Spaces:
Sleeping
Sleeping
from PyPDF2 import PdfReader | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
import streamlit as st | |
from dotenv import load_dotenv,find_dotenv | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
import pickle | |
import os | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
## Slide-bar | |
with st.sidebar: | |
st.title('PDF Q&A') | |
st.markdown(''' | |
## About | |
This app is an LLM-powered chatbot built using: | |
- [Streamlit](https://streamlit.io/) | |
- [LangChain](https://python.langchain.com/) | |
- [OpenAI](https://platform.openai.com/docs/models) LLM model | |
''') | |
add_vertical_space(5) | |
st.write('Made by Harshit') | |
def main(): | |
st.header("Q&A from Pdfs: ") | |
load_dotenv(find_dotenv()) | |
pdf_reader = PdfReader('48lawsofpower.pdf') | |
# st.write(pdf_reader) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = CharacterTextSplitter( | |
separator = "\n", | |
chunk_size = 1000, | |
chunk_overlap = 200, | |
length_function = len, | |
) | |
## Chunk Formation | |
chunks = text_splitter.split_text(text= text) | |
## Embedding | |
embeddings = OpenAIEmbeddings() | |
document_search = FAISS.from_texts(chunks, embeddings) | |
query = st.text_input("Ask your questions: ") | |
docs = document_search.similarity_search(query=query) | |
llm = OpenAI() | |
chain = load_qa_chain(llm=llm, chain_type="stuff") | |
response = chain.run(input_documents=docs, question=query) | |
st.write(response) | |
if __name__ == '__main__': | |
main() | |