import asyncio import importlib import inspect import multiprocessing import os import re import signal import socket import tempfile import uuid from argparse import Namespace from contextlib import asynccontextmanager from functools import partial from http import HTTPStatus from typing import AsyncIterator, Optional, Set, Tuple import uvloop from fastapi import APIRouter, FastAPI, Request from fastapi.exceptions import RequestValidationError from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse, Response, StreamingResponse from starlette.datastructures import State from starlette.routing import Mount from typing_extensions import assert_never import vllm.envs as envs from vllm.config import ModelConfig from vllm.engine.arg_utils import AsyncEngineArgs from vllm.engine.multiprocessing.client import MQLLMEngineClient from vllm.engine.multiprocessing.engine import run_mp_engine from vllm.engine.protocol import EngineClient from vllm.entrypoints.launcher import serve_http from vllm.entrypoints.logger import RequestLogger from vllm.entrypoints.openai.cli_args import (make_arg_parser, validate_parsed_serve_args) # yapf conflicts with isort for this block # yapf: disable from vllm.entrypoints.openai.protocol import (ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, CompletionResponse, DetokenizeRequest, DetokenizeResponse, EmbeddingRequest, EmbeddingResponse, ErrorResponse, LoadLoraAdapterRequest, TokenizeRequest, TokenizeResponse, UnloadLoraAdapterRequest) # yapf: enable from vllm.entrypoints.openai.serving_chat import OpenAIServingChat from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing from vllm.entrypoints.openai.serving_tokenization import ( OpenAIServingTokenization) from vllm.entrypoints.openai.tool_parsers import ToolParserManager from vllm.logger import init_logger from vllm.usage.usage_lib import UsageContext from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path, is_valid_ipv6_address) from vllm.version import __version__ as VLLM_VERSION if envs.VLLM_USE_V1: from vllm.v1.engine.async_llm import AsyncLLMEngine # type: ignore else: from vllm.engine.async_llm_engine import AsyncLLMEngine # type: ignore TIMEOUT_KEEP_ALIVE = 5 # seconds prometheus_multiproc_dir: tempfile.TemporaryDirectory # Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765) logger = init_logger('vllm.entrypoints.openai.api_server') _running_tasks: Set[asyncio.Task] = set() @asynccontextmanager async def lifespan(app: FastAPI): try: if app.state.log_stats: engine_client: EngineClient = app.state.engine_client async def _force_log(): while True: await asyncio.sleep(10.) await engine_client.do_log_stats() task = asyncio.create_task(_force_log()) _running_tasks.add(task) task.add_done_callback(_running_tasks.remove) else: task = None try: yield finally: if task is not None: task.cancel() finally: # Ensure app state including engine ref is gc'd del app.state @asynccontextmanager async def build_async_engine_client( args: Namespace) -> AsyncIterator[EngineClient]: # Context manager to handle engine_client lifecycle # Ensures everything is shutdown and cleaned up on error/exit engine_args = AsyncEngineArgs.from_cli_args(args) async with build_async_engine_client_from_engine_args( engine_args, args.disable_frontend_multiprocessing) as engine: yield engine @asynccontextmanager async def build_async_engine_client_from_engine_args( engine_args: AsyncEngineArgs, disable_frontend_multiprocessing: bool = False, ) -> AsyncIterator[EngineClient]: """ Create EngineClient, either: - in-process using the AsyncLLMEngine Directly - multiprocess using AsyncLLMEngine RPC Returns the Client or None if the creation failed. """ # Fall back # TODO: fill out feature matrix. if (MQLLMEngineClient.is_unsupported_config(engine_args) or envs.VLLM_USE_V1 or disable_frontend_multiprocessing): engine_config = engine_args.create_engine_config() uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config), "uses_ray", False) build_engine = partial(AsyncLLMEngine.from_engine_args, engine_args=engine_args, engine_config=engine_config, usage_context=UsageContext.OPENAI_API_SERVER) if uses_ray: # Must run in main thread with ray for its signal handlers to work engine_client = build_engine() else: engine_client = await asyncio.get_running_loop().run_in_executor( None, build_engine) yield engine_client if hasattr(engine_client, "shutdown"): engine_client.shutdown() return # Otherwise, use the multiprocessing AsyncLLMEngine. else: if "PROMETHEUS_MULTIPROC_DIR" not