File size: 36,438 Bytes
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn

from functools import reduce
import operator
from bert.multimodal_bert import MultiModalBert

import torchvision
from lib import multimodal_segmentation_ppm

import transforms as T
import utils
import numpy as np

import torch.nn.functional as F

import gc
from collections import OrderedDict

import torch.backends.cudnn as cudnn

#from ffrecord.torch import DataLoader,Dataset
from modeling.MaskFormerModel import MaskFormerHead
from addict import Dict

from mask2former_utils.criterion import SetCriterion, Criterion
from mask2former_utils.matcher import HungarianMatcher
from bert.modeling_bert import BertLMPredictionHead, BertEncoder




class WrapperModel(nn.Module):
    def __init__(self, image_model, language_model, classifier, args) :
        super(WrapperModel, self).__init__()
        self.image_model = image_model
        self.language_model = language_model
        self.classifier = classifier

        self.lang_proj = nn.Linear(768,256)

        config = Dict({
          "architectures": [
           "BertForMaskedLM"
          ],
          "attention_probs_dropout_prob": 0.1,
          "gradient_checkpointing": False,
          "hidden_act": "gelu",
          "hidden_dropout_prob": 0.1,
          "hidden_size": 512,
          "initializer_range": 0.02,
          "intermediate_size": 3072,
          "layer_norm_eps": 1e-12,
          #"max_position_embeddings": 16+20,
          "model_type": "bert",
          "num_attention_heads": 8,
          "num_hidden_layers": 8,
         "pad_token_id": 0,
          "position_embedding_type": "absolute",
          "transformers_version": "4.6.0.dev0",
          "type_vocab_size": 2,
          "use_cache": True,
          "vocab_size": 30522
        })
        self.mlm_transformer = BertEncoder(config)

        self.lang_proj = nn.Linear(768,256)
        self.mlm_vis_proj = nn.Conv2d(1024,512,1)
        self.mlm_lang_proj = nn.Linear(768,512)
        #print(vis_proj)
        self.mlm_head = BertLMPredictionHead(config)

        assert args.img_size % 4 == 0
        num_img_tokens = 20 + ((args.img_size // 4)//8) ** 2
        print(num_img_tokens)
        self.mlm_pos_embeds = nn.Embedding(num_img_tokens+1, 512)
        self.mlm_modal_embeds = nn.Embedding(3, 512)

        self.mlm_mask_embed = nn.Embedding(1, 512)
        self.mlm_pos_mlp = nn.Sequential(
            nn.Linear(2, 512),
            nn.LayerNorm(512),
            nn.Linear(512,512),
            nn.GELU()
        )

    def _get_binary_mask(self, target):
        # 返回每类的binary mask
        y, x = target.size()
        target_onehot = torch.zeros(self.num_classes + 1, y, x)
        target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
        return target_onehot[1:]

    def semantic_inference(self, mask_cls, mask_pred):       
        mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
        mask_pred = mask_pred.sigmoid()      
        semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)        
        return semseg

    def forward(self, image, sentences, attentions, mlm_targets, mlm_masks, position): 
        input_shape = image.shape[-2:]
        l_mask = attentions.unsqueeze(dim=-1)

        i0, Wh, Ww = self.image_model.forward_stem(image)
        l0, extended_attention_mask = self.language_model.forward_stem(mlm_targets.squeeze(1), attentions)

        i1 = self.image_model.forward_stage1(i0, Wh, Ww)
        l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
        i1_residual, H, W, i1_temp, Wh, Ww  = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
        l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask) 
        i1 = i1_temp

        i2 = self.image_model.forward_stage2(i1, Wh, Ww)
        l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
        i2_residual, H, W, i2_temp, Wh, Ww  = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
        l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask) 
        i2 = i2_temp

        i3 = self.image_model.forward_stage3(i2, Wh, Ww)
        l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
        i3_residual, H, W, i3_temp, Wh, Ww  = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
        l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask) 
        i3 = i3_temp

        i4 = self.image_model.forward_stage4(i3, Wh, Ww)
        l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
        i4_residual, H, W, i4_temp, Wh, Ww  = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
        l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask) 
        i4 = i4_temp

