Spaces:
Sleeping
Sleeping
yuting89830
commited on
Commit
•
f213fc3
1
Parent(s):
a8f49dd
Upload 3 files
Browse files- app.py +13 -28
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,40 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
import spaces
|
4 |
-
|
5 |
|
6 |
from PIL import Image
|
7 |
|
8 |
-
|
9 |
import subprocess
|
10 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
|
|
|
|
16 |
|
17 |
-
TITLE = "# [Florence-2-DocVQA Demo]
|
18 |
-
DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)."
|
19 |
|
20 |
|
21 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
22 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
23 |
|
24 |
-
@spaces.GPU
|
25 |
def run_example(task_prompt, image, text_input=None):
|
26 |
if text_input is None:
|
27 |
prompt = task_prompt
|
28 |
else:
|
29 |
prompt = task_prompt + text_input
|
30 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to("
|
31 |
generated_ids = model.generate(
|
32 |
input_ids=inputs["input_ids"],
|
33 |
pixel_values=inputs["pixel_values"],
|
34 |
-
max_new_tokens=
|
35 |
-
early_stopping=
|
36 |
do_sample=False,
|
37 |
-
num_beams=
|
38 |
)
|
39 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
40 |
parsed_answer = processor.post_process_generation(
|
@@ -61,7 +61,6 @@ css = """
|
|
61 |
|
62 |
with gr.Blocks(css=css) as demo:
|
63 |
gr.Markdown(TITLE)
|
64 |
-
gr.Markdown(DESCRIPTION)
|
65 |
with gr.Tab(label="Florence-2 Image Captioning"):
|
66 |
with gr.Row():
|
67 |
with gr.Column():
|
@@ -71,20 +70,6 @@ with gr.Blocks(css=css) as demo:
|
|
71 |
with gr.Column():
|
72 |
output_text = gr.Textbox(label="Output Text")
|
73 |
|
74 |
-
gr.Examples(
|
75 |
-
examples=[
|
76 |
-
["hunt.jpg", 'What is this image?'],
|
77 |
-
["idefics2_architecture.png", 'How many tokens per image does it use?'],
|
78 |
-
["idefics2_architecture.png", "What type of encoder does the model use?"],
|
79 |
-
["image.jpg", "What's the share of Industry Switchers Gained?"]
|
80 |
-
],
|
81 |
-
inputs=[input_img, text_input],
|
82 |
-
outputs=[output_text],
|
83 |
-
fn=process_image,
|
84 |
-
cache_examples=True,
|
85 |
-
label='Try the examples below'
|
86 |
-
)
|
87 |
-
|
88 |
submit_btn.click(process_image, [input_img, text_input], [output_text])
|
89 |
|
90 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
import spaces
|
4 |
+
import torch
|
5 |
|
6 |
from PIL import Image
|
7 |
|
|
|
8 |
import subprocess
|
9 |
+
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
|
11 |
+
torch.set_num_threads(4)
|
12 |
|
13 |
+
model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cpu").eval()
|
14 |
|
15 |
+
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
|
16 |
+
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
|
17 |
|
18 |
+
TITLE = "# [Florence-2-DocVQA Demo]"
|
|
|
19 |
|
20 |
|
21 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
22 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
23 |
|
24 |
+
# @spaces.GPU
|
25 |
def run_example(task_prompt, image, text_input=None):
|
26 |
if text_input is None:
|
27 |
prompt = task_prompt
|
28 |
else:
|
29 |
prompt = task_prompt + text_input
|
30 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu")
|
31 |
generated_ids = model.generate(
|
32 |
input_ids=inputs["input_ids"],
|
33 |
pixel_values=inputs["pixel_values"],
|
34 |
+
max_new_tokens=64,
|
35 |
+
early_stopping=True,
|
36 |
do_sample=False,
|
37 |
+
num_beams=1,
|
38 |
)
|
39 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
40 |
parsed_answer = processor.post_process_generation(
|
|
|
61 |
|
62 |
with gr.Blocks(css=css) as demo:
|
63 |
gr.Markdown(TITLE)
|
|
|
64 |
with gr.Tab(label="Florence-2 Image Captioning"):
|
65 |
with gr.Row():
|
66 |
with gr.Column():
|
|
|
70 |
with gr.Column():
|
71 |
output_text = gr.Textbox(label="Output Text")
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
submit_btn.click(process_image, [input_img, text_input], [output_text])
|
74 |
|
75 |
+
demo.launch(debug=True)
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
spaces
|
2 |
transformers
|
3 |
-
timm
|
|
|
|
1 |
spaces
|
2 |
transformers
|
3 |
+
timm
|
4 |
+
einops
|