in os.environ: # Make TemporaryDirectory for prometheus multiprocessing # Note: global TemporaryDirectory will be automatically # cleaned up upon exit. global prometheus_multiproc_dir prometheus_multiproc_dir = tempfile.TemporaryDirectory() os.environ[ "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name else: logger.warning( "Found PROMETHEUS_MULTIPROC_DIR was set by user. " "This directory must be wiped between vLLM runs or " "you will find inaccurate metrics. Unset the variable " "and vLLM will properly handle cleanup.") # Select random path for IPC. ipc_path = get_open_zmq_ipc_path() logger.info("Multiprocessing frontend to use %s for IPC Path.", ipc_path) # Start RPCServer in separate process (holds the LLMEngine). # the current process might have CUDA context, # so we need to spawn a new process context = multiprocessing.get_context("spawn") # The Process can raise an exception during startup, which may # not actually result in an exitcode being reported. As a result # we use a shared variable to communicate the information. engine_alive = multiprocessing.Value('b', True, lock=False) engine_process = context.Process(target=run_mp_engine, args=(engine_args, UsageContext.OPENAI_API_SERVER, ipc_path, engine_alive)) engine_process.start() engine_pid = engine_process.pid assert engine_pid is not None, "Engine process failed to start." logger.info("Started engine process with PID %d", engine_pid) # Build RPCClient, which conforms to EngineClient Protocol. engine_config = engine_args.create_engine_config() build_client = partial(MQLLMEngineClient, ipc_path, engine_config, engine_pid) mq_engine_client = await asyncio.get_running_loop().run_in_executor( None, build_client) try: while True: try: await mq_engine_client.setup() break except TimeoutError: if (not engine_process.is_alive() or not engine_alive.value): raise RuntimeError( "Engine process failed to start. See stack " "trace for the root cause.") from None yield mq_engine_client # type: ignore[misc] finally: # Ensure rpc server process was terminated engine_process.terminate() # Close all open connections to the backend mq_engine_client.close() # Wait for engine process to join engine_process.join(4) if engine_process.exitcode is None: # Kill if taking longer than 5 seconds to stop engine_process.kill() # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import multiprocess multiprocess.mark_process_dead(engine_process.pid) router = APIRouter() def mount_metrics(app: FastAPI): # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import (CollectorRegistry, make_asgi_app, multiprocess) prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None) if prometheus_multiproc_dir_path is not None: logger.info("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR", prometheus_multiproc_dir_path) registry = CollectorRegistry() multiprocess.MultiProcessCollector(registry) # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app(registry=registry)) else: # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app()) # Workaround for 307 Redirect for /metrics metrics_route.path_regex = re.compile("^/metrics(?P.*)$") app.routes.append(metrics_route) def base(request: Request) -> OpenAIServing: # Reuse the existing instance return tokenization(request) def chat(request: Request) -> Optional[OpenAIServingChat]: return request.app.state.openai_serving_chat def completion(request: Request) -> Optional[OpenAIServingCompletion]: return request.app.state.openai_serving_completion def embedding(request: Request) -> Optional[OpenAIServingEmbedding]: return request.app.state.openai_serving_embedding def tokenization(request: Request) -> OpenAIServingTokenization: return request.app.state.openai_serving_tokenization def engine_client(request: Request) -> EngineClient: return request.app.state.engine_client @router.get("/health") async def health(raw_request: Request) -> Response: """Health check.""" await engine_client(raw_request).check_health() return Response(status_code=200) @router.post("/tokenize") async def tokenize(request: TokenizeRequest, raw_request: Request): handler = tokenization(raw_request) generator = await handler.create_tokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, TokenizeResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.post("/detokenize") async def detokenize(request: DetokenizeRequest, raw_request: Request): handler = tokenization(raw_request) generator = await