File size: 6,689 Bytes
9080570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e2863
 
 
 
 
 
9080570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8463d2
dae1a1c
 
9080570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84aa4f
9080570
 
 
 
 
 
 
 
 
 
 
 
 
 
18a69c3
 
9080570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac8ea7c
 
 
 
 
9080570
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import yaml
import torch
import argparse
import numpy as np
import gradio as gr

from PIL import Image
from copy import deepcopy
from torch.nn.parallel import DataParallel, DistributedDataParallel

from huggingface_hub import hf_hub_download
from gradio_imageslider import ImageSlider

## local code
from models import seemore


def dict2namespace(config):
    namespace = argparse.Namespace()
    for key, value in config.items():
        if isinstance(value, dict):
            new_value = dict2namespace(value)
        else:
            new_value = value
        setattr(namespace, key, new_value)
    return namespace

def load_img (filename, norm=True,):
    img = np.array(Image.open(filename).convert("RGB"))
    h, w = img.shape[:2]
    
    if w > 1920 or h > 1080:
        new_h, new_w = h // 4, w // 4
        img = np.array(Image.fromarray(img).resize((new_w, new_h), Image.BICUBIC))
 
    if norm:
        img = img / 255.
        img = img.astype(np.float32)
    return img

def process_img (image):
    img = np.array(image)
    img = img / 255.
    img = img.astype(np.float32)
    y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
    
    with torch.no_grad():
        x_hat = model(y)

    restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
    restored_img = np.clip(restored_img, 0. , 1.)

    restored_img = (restored_img * 255.0).round().astype(np.uint8)  # float32 to uint8
    #return Image.fromarray(restored_img) #
    return (image, Image.fromarray(restored_img))

def load_network(net, load_path, strict=True, param_key='params'):
    if isinstance(net, (DataParallel, DistributedDataParallel)):
        net = net.module
    load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
    if param_key is not None:
        if param_key not in load_net and 'params' in load_net:
            param_key = 'params'
        load_net = load_net[param_key]
    # remove unnecessary 'module.'
    for k, v in deepcopy(load_net).items():
        if k.startswith('module.'):
            load_net[k[7:]] = v
            load_net.pop(k)
    net.load_state_dict(load_net, strict=strict)

CONFIG = "configs/eval_seemore_t_x4.yml"
hf_hub_download(repo_id="eduardzamfir/SeemoRe-T", filename="SeemoRe_T_X4.pth", local_dir="./")
MODEL_NAME = "SeemoRe_T_X4.pth"

# parse config file
with open(os.path.join(CONFIG), "r") as f:
    config = yaml.safe_load(f)

cfg = dict2namespace(config)

device = torch.device("cpu")
model = seemore.SeemoRe(scale=cfg.model.scale, in_chans=cfg.model.in_chans,
                        num_experts=cfg.model.num_experts, num_layers=cfg.model.num_layers, embedding_dim=cfg.model.embedding_dim, 
                        img_range=cfg.model.img_range, use_shuffle=cfg.model.use_shuffle, global_kernel_size=cfg.model.global_kernel_size, 
                        recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk)

model = model.to(device)
print ("IMAGE MODEL CKPT:", MODEL_NAME)
load_network(model, MODEL_NAME, strict=True, param_key='params')




title = "See More Details"
description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining - ICML 2024, Vienna, Austria

#### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao),  [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/)

#### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland**
#### **<sup>*</sup> Corresponding authors**

<details>
<summary> <b> Abstract</b> (click me to read)</summary>
<p>
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings
</p>
</details>


####  Drag the slider on the super-resolution image left and right to see the changes in the image details.

<br>

<code>
@inproceedings{zamfir2024details,
  title={See More Details: Efficient Image Super-Resolution by Experts Mining}, 
  author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
  booktitle={International Conference on Machine Learning},
  year={2024},
  organization={PMLR}
}
</code>
<br>
'''


article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>"

#### Image,Prompts examples
examples = [['images/img002x4.png'],
            ['images/img003x4.png'],
            ['images/img004x4.png'],
            ['images/img035x4.png'],
            ['images/img053x4.png'],
            ['images/img064x4.png'],
            ['images/img083x4.png'],
            ['images/img092x4.png'],
            ]

css = """
    .image-frame img, .image-container img {
        width: auto;
        height: auto;
        max-width: none;
    }
"""

demo = gr.Interface(
    fn=process_img,
    inputs=[gr.Image(type="pil", label="Input", value="images/img002x4.png"),],
    outputs=ImageSlider(label="Super-Resolved Image", 
                        type="pil",
                       show_download_button=True,
                       show_share_button=True,
                       ), #[gr.Image(type="pil", label="Ouput", min_width=500)],
    title=title,
    description=description,
    article=article,
    examples=examples,
    css=css,
)

if __name__ == "__main__":
    demo.launch()