        #i1_residual, i2_residual, i3_residual, i4_residual = features
        #x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
        #x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
        outputs = {}
        outputs['s1'] = i1_residual
        outputs['s2'] = i2_residual
        outputs['s3'] = i3_residual
        outputs['s4'] = i4_residual

        predictions, mask_features = self.classifier(outputs)

        #print(target_reshape.shape)
        #tmp = np.argwhere(target_reshape[:, 0].detach().cpu().numpy()).reshape(-1, target_reshape.shape[2]*target_reshape[3], 3)
        #centroid = tmp.mean(1)
        #print(centroid)
        #centroid_x, centroid_y = int(centroid[1]), int(centroid[0])
        #last_hidden_states = brt_model(sentences, attention_mask=attentions)[0]  # (6, 10, 768)
        #embedding = last_hidden_states.permute(0, 2, 1)  # (B, 768, N_l) to make Conv1d happy


        l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)
        l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
        l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
        l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
        l4 = self.language_model.forward_stage4(l3, extended_attention_mask)


        mlp_embed = self.mlm_pos_mlp(position)
        #print(centroid_x, centroid_y)

        mlm_targets = torch.where(
            mlm_masks > 0,
            mlm_targets,
            torch.ones_like(mlm_targets) * (-1)
        )

        #print(x_c4[target_reshape[:, [0]].bool()].shape)
        vis_features = self.mlm_vis_proj(i4_residual).flatten(2).permute(0,2,1)
        #print(l4.shape)
        lang_features = self.mlm_lang_proj(l4)
        
        #print(lang_features.shape, vis_features.shape, mlp_embed.shape)
        mm_features = torch.cat([lang_features, vis_features, mlp_embed.unsqueeze(1)], dim=1)
        #print(mm_features.shape)

        #print(mlm_modal_embeds.weight.shape)
        modal_embeds = torch.cat([self.mlm_modal_embeds.weight[0].unsqueeze(0).repeat(1, lang_features.shape[1], 1), self.mlm_modal_embeds.weight[1].unsqueeze(0).repeat(1, vis_features.shape[1], 1), self.mlm_modal_embeds.weight[2].unsqueeze(0).repeat(1,1,1)], dim=1)
        #print(modal_embeds.shape)

        #print(mlm_transformer)


        #print(attentions.shape)
        mixed_attention_mask = torch.cat([attentions.unsqueeze(-1), torch.ones(attentions.shape[0], vis_features.shape[1]+1, 1).to(attentions.device)], dim=1)
        mixed_attention_mask = mixed_attention_mask.permute(0,2,1).unsqueeze(1)
        mixed_attention_mask = (1-mixed_attention_mask)* -10000.0
        head_mask = [None] * 8
        #extended_attention_mask = get_extended_attention_mask(mixed_attention_mask, mm_features.shape, mm_features.device)
        #print(mm_features.shape, mixed_attention_mask.shape, head_mask)
        #print(mm_features.shape, self.mlm_pos_embeds.weight.shape, self.mlm_modal_embeds.weight.shape)
        head_features = self.mlm_transformer(mm_features + self.mlm_pos_embeds.weight.unsqueeze(0) + modal_embeds, mixed_attention_mask, head_mask)[0]
        #print(head_features.shape, attentions.shape)
        head_features = head_features[:, :20][attentions.bool()]
        
        #print(embedding.shape, mask_features.shape)
        mlm_predictions = self.mlm_head(head_features)
        mlm_predictions = mlm_predictions.reshape(-1, self.language_model.config.vocab_size)
        mlm_targets = mlm_targets.squeeze(1)[attentions.bool()]
        #mlm_loss = mlm_weight * nn.CrossEntropyLoss(ignore_index=-1)(mlm_predictions, mlm_targets)
        #loss += mlm_loss
        #mlm_loss_print=mlm_loss.item()

        return predictions, mask_features, self.lang_proj((l4_residual * l_mask).sum(1)/l_mask.sum(1)), mlm_predictions, mlm_targets
# IoU calculation for validation
def IoU(pred, gt):
    #pred = pred.argmax(1)
    pred = (pred > 0.5)

