Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import yt_dlp as youtube_dl
|
5 |
+
from transformers import pipeline
|
6 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
7 |
+
import numpy as np
|
8 |
+
from huggingface_hub import snapshot_download
|
9 |
+
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
|
10 |
+
from seamless_communication.inference import Translator
|
11 |
+
|
12 |
+
import tempfile
|
13 |
+
import os
|
14 |
+
|
15 |
+
|
16 |
+
#from lang_list import (
|
17 |
+
#ASR_TARGET_LANGUAGE_NAMES,
|
18 |
+
#LANGUAGE_NAME_TO_CODE,
|
19 |
+
#S2ST_TARGET_LANGUAGE_NAMES,
|
20 |
+
#S2TT_TARGET_LANGUAGE_NAMES,
|
21 |
+
#T2ST_TARGET_LANGUAGE_NAMES,
|
22 |
+
#T2TT_TARGET_LANGUAGE_NAMES,
|
23 |
+
#TEXT_SOURCE_LANGUAGE_NAMES,
|
24 |
+
#)
|
25 |
+
|
26 |
+
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models"))
|
27 |
+
if not CHECKPOINTS_PATH.exists():
|
28 |
+
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
|
29 |
+
asset_store.env_resolvers.clear()
|
30 |
+
asset_store.env_resolvers.append(lambda: "demo")
|
31 |
+
demo_metadata = [
|
32 |
+
{
|
33 |
+
"name": "seamlessM4T_v2_large@demo",
|
34 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
|
35 |
+
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "vocoder_v2@demo",
|
39 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/vocoder_v2.pt",
|
40 |
+
},
|
41 |
+
]
|
42 |
+
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
|
43 |
+
|
44 |
+
|
45 |
+
MODEL_NAME = "openai/whisper-large-v2"
|
46 |
+
BATCH_SIZE = 8
|
47 |
+
FILE_LIMIT_MB = 1000
|
48 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
49 |
+
|
50 |
+
DEFAULT_TARGET_LANGUAGE = "French"
|
51 |
+
|
52 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
53 |
+
|
54 |
+
pipe = pipeline(
|
55 |
+
task="automatic-speech-recognition",
|
56 |
+
model=MODEL_NAME,
|
57 |
+
chunk_length_s=30,
|
58 |
+
device=device,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str:
|
63 |
+
preprocess_audio(input_audio)
|
64 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
65 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
66 |
+
out_texts, _ = translator.predict(
|
67 |
+
input=input_audio,
|
68 |
+
task_str="S2TT",
|
69 |
+
src_lang=source_language_code,
|
70 |
+
tgt_lang=target_language_code,
|
71 |
+
)
|
72 |
+
return str(out_texts[0])
|
73 |
+
|
74 |
+
|
75 |
+
def transcribe(inputs, task):
|
76 |
+
if inputs is None:
|
77 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
78 |
+
|
79 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
80 |
+
|
81 |
+
# Traduire le texte transcrit en français
|
82 |
+
translated_text = run_s2tt(text, source_language, target_language)
|
83 |
+
return translated_text
|
84 |
+
|
85 |
+
|
86 |
+
def _return_yt_html_embed(yt_url):
|
87 |
+
video_id = yt_url.split("?v=")[-1]
|
88 |
+
HTML_str = (
|
89 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
90 |
+
" </center>"
|
91 |
+
)
|
92 |
+
return HTML_str
|
93 |
+
|
94 |
+
def download_yt_audio(yt_url, filename):
|
95 |
+
info_loader = youtube_dl.YoutubeDL()
|
96 |
+
|
97 |
+
try:
|
98 |
+
info = info_loader.extract_info(yt_url, download=False)
|
99 |
+
except youtube_dl.utils.DownloadError as err:
|
100 |
+
raise gr.Error(str(err))
|
101 |
+
|
102 |
+
file_length = info["duration_string"]
|
103 |
+
file_h_m_s = file_length.split(":")
|
104 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
105 |
+
|
106 |
+
if len(file_h_m_s) == 1:
|
107 |
+
file_h_m_s.insert(0, 0)
|
108 |
+
if len(file_h_m_s) == 2:
|
109 |
+
file_h_m_s.insert(0, 0)
|
110 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
111 |
+
|
112 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
113 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
114 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
115 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
116 |
+
|
117 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
118 |
+
|
119 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
120 |
+
try:
|
121 |
+
ydl.download([yt_url])
|
122 |
+
except youtube_dl.utils.ExtractorError as err:
|
123 |
+
raise gr.Error(str(err))
|
124 |
+
|
125 |
+
|
126 |
+
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
127 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
128 |
+
|
129 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
130 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
131 |
+
download_yt_audio(yt_url, filepath)
|
132 |
+
with open(filepath, "rb") as f:
|
133 |
+
inputs = f.read()
|
134 |
+
|
135 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
136 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
137 |
+
|
138 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
139 |
+
|
140 |
+
# Traduire le texte transcrit en français
|
141 |
+
translated_text = run_s2tt(text, source_language, target_language)
|
142 |
+
return html_embed_str, translated_text
|
143 |
+
|
144 |
+
|
145 |
+
demo = gr.Blocks()
|
146 |
+
|
147 |
+
mf_transcribe = gr.Interface(
|
148 |
+
fn=transcribe,
|
149 |
+
inputs=[
|
150 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
151 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
152 |
+
],
|
153 |
+
outputs="text",
|
154 |
+
layout="horizontal",
|
155 |
+
theme="huggingface",
|
156 |
+
title="Whisper Large V2: Transcribe Audio",
|
157 |
+
description=(
|
158 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
159 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
160 |
+
" of arbitrary length."
|
161 |
+
),
|
162 |
+
allow_flagging="never",
|
163 |
+
)
|
164 |
+
|
165 |
+
file_transcribe = gr.Interface(
|
166 |
+
fn=transcribe,
|
167 |
+
inputs=[
|
168 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
169 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
170 |
+
],
|
171 |
+
outputs="text",
|
172 |
+
layout="horizontal",
|
173 |
+
theme="huggingface",
|
174 |
+
title="Whisper Large V2: Transcribe Audio",
|
175 |
+
description=(
|
176 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
177 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
178 |
+
" of arbitrary length."
|
179 |
+
),
|
180 |
+
allow_flagging="never",
|
181 |
+
)
|
182 |
+
|
183 |
+
yt_transcribe = gr.Interface(
|
184 |
+
fn=yt_transcribe,
|
185 |
+
inputs=[
|
186 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
187 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
188 |
+
],
|
189 |
+
outputs=["html", "text"],
|
190 |
+
layout="horizontal",
|
191 |
+
theme="huggingface",
|
192 |
+
title="Whisper Large V2: Transcribe YouTube",
|
193 |
+
description=(
|
194 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
195 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
196 |
+
" arbitrary length."
|
197 |
+
),
|
198 |
+
allow_flagging="never",
|
199 |
+
)
|
200 |
+
|
201 |
+
with demo:
|
202 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
203 |
+
|
204 |
+
demo.launch(enable_queue=True)
|