File size: 19,039 Bytes
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""


import copy
import json
import logging
import os
from typing import Dict, Tuple

from .file_utils import CONFIG_NAME, cached_path, hf_bucket_url, is_remote_url


logger = logging.getLogger(__name__)


class PretrainedConfig(object):
    r""" Base class for all configuration classes.
        Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.

        Note:
            A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights.
            It only affects the model's configuration.

        Class attributes (overridden by derived classes):
            - ``model_type``: a string that identifies the model type, that we serialize into the JSON file, and that we use to recreate the correct object in :class:`~transformers.AutoConfig`.

        Args:
            finetuning_task (:obj:`string` or :obj:`None`, `optional`, defaults to :obj:`None`):
                Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.
            num_labels (:obj:`int`, `optional`, defaults to `2`):
                Number of classes to use when the model is a classification model (sequences/tokens)
            output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Should the model returns all hidden-states.
            output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Should the model returns all attentions.
            torchscript (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Is the model used with Torchscript (for PyTorch models).
    """
    model_type: str = ""

    def __init__(self, **kwargs):
        # Attributes with defaults
        self.output_hidden_states = kwargs.pop("output_hidden_states", False)
        self.output_attentions = kwargs.pop("output_attentions", False)
        self.use_cache = kwargs.pop("use_cache", True)  # Not used by all models
        self.torchscript = kwargs.pop("torchscript", False)  # Only used by PyTorch models
        self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
        self.pruned_heads = kwargs.pop("pruned_heads", {})

        # Is decoder is used in encoder-decoder models to differentiate encoder from decoder
        self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
        self.is_decoder = kwargs.pop("is_decoder", False)

        # Parameters for sequence generation
        self.max_length = kwargs.pop("max_length", 20)
        self.min_length = kwargs.pop("min_length", 0)
        self.do_sample = kwargs.pop("do_sample", False)
        self.early_stopping = kwargs.pop("early_stopping", False)
        self.num_beams = kwargs.pop("num_beams", 1)
        self.temperature = kwargs.pop("temperature", 1.0)
        self.top_k = kwargs.pop("top_k", 50)
        self.top_p = kwargs.pop("top_p", 1.0)
        self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
        self.length_penalty = kwargs.pop("length_penalty", 1.0)
        self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
        self.bad_words_ids = kwargs.pop("bad_words_ids", None)
        self.num_return_sequences = kwargs.pop("num_return_sequences", 1)

        # Fine-tuning task arguments
        self.architectures = kwargs.pop("architectures", None)
        self.finetuning_task = kwargs.pop("finetuning_task", None)
        self.id2label = kwargs.pop("id2label", None)
        self.label2id = kwargs.pop("label2id", None)
        if self.id2label is not None:
            kwargs.pop("num_labels", None)
            self.id2label = dict((int(key), value) for key, value in self.id2label.items())
            # Keys are always strings in JSON so convert ids to int here.
        else:
            self.num_labels = kwargs.pop("num_labels", 2)

        # Tokenizer arguments TODO: eventually tokenizer and models should share the same config
        self.prefix = kwargs.pop("prefix", None)
        self.bos_token_id = kwargs.pop("bos_token_id", None)
        self.pad_token_id = kwargs.pop("pad_token_id", None)
        self.eos_token_id = kwargs.pop("eos_token_id", None)
        self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)

        # task specific arguments
        self.task_specific_params = kwargs.pop("task_specific_params", None)

        # TPU arguments
        self.xla_device = kwargs.pop("xla_device", None)

        # Additional attributes without default values
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error("Can't set {} with value {} for {}".format(key, value, self))
                raise err

    @property
    def num_labels(self):
        return len(self.id2label)

    @num_labels.setter
    def num_labels(self, num_labels):
        self.id2label = {i: "LABEL_{}".format(i) for i in range(num_labels)}
        self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))

    def save_pretrained(self, save_directory):
        """
        Save a configuration object to the directory `save_directory`, so that it
        can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method.

        Args:
            save_directory (:obj:`string`):
                Directory where the configuration JSON file will be saved.
        """
        if os.path.isfile(save_directory):
            raise AssertionError("Provided path ({}) should be a directory, not a file".format(save_directory))
        os.makedirs(save_directory, exist_ok=True)
        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file, use_diff=True)
        logger.info("Configuration saved in {}".format(output_config_file))

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig":
        r"""

        Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.

        Args:
            pretrained_model_name_or_path (:obj:`string`):
                either:
                  - a string with the `shortcut name` of a pre-trained model configuration to load from cache or
                    download, e.g.: ``bert-base-uncased``.
                  - a string with the `identifier name` of a pre-trained model configuration that was user-uploaded to
                    our S3, e.g.: ``dbmdz/bert-base-german-cased``.
                  - a path to a `directory` containing a configuration file saved using the
                    :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
                  - a path or url to a saved configuration JSON `file`, e.g.:
                    ``./my_model_directory/configuration.json``.
            cache_dir (:obj:`string`, `optional`):
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            kwargs (:obj:`Dict[str, any]`, `optional`):
                The values in kwargs of any keys which are configuration attributes will be used to override the loaded
                values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is
                controlled by the `return_unused_kwargs` keyword parameter.
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Force to (re-)download the model weights and configuration files and override the cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
            proxies (:obj:`Dict`, `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g.:
                :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.`
                The proxies are used on each request.
            return_unused_kwargs: (`optional`) bool:
                If False, then this function returns just the final configuration object.
                If True, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs` is a
                dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part
                of kwargs which has not been used to update `config` and is otherwise ignored.