    intersection = torch.sum(torch.mul(pred, gt))
    union = torch.sum(torch.add(pred, gt)) - intersection

    if intersection == 0 or union == 0:
        iou = 0
    else:
        iou = float(intersection) / float(union)

    return iou, intersection, union

def get_dataset(image_set, transform, args):
    from data.dataset_refer_bert_mlm import ReferDataset
    ds = ReferDataset(args,
                      split=image_set,
                      image_transforms=transform,
                      target_transforms=None
                      )
    num_classes = 2

    return ds, num_classes



def get_transform(args):
    transforms = [T.Resize(args.img_size, args.img_size),
                  T.ToTensor(),
                  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                  ]

    return T.Compose(transforms)


#def criterion(input, target):
#    weight = torch.FloatTensor([0.9, 1.1]).cuda()
#    return nn.functional.cross_entropy(input, target, weight=weight)


def evaluate(model, data_loader):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    total_its = 0
    acc_ious = 0

    # evaluation variables
    cum_I, cum_U = 0, 0
    eval_seg_iou_list = [.5, .6, .7, .8, .9]
    seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
    seg_total = 0
    mean_IoU = []

    with torch.no_grad():
        for data in metric_logger.log_every(data_loader, 100, header):
            total_its += 1
            #image, target, sentences, attentions = data
            #image, target, sentences, attentions = image.cuda(non_blocking=True),\
            #                                       target.cuda(non_blocking=True),\
            #                                       sentences.cuda(non_blocking=True),\
            #                                       attentions.cuda(non_blocking=True)

            image, target, sentences, attentions, mlm_targets, mlm_masks, position = data
            image, target, sentences, attentions, mlm_targets, mlm_masks, position = image.cuda(non_blocking=True),\
                                                   target.cuda(non_blocking=True),\
                                                   sentences.cuda(non_blocking=True),\
                                                   attentions.cuda(non_blocking=True), \
                                                   mlm_targets.cuda(non_blocking=True), \
                                                   mlm_masks.cuda(non_blocking=True), \
                                                   position.cuda(non_blocking=True)

            sentences = sentences.squeeze(1)
            attentions = attentions.squeeze(1)
            #print("sentences", sentences.shape)
            #print("attentions", attentions.shape)


            output, mask_features, avg_lang_feature, mlm_predictions, mlm_targets = model(image, sentences, attentions, mlm_targets, mlm_masks, position)
            mask_cls_results = output["pred_logits"]
            mask_pred_results = output["pred_masks"]

            target_shape = target.shape[-2:]
            mask_pred_results = F.interpolate(mask_pred_results, size=target_shape, mode='bilinear', align_corners=True)

            pred_masks = model.module.semantic_inference(mask_cls_results, mask_pred_results)                
            output = pred_masks[0]


            iou, I, U = IoU(output, target)
            acc_ious += iou
            mean_IoU.append(iou)
            cum_I += I
            cum_U += U
            for n_eval_iou in range(len(eval_seg_iou_list)):
                eval_seg_iou = eval_seg_iou_list[n_eval_iou]
                seg_correct[n_eval_iou] += (iou >= eval_seg_iou)
            seg_total += 1
        iou = acc_ious / total_its

    mean_IoU = np.array(mean_IoU)
    mIoU = np.mean(mean_IoU)
    print('Final results:')
    print('Mean IoU is %.2f\n' % (mIoU * 100.))
    results_str = ''
    for n_eval_iou in range(len(eval_seg_iou_list)):
        results_str += '    precision@%s = %.2f\n' % \
                       (str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
    results_str += '    overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
    print(results_str)

    return 100 * iou, 100 * cum_I / cum_U


def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
                    iterations, args):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
    header = 'Epoch: [{}]'.format(epoch)
    train_loss = 0
    total_its = 0