handler.create_detokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, DetokenizeResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.get("/api/v1/models") async def show_available_models(raw_request: Request): handler = base(raw_request) models = await handler.show_available_models() return JSONResponse(content=models.model_dump()) @router.get("/version") async def show_version(): ver = {"version": VLLM_VERSION} return JSONResponse(content=ver) @router.post("/api/v1/chat/completions") async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request): handler = chat(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Chat Completions API") generator = await handler.create_chat_completion(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, ChatCompletionResponse): return JSONResponse(content=generator.model_dump()) return StreamingResponse(content=generator, media_type="text/event-stream") @router.post("/api/v1/completions") async def create_completion(request: CompletionRequest, raw_request: Request): handler = completion(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Completions API") generator = await handler.create_completion(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, CompletionResponse): return JSONResponse(content=generator.model_dump()) return StreamingResponse(content=generator, media_type="text/event-stream") @router.post("/api/v1/embeddings") async def create_embedding(request: EmbeddingRequest, raw_request: Request): handler = embedding(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Embeddings API") generator = await handler.create_embedding(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, EmbeddingResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) if envs.VLLM_TORCH_PROFILER_DIR: logger.warning( "Torch Profiler is enabled in the API server. This should ONLY be " "used for local development!") @router.post("/start_profile") async def start_profile(raw_request: Request): logger.info("Starting profiler...") await engine_client(raw_request).start_profile() logger.info("Profiler started.") return Response(status_code=200) @router.post("/stop_profile") async def stop_profile(raw_request: Request): logger.info("Stopping profiler...") await engine_client(raw_request).stop_profile() logger.info("Profiler stopped.") return Response(status_code=200) if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING: logger.warning( "Lora dynamic loading & unloading is enabled in the API server. " "This should ONLY be used for local development!") @router.post("/v1/load_lora_adapter") async def load_lora_adapter(request: LoadLoraAdapterRequest, raw_request: Request): for route in [chat, completion, embedding]: handler = route(raw_request) if handler is not None: response = await handler.load_lora_adapter(request) if isinstance(response, ErrorResponse): return JSONResponse(content=response.model_dump(), status_code=response.code) return Response(status_code=200, content=response) @router.post("/v1/unload_lora_adapter") async def unload_lora_adapter(request: UnloadLoraAdapterRequest, raw_request: Request): for route in [chat, completion, embedding]: handler = route(raw_request) if handler is not None: response = await handler.unload_lora_adapter(request) if isinstance(response, ErrorResponse): return JSONResponse(content=response.model_dump(), status_code=response.code) return Response(status_code=200, content=response) def build_app(args: Namespace) -> FastAPI: if args.disable_fastapi_docs: app = FastAPI(openapi_url=None, docs_url=None, redoc_url=None, lifespan=lifespan) else: app = FastAPI(lifespan=lifespan) app.include_router(router) app.root_path = args.root_path mount_metrics(app) app.add_middleware( CORSMiddleware, allow_origins=args.allowed_origins, allow_credentials=args.allow_credentials, allow_methods=args.allowed_methods, allow_headers=args.allowed_headers, ) @app.exception_handler(RequestValidationError) async def validation_exception_handler(_, exc): chat = app.state.openai_serving_chat err = chat.create_error_response(message=str(exc)) return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST) if token := envs.VLLM_API_KEY or args.api_key: @app.middleware("http") async def authentication(request: Request, call_next): root_path = "" if args.root_path is None else args.root_path if request.method == "OPTIONS": return await call_next(request) if not request.url.path.startswith(f"{root_path}/v1"): return await call_next(request) if request.headers.get("Authorization") != "Bearer " + token: return JSONResponse(content={"error": "Unauthorized"}, status_code=401) return