import gradio as gr from huggingface_hub import from_pretrained_keras from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.preprocessing import image import numpy as np model = from_pretrained_keras("yusyel/clothing") class_names=["dress.jpg", "hat.jpg", "longsleee.jpg", "outwear.pg", "pants.jpg", "shirt.jpg", "shoes.jpg", "shorts.jpg", "skirt.jpg", "t-shirt.jpg"] def preprocess_image(img): img = load_img(img, target_size=(249, 249, 3)) img = image.img_to_array(img) img = np.expand_dims(img, axis=0) img /= 255.0 print(img.shape) return img def predict(img): img = preprocess_image(img) pred = model.predict(img) pred = np.squeeze(pred).astype(float) print(pred) return dict(zip(class_names, pred)) demo = gr.Interface( fn=predict, inputs=[gr.inputs.Image(type="filepath")], outputs=gr.outputs.Label(), examples=[ ["./img/dress.jpg"], ["./img/hat.jpg"], ["./img/longsleeve.jpg"], ["./img/outwear.jpg"], ["./img/pants.jpg"], ["./img/shirt.jpg"], ["./img/shoes.jpg"], ["./img/shorts.jpg"], ["./img/skirt.jpg"], ["./img/t-shirt.jpg"], ], title="fish classification", ) demo.launch(server_name="0.0.0.0", server_port=7860)