    for data in metric_logger.log_every(data_loader, print_freq, header):
        total_its += 1
        #image, target, sentences, attentions = data
        #image, target, sentences, attentions = image.cuda(non_blocking=True),\
        #                                       target.cuda(non_blocking=True),\
        #                                       sentences.cuda(non_blocking=True),\
        #                                       attentions.cuda(non_blocking=True)
        image, target, sentences, attentions, mlm_targets, mlm_masks, position = data
        image, target, sentences, attentions, mlm_targets, mlm_masks, position = image.cuda(non_blocking=True),\
                                               target.cuda(non_blocking=True),\
                                               sentences.cuda(non_blocking=True),\
                                               attentions.cuda(non_blocking=True), \
                                               mlm_targets.cuda(non_blocking=True), \
                                               mlm_masks.cuda(non_blocking=True), \
                                               position.cuda(non_blocking=True)

        sentences = sentences.squeeze(1)
        attentions = attentions.squeeze(1)
        #l_mask = attentions.unsqueeze(dim=-1)

        output, mask_features, avg_lang_feature, mlm_predictions, mlm_targets = model(image, sentences, attentions, mlm_targets, mlm_masks, position)
        #print(avg_lang_feature.shape)
        avg_lang_feature = torch.nn.functional.normalize(avg_lang_feature, dim=1)
        #print("----")
        #print(output.shape)
        #print(mask_features.shape)
        #print(avg_lang_feature.shape)
        #print( mlm_predictions.shape)
        #print(mlm_targets.shape)
        #print("----")

        target_shape = target.shape[-2:]
        output['pred_masks'] = F.interpolate(output['pred_masks'], size=target_shape, mode='bilinear', align_corners=True)

        if "aux_outputs" in output:
            for i, aux_outputs in enumerate(output["aux_outputs"]):
                output['aux_outputs'][i]['pred_masks'] = F.interpolate(output['aux_outputs'][i]['pred_masks'], size=target_shape, mode='bilinear', align_corners=True)

        # pixel region
        B, C, H, W = mask_features.shape

        target_reshape = F.interpolate(target.unsqueeze(1).float(), size=mask_features.shape[-2:], mode='nearest').long()

        target_reshape = target_reshape.repeat(1, mask_features.shape[1], 1, 1)
        #print(avg_pos_feature.shape, avg_lang_feature.shape, avg_neg_feature.shape)

        #cl_loss = 0.0
        plic_lang_loss = 0.0
        plic_pos_loss = 0.0
        plic_neg_loss = 0.0
        for i in range(B):
            if ((target_reshape[[i]] == 0).sum() != 0 and (target_reshape[[i]] == 1).sum() != 0):

                avg_pos_feature = (mask_features[[i]] * target_reshape[[i]]).sum(-1).sum(-1) / target_reshape[[i]].sum(-1).sum(-1)
                avg_neg_feature = (mask_features[[i]] * (1.0-target_reshape[[i]])).sum(-1).sum(-1) / (1.0-target_reshape[[i]]).sum(-1).sum(-1)
                avg_pos_feature = torch.nn.functional.normalize(avg_pos_feature, dim=1)
                avg_neg_feature = torch.nn.functional.normalize(avg_neg_feature, dim=1)

                #avg lang feature no normalize???



                pos_features = mask_features[[i]][target_reshape[[i]]==1].view(1, C, -1)
                neg_features = mask_features[[i]][target_reshape[[i]]==0].view(1, C, -1)
                #inter_neg_features = mask_features[[B-i-1]][target_reshape[[B-i-1]]==1].view(1, C, -1)
                #neg_features = torch.cat([intra_neg_features, inter_neg_features], dim=2)

                pos_features = torch.nn.functional.normalize(pos_features, dim=1)
                neg_features = torch.nn.functional.normalize(neg_features, dim=1)

                #print(avg_lang_feature.shape, avg_lang_feature[[i]].shape, pos_features.shape) 
                lang_pos_scores = torch.einsum("bq,bqn->bn", avg_lang_feature[[i]], pos_features)
                lang_neg_scores = torch.einsum("bq,bqn->bn", avg_lang_feature[[i]], neg_features)

                lang_matrix = torch.cat([lang_pos_scores.unsqueeze(-1), lang_neg_scores.unsqueeze(1).repeat(1, lang_pos_scores.shape[1], 1)], dim=2)
                lang_labels = torch.zeros(lang_matrix.shape[1], dtype=torch.long).cuda()
                lang_labels = lang_labels.unsqueeze(0).repeat(lang_matrix.shape[0], 1)