await call_next(request) @app.middleware("http") async def add_request_id(request: Request, call_next): request_id = request.headers.get("X-Request-Id") or uuid.uuid4().hex response = await call_next(request) response.headers["X-Request-Id"] = request_id return response for middleware in args.middleware: module_path, object_name = middleware.rsplit(".", 1) imported = getattr(importlib.import_module(module_path), object_name) if inspect.isclass(imported): app.add_middleware(imported) elif inspect.iscoroutinefunction(imported): app.middleware("http")(imported) else: raise ValueError(f"Invalid middleware {middleware}. " f"Must be a function or a class.") return app def init_app_state( engine_client: EngineClient, model_config: ModelConfig, state: State, args: Namespace, ) -> None: if args.served_model_name is not None: served_model_names = args.served_model_name else: served_model_names = [args.model] if args.disable_log_requests: request_logger = None else: request_logger = RequestLogger(max_log_len=args.max_log_len) base_model_paths = [ BaseModelPath(name=name, model_path=args.model) for name in served_model_names ] state.engine_client = engine_client state.log_stats = not args.disable_log_stats state.openai_serving_chat = OpenAIServingChat( engine_client, model_config, base_model_paths, args.response_role, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, chat_template=args.chat_template, return_tokens_as_token_ids=args.return_tokens_as_token_ids, enable_auto_tools=args.enable_auto_tool_choice, tool_parser=args.tool_call_parser, enable_prompt_tokens_details=args.enable_prompt_tokens_details, ) if model_config.task == "generate" else None state.openai_serving_completion = OpenAIServingCompletion( engine_client, model_config, base_model_paths, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, return_tokens_as_token_ids=args.return_tokens_as_token_ids, ) if model_config.task == "generate" else None state.openai_serving_embedding = OpenAIServingEmbedding( engine_client, model_config, base_model_paths, request_logger=request_logger, chat_template=args.chat_template, ) if model_config.task == "embedding" else None state.openai_serving_tokenization = OpenAIServingTokenization( engine_client, model_config, base_model_paths, lora_modules=args.lora_modules, request_logger=request_logger, chat_template=args.chat_template, ) def create_server_socket(addr: Tuple[str, int]) -> socket.socket: family = socket.AF_INET if is_valid_ipv6_address(addr[0]): family = socket.AF_INET6 sock = socket.socket(family=family, type=socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(addr) return sock async def run_server(args, **uvicorn_kwargs) -> None: logger.info("vLLM API server version %s", VLLM_VERSION) logger.info("args: %s", args) if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3: ToolParserManager.import_tool_parser(args.tool_parser_plugin) valide_tool_parses = ToolParserManager.tool_parsers.keys() if args.enable_auto_tool_choice \ and args.tool_call_parser not in valide_tool_parses: raise KeyError(f"invalid tool call parser: {args.tool_call_parser} " f"(chose from {{ {','.join(valide_tool_parses)} }})") # workaround to make sure that we bind the port before the engine is set up. # This avoids race conditions with ray. # see https://github.com/vllm-project/vllm/issues/8204 sock_addr = (args.host or "", args.port) sock = create_server_socket(sock_addr) def signal_handler(*_) -> None: # Interrupt server on sigterm while initializing raise KeyboardInterrupt("terminated") signal.signal(signal.SIGTERM, signal_handler) async with build_async_engine_client(args) as engine_client: app = build_app(args) model_config = await engine_client.get_model_config() init_app_state(engine_client, model_config, app.state, args) shutdown_task = await serve_http( app, host=args.host, port=args.port, log_level=args.uvicorn_log_level, timeout_keep_alive=TIMEOUT_KEEP_ALIVE, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile, ssl_ca_certs=args.ssl_ca_certs, ssl_cert_reqs=args.ssl_cert_reqs, **uvicorn_kwargs, ) # NB: Await server shutdown only after the backend context is exited await shutdown_task sock.close() if __name__ == "__main__": # NOTE(simon): # This section should be in sync with vllm/scripts.py for CLI entrypoints. parser = FlexibleArgumentParser( description="vLLM OpenAI-Compatible RESTful API server.") parser = make_arg_parser(parser) args = parser.parse_args() validate_parsed_serve_args(args) uvloop.run(run_server(args))