        Returns:
            :class:`PretrainedConfig`: An instance of a configuration object

        Examples::

            # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
            # derived class: BertConfig
            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            config = BertConfig.from_pretrained('./test/saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
            config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            assert config.output_attention == True
            config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
                                                               foo=False, return_unused_kwargs=True)
            assert config.output_attention == True
            assert unused_kwargs == {'foo': False}

        """
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
        return cls.from_dict(config_dict, **kwargs)

    @classmethod
    def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs) -> Tuple[Dict, Dict]:
        """
        From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used
        for instantiating a Config using `from_dict`.

        Parameters:
            pretrained_model_name_or_path (:obj:`string`):
                The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.

        Returns:
            :obj:`Tuple[Dict, Dict]`: The dictionary that will be used to instantiate the configuration object.

        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)

        if os.path.isdir(pretrained_model_name_or_path):
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        else:
            config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False)

        try:
            # Load from URL or cache if already cached
            resolved_config_file = cached_path(
                config_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
            )
            # Load config dict
            if resolved_config_file is None:
                raise EnvironmentError
            config_dict = cls._dict_from_json_file(resolved_config_file)

        except EnvironmentError:
            msg = (
                f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
            )
            raise EnvironmentError(msg)

        except json.JSONDecodeError:
            msg = (
                "Couldn't reach server at '{}' to download configuration file or "
                "configuration file is not a valid JSON file. "
                "Please check network or file content here: {}.".format(config_file, resolved_config_file)
            )
            raise EnvironmentError(msg)

        if resolved_config_file == config_file:
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading configuration file {} from cache at {}".format(config_file, resolved_config_file))

        return config_dict, kwargs

    @classmethod
    def from_dict(cls, config_dict: Dict, **kwargs) -> "PretrainedConfig":
        """
        Constructs a `Config` from a Python dictionary of parameters.

        Args:
            config_dict (:obj:`Dict[str, any]`):
                Dictionary that will be used to instantiate the configuration object. Such a dictionary can be retrieved
                from a pre-trained checkpoint by leveraging the :func:`~transformers.PretrainedConfig.get_config_dict`
                method.
            kwargs (:obj:`Dict[str, any]`):
                Additional parameters from which to initialize the configuration object.

        Returns:
            :class:`PretrainedConfig`: An instance of a configuration object
        """
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)

        config = cls(**config_dict)

        if hasattr(config, "pruned_heads"):
            config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items())

        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

        logger.info("Model config %s", str(config))
        if return_unused_kwargs:
            return config, kwargs
        else:
            return config

    @classmethod
    def from_json_file(cls, json_file: str) -> "PretrainedConfig":
        """
        Constructs a `Config` from the path to a json file of parameters.

        Args:
            json_file (:obj:`string`):
                Path to the JSON file containing the parameters.

        Returns:
            :class:`PretrainedConfig`: An instance of a configuration object

        """
        config_dict = cls._dict_from_json_file(json_file)
        return cls(**config_dict)

    @classmethod
    def _dict_from_json_file(cls, json_file: str):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return "{} {}".format(self.__class__.__name__, self.to_json_string())

    def to_diff_dict(self):
        """
        Removes all attributes from config which correspond to the default
        config attributes for better readability and serializes to a Python
        dictionary.

        Returns:
            :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        config_dict = self.to_dict()

        # get the default config dict
        default_config_dict = PretrainedConfig().to_dict()

        serializable_config_dict = {}

        # only serialize values that differ from the default config
        for key, value in config_dict.items():
            if key not in default_config_dict or value != default_config_dict[key]:
                serializable_config_dict[key] = value

        return serializable_config_dict

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary.

        Returns:
            :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)
        if hasattr(self.__class__, "model_type"):
            output["model_type"] = self.__class__.model_type
        return output

    def to_json_string(self, use_diff=True):
        """
        Serializes this instance to a JSON string.

        Args:
            use_diff (:obj:`bool`):
                If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON string.

        Returns:
            :obj:`string`: String containing all the attributes that make up this configuration instance in JSON format.
        """
        if use_diff is True:
            config_dict = self.to_diff_dict()
        else:
            config_dict = self.to_dict()
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path, use_diff=True):
        """
        Save this instance to a json file.

        Args:
            json_file_path (:obj:`string`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
            use_diff (:obj:`bool`):
                If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON file.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            writer.write(self.to_json_string(use_diff=use_diff))

    def update(self, config_dict: Dict):
        """
        Updates attributes of this class
        with attributes from `config_dict`.

        Args:
            :obj:`Dict[str, any]`: Dictionary of attributes that shall be updated for this class.
        """
        for key, value in config_dict.items():
            setattr(self, key, value)