                lang_score = torch.softmax(lang_matrix, -1)
                lang_score = 1.0 - lang_score[:, :, 0]

                pos_pos_scores = torch.einsum("bq,bqn->bn", avg_pos_feature, pos_features)
                pos_neg_scores = torch.einsum("bqn,bqm->bnm", pos_features, neg_features)

                pos_matrix = torch.cat([pos_pos_scores.unsqueeze(-1), pos_neg_scores], dim=2)
                pos_labels = torch.zeros(pos_matrix.shape[1], dtype=torch.long).cuda()
                pos_labels = pos_labels.unsqueeze(0).repeat(pos_matrix.shape[0], 1)

                pos_score = torch.softmax(pos_matrix, -1)
                pos_score = 1.0 - pos_score[:, :, 0]
                #pos_weight = pos_weight.view(-1, pos_weight.shape[-1])

                #intra_neg_features = torch.nn.functional.normalize(intra_neg_features, dim=1)
                neg_neg_scores = torch.einsum("bq,bqn->bn", avg_neg_feature, neg_features)
                neg_pos_scores = torch.einsum("bqn,bqm->bnm", neg_features, pos_features)

                neg_matrix = torch.cat([neg_neg_scores.unsqueeze(-1), neg_pos_scores], dim=2)
                neg_labels = torch.zeros(neg_matrix.shape[1], dtype=torch.long).cuda()
                neg_labels = neg_labels.unsqueeze(0).repeat(neg_matrix.shape[0], 1)

                neg_score = torch.softmax(neg_matrix, -1)
                neg_score = 1.0 - neg_score[:, :, 0]
                #neg_weight = neg_weight.view(-1, neg_weight.shape[-1])

                pos_loss = (torch.pow(pos_score, args.plic_pos_alpha) * torch.nn.functional.cross_entropy(pos_matrix.view(-1, pos_matrix.shape[-1])/args.plic_pos_temp, pos_labels.view(-1), reduction='none')).mean()
                neg_loss = (torch.pow(neg_score, args.plic_neg_alpha) * torch.nn.functional.cross_entropy(neg_matrix.view(-1, neg_matrix.shape[-1])/args.plic_neg_temp, neg_labels.view(-1), reduction='none')).mean()

                lang_loss = (torch.pow(lang_score, args.plic_lang_alpha) * torch.nn.functional.cross_entropy(lang_matrix.view(-1, lang_matrix.shape[-1])/args.plic_lang_temp, lang_labels.view(-1), reduction='none')).mean()

                plic_pos_loss += pos_loss 
                plic_neg_loss += neg_loss 
                plic_lang_loss += lang_loss 
            #cl_loss += 0.5 * (torch.nn.functional.cross_entropy(pos_matrix.view(-1, pos_matrix.shape[-1])/cl_temp, pos_labels.view(-1))+torch.nn.functional.cross_entropy(neg_matrix.view(-1, neg_matrix.shape[-1])/cl_temp, neg_labels.view(-1)))
        plic_pos_loss = (args.plic_pos_weight * plic_pos_loss) / B
        plic_neg_loss = (args.plic_neg_weight * plic_neg_loss) / B
        plic_lang_loss = (args.plic_lang_weight * plic_lang_loss) / B
        plic_loss = plic_pos_loss + plic_neg_loss +plic_lang_loss


        #print(output.device, target.device)
        losses = criterion(output, target)
        weight_dict = criterion.weight_dict
                    
        loss_ce = 0.0
        loss_dice = 0.0
        loss_mask = 0.0
        for k in list(losses.keys()):
            if k in weight_dict:
                losses[k] *= criterion.weight_dict[k]
                if '_ce' in k:
                    loss_ce += losses[k]
                elif '_dice' in k:
                    loss_dice += losses[k]
                else:
                    loss_mask += losses[k]
            else:
                # remove this loss if not specified in `weight_dict`
                losses.pop(k)
        #loss = 0.3 * loss_ce + 0.3 * loss_dice + 0.4 * loss_mask
        smlm_loss = args.smlm_weight * nn.CrossEntropyLoss(ignore_index=-1)(mlm_predictions, mlm_targets)
        loss = loss_ce + loss_dice + loss_mask + plic_loss + smlm_loss


