idx]
# %%
trcap_texts, trcap_urls = load_metadata()
# %%
print(f'INFO : Model loading')
model_path = os.path.join(model_name, 'pytorch_model.bin')
trclip = Trclip(model_path, clip_model='ViT-L/14', device='cpu')
# %%
import datetime
# %%
def run_im(im1, use_trcap_images, text1, use_trcap_texts):
print(f'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} INFO : Image retrieval starting')
f_texts_embeddings = None
ims = None
if use_trcap_images:
print('INFO : TRCaption images used')
im_paths = trcap_urls
else:
print('INFO : Own images used')
# Images taken from user
im_paths = [i.name for i in im1]
ims = [Image.open(i) for i in im_paths]
if use_trcap_texts:
print(f'INFO : TRCaption texts used')
random_indexes = random.sample(range(len(trcap_texts)), 2) # MAX 2 text are allowed in image retrieval UI limit
f_texts_embeddings = []
for i in random_indexes:
f_texts_embeddings.append(load_spesific_tensor(i, 'text'))
f_texts_embeddings = torch.stack(f_texts_embeddings)
texts = [trcap_texts[i] for i in random_indexes]
else:
print(f'INFO : Own texts used')
texts = [i.strip() for i in text1.split('\n')[:2] if i.strip() != '']
if use_trcap_images: # This means that we will iterate over batches because Huggingface space has 16 gb limit :///
per_mode_probs = []
f_texts_embeddings = f_texts_embeddings if use_trcap_texts else trclip.get_text_features(texts)
for f_image_embeddings in tqdm(load_image_embeddings(load_batch=True), desc='Running image retrieval'):
batch_probs = trclip.get_results(
text_features=f_texts_embeddings, image_features=f_image_embeddings, mode='per_text', return_probs=True)
per_mode_probs.append(batch_probs)
per_mode_probs = torch.cat(per_mode_probs, dim=1)
per_mode_probs = per_mode_probs.softmax(dim=-1).cpu().detach().numpy()
per_mode_indices = [np.argsort(prob)[::-1] for prob in per_mode_probs]
else:
per_mode_indices, per_mode_probs = trclip.get_results(texts=texts, images=ims, text_features=f_texts_embeddings, mode='per_text')
print(f'per_mode_indices = {per_mode_indices}\n,per_mode_probs = {per_mode_probs} ')
print(f'im_paths = {im_paths}')
return image_retrieval_visualize(per_mode_indices, per_mode_probs, texts, im_paths,
n_figure_in_column=2,
n_images_in_figure=4, n_figure_in_row=1, save_fig=False,
show=False,
break_on_index=-1)
def run_text(im1, use_trcap_images, text1, use_trcap_texts):
print(f'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} INFO : Text retrieval starting')
f_image_embeddings = None
ims = None
if use_trcap_images:
print('INFO : TRCaption images used')
random_indexes = random.sample(range(len(trcap_urls)), 2) # MAX 2 text are allowed in image retrieval UI limit
f_image_embeddings = []
for i in random_indexes:
f_image_embeddings.append(load_spesific_tensor(i, 'image'))
f_image_embeddings = torch.stack(f_image_embeddings)
print(f'f_image_embeddings = {f_image_embeddings}')
# Images taken from TRCAPTION
im_paths = [trcap_urls[i] for i in random_indexes]
print(f'im_paths = {im_paths}')
else:
print('INFO : Own images used')
# Images taken from user
im_paths = [i.name for i in im1[:2]]
ims = [Image.open(i) for i in im_paths]
if use_trcap_texts:
texts = trcap_texts
else:
texts = [i.strip() for i in text1.split('\n')[:2] if i.strip() != '']
if use_trcap_texts:
f_image_embeddings = f_image_embeddings if use_trcap_images else trclip.get_image_features(ims)
per_mode_probs = []
for f_texts_embeddings in tqdm(load_text_embeddings(load_batch=True), desc='Running text retrieval'):
batch_probs = trclip.get_results(
text_features=f_texts_embeddings, image_features=f_image_embeddings, mode='per_image', return_probs=True)