        #loss = criterion(output.squeeze(1), target.float())
        optimizer.zero_grad()  # set_to_none=True is only available in pytorch 1.6+
        loss.backward()
        optimizer.step()
        lr_scheduler.step()

        torch.cuda.synchronize()
        train_loss += loss.item()
        iterations += 1
        #metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"], loss_ce=loss_ce.item(), loss_dice=loss_dice.item(), loss_mask=loss_mask.item(), plic_loss=plic_loss.item(), plic_lang_loss=plic_lang_loss.item(), plic_pos_loss=plic_pos_loss.item(), plic_neg_loss=plic_neg_loss.item(), smlm_loss=smlm_loss.item())
        #metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"], loss_ce=loss_ce.item(), loss_dice=loss_dice.item(), loss_mask=loss_mask.item(), cl_loss=cl_loss.item(), cl_lang_loss=cl_lang_loss_print, cl_pos_loss=cl_pos_loss_print, cl_neg_loss=cl_neg_loss_print)

        #del image, target, sentences, attentions, loss, output, data
        #if bert_model is not None:
        #    del last_hidden_states, embedding

        #gc.collect()
        #torch.cuda.empty_cache()
        #del loss
        #del cl_loss
        #del cl_lang_loss
        #del loss_ce
        #del loss_dice
        #del loss_mask
        torch.cuda.synchronize()


def main(args):
#def main(local_rank, args):
    #ip = os.environ['MASTER_IP']
    #port = os.environ['MASTER_PORT']
    #hosts = int(os.environ['WORLD_SIZE'])  # 机器个数 1
    #rank = int(os.environ['RANK'])  # 当前机器编号
    #gpus = torch.cuda.device_count()  # 每台机器的GPU个数
    #print(local_rank, rank, gpus) #3 0 8
    #dist.init_process_group(backend='nccl', init_method=f'tcp://{ip}:{port}', world_size=hosts*gpus, rank=rank*gpus+local_rank)
    #torch.cuda.set_device(local_rank)
    #dist.barrier()

    ##utils.init_distributed_mode(args)
    #args.distributed=True
    #args.gpu = local_rank
    #print(args)
    ##misc.init_distributed_mode(args)

    #print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
    #print("{}".format(args).replace(', ', ',\n'))

    #device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    print('seed', seed)
    torch.manual_seed(seed)
    np.random.seed(seed)

    #cudnn.benchmark = True

    dataset, num_classes = get_dataset("train",
                                       get_transform(args=args),
                                       args=args)
    dataset_test, _ = get_dataset("val",
                                  get_transform(args=args),
                                  args=args)

    # batch sampler
    print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
    num_tasks = utils.get_world_size()
    global_rank = utils.get_rank()
    #num_tasks = hosts*gpus
    #global_rank = rank*gpus+local_rank
    train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
                                                                    shuffle=True)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    # data loader
    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers, pin_memory=True, drop_last=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1, sampler=test_sampler, pin_memory=True, num_workers=args.workers)

    # model initialization
    print(args.model)
    model = multimodal_segmentation_ppm.__dict__[args.model](pretrained=args.pretrained_swin_weights,
                                              args=args)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    #model.cuda()
    #model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
    #model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=False)
    #single_model = model.module

    if args.model != 'lavt_one':
        model_class = MultiModalBert
        bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=model.backbone.embed_dim)
        bert_model.pooler = None  # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
        #bert_model.cuda()
        bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
        #bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[local_rank])
        #single_bert_model = bert_model.module
    else:
        bert_model = None
        single_bert_model = None

    input_shape = dict()
    input_shape['s1'] = Dict({'channel': 128,  'stride': 4})
    input_shape['s2'] = Dict({'channel': 256,  'stride': 8})
    input_shape['s3'] = Dict({'channel': 512,  'stride': 16})
    input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})