per_mode_probs.append(batch_probs)
per_mode_probs = torch.cat(per_mode_probs, dim=1)
per_mode_probs = per_mode_probs.softmax(dim=-1).cpu().detach().numpy()
per_mode_indices = [np.argsort(prob)[::-1] for prob in per_mode_probs]
else:
per_mode_indices, per_mode_probs = trclip.get_results(texts=texts, images=ims, image_features=f_image_embeddings, mode='per_image')
print(per_mode_indices)
print(per_mode_probs)
return text_retrieval_visualize(per_mode_indices, per_mode_probs, im_paths, texts,
n_figure_in_column=4,
n_texts_in_figure=4 if len(texts) > 4 else len(texts),
n_figure_in_row=2,
save_fig=False,
show=False,
break_on_index=-1,
)
def change_textbox(choice):
if choice == "Use Own Images":
return gr.Image.update(visible=True)
else:
return gr.Image.update(visible=False)
with gr.Blocks() as demo:
gr.HTML("""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 1500; margin-bottom: 7px;">
Trclip Demo
<a
href="https://github.com/yusufani/TrCLIP"
style="text-decoration: underline;"
target="_blank"
></a
Github Trclip:
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Trclip is Turkish port of real clip. In this space you can try your images or/and texts.
<br>Also you can use pre calculated TrCaption embeddings.
<br>Number of texts = 3533312
<br>Number of images = 3070976
<br>
Some images are not available in the internet because I downloaded and calculated TrCaption embeddings long time ago. Don't be suprise if you encounter with Image not found :D
<div style="text-align: center;font-size: 100%">
<p><strong><span style="background-color: #000000; color: #ffffff;"><a style="background-color: #000000; color: #ffffff;" href="https://github.com/yusufani/TrCLIP">A GitHub Repository</a> </span>--- <span style="background-color: #000000;"><span style="color: #ffffff;">Paper( Not available yet ) </span></span></strong></p>
</div>
</p>
</div>
<div style="text-align: center; margin: 0 auto;">
<p style="margin-bottom: 10px; font-size: 75%" ><em>Huggingface Space containers has 16 gb ram. TrCaption embeddings are totaly 20 gb. </em><em>I did a lot of writing and reading to files to make this space workable. That's why<span style="background-color: #ff6600; color: #ffffff;"> <strong>it's running much slower if you're using TrCaption Embeddig</strong>s</span>.</em></p>
<div class="sc-jSFjdj sc-iCoGMd jcTaHb kMthTr">
<div class="sc-iqAclL xfxEN">
<div class="sc-bdnxRM fJdnBK sc-crzoAE DykGo">
<div class="sc-gtsrHT gfuSqG"> </div>
</div>
</div>
</div>
</div>
""")
with gr.Tabs():
with gr.TabItem("Upload a Images"):
im_input = gr.components.File(label="Image input", optional=True, file_count='multiple')
is_trcap_ims = gr.Checkbox(label="Use TRCaption Images\n[Note: Random 2 sample selected in text retrieval mode]",default=True)
with gr.Tabs():
with gr.TabItem("Input a text (Seperated by new line Max 2 for Image retrieval)"):
text_input = gr.components.Textbox(label="Text input", optional=True , placeholder = "kedi\nköpek\nGemi\nKahvesini içmekte olan bir adam\n Kahvesini içmekte olan bir kadın\nAraba")
is_trcap_texts = gr.Checkbox(label="Use TrCaption Captions \n[Note: Random 2 sample selected in image retrieval mode]",default=True)
im_ret_but = gr.Button("Image Retrieval")
text_ret_but = gr.Button("Text Retrieval")
im_out = gr.components.Image()
im_ret_but.click(run_im, inputs=[im_input, is_trcap_ims, text_input, is_trcap_texts], outputs=im_out)
text_ret_but.click(run_text, inputs=[im_input, is_trcap_ims, text_input, is_trcap_texts], outputs=im_out)
demo.launch()
# %%
|