    cfg = Dict()
    cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
    cfg.MODEL.MASK_FORMER.DROPOUT = 0.0 
    cfg.MODEL.MASK_FORMER.NHEADS = 8
    cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = args.transformer_enc_layers
    cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
    cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]

    cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
    cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
    cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = args.num_object_queries
    cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = args.dim_feedforward
    cfg.MODEL.MASK_FORMER.DEC_LAYERS = args.dec_layers
    cfg.MODEL.MASK_FORMER.PRE_NORM = False

    cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True
    cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = args.no_object_weight
    cfg.MODEL.MASK_FORMER.CLASS_WEIGHT = args.class_weight
    cfg.MODEL.MASK_FORMER.DICE_WEIGHT = args.dice_weight
    cfg.MODEL.MASK_FORMER.MASK_WEIGHT = args.mask_weight

    cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS = args.train_num_points
    cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO = 3.0
    cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75
    print(cfg)

    maskformer_head = MaskFormerHead(cfg, input_shape)
    maskformer_head = torch.nn.SyncBatchNorm.convert_sync_batchnorm(maskformer_head)
    #maskformer_head.cuda()
    #maskformer_head = torch.nn.parallel.DistributedDataParallel(maskformer_head, device_ids=[args.local_rank], find_unused_parameters=False)
    #single_head = maskformer_head.module
    #print(single_head)

    model = WrapperModel(model.backbone, bert_model, maskformer_head, args)
    model.cuda()
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
    single_model = model.module

    # mask2former loss
    deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
    no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT

    # loss weights
    class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
    dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
    mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
    # self.criterion = Criterion(self.num_classes)

    # building criterion

    matcher = HungarianMatcher(
        cost_class=class_weight,
        cost_mask=mask_weight,
        cost_dice=dice_weight,
        num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
    )

    weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
    if deep_supervision:
        dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
        aux_weight_dict = {}
        for i in range(dec_layers - 1):
            aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
        weight_dict.update(aux_weight_dict)

    losses = ["labels", "masks"]
    criterion = SetCriterion(
        cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
        matcher=matcher,
        weight_dict=weight_dict,
        eos_coef=no_object_weight,
        losses=losses,
        num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
        oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
        importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
        device='cuda'
    )
    
    if args.resume == "auto":
        last_ckpt = ""
        for e in range(args.epochs):
            ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
            if os.path.exists(ckpt_path):
                last_ckpt = ckpt_path
        args.resume = last_ckpt

    # resume training
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        single_model.load_state_dict(checkpoint['model'])
        #if args.model != 'lavt_one':
        #    single_bert_model.load_state_dict(checkpoint['bert_model'])

    # parameters to optimize
    backbone_no_decay = list()
    backbone_decay = list()
    for name, m in single_model.image_model.named_parameters():
        if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
            backbone_no_decay.append(m)
        else:
            backbone_decay.append(m)

    params_to_optimize = [
        {'params': backbone_no_decay, 'weight_decay': 0.0},
        {'params': backbone_decay},
        {"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
        # the following are the parameters of bert
        {"params": reduce(operator.concat,
                          [[p for p in single_model.language_model.encoder.layer[i].parameters()
                            if p.requires_grad] for i in range(10)])},
        {"params": single_model.language_model.pwams.parameters()},
        {"params": single_model.language_model.res_gates.parameters()},
        {"params": single_model.language_model.norms.parameters()},
        {"params": single_model.lang_proj.parameters()},
        #{"params": single_model.language_model.parameters()},
        {'params': single_model.mlm_head.parameters()},
        {'params': single_model.mlm_vis_proj.parameters()},
        {'params': single_model.mlm_lang_proj.parameters()},
        {'params': single_model.mlm_transformer.parameters()},
        {'params': single_model.mlm_pos_embeds.parameters()},
        {'params': single_model.mlm_modal_embeds.parameters()},
        {'params': single_model.mlm_mask_embed.parameters()},
        {'params': single_model.mlm_pos_mlp.parameters()},
        #{'params': mlm_head.parameters(), 'weight_decay': 0.0},
        #{'params': mlm_vis_proj.parameters(), 'weight_decay': 0.0},
        #{'params': mlm_lang_proj.parameters(), 'weight_decay': 0.0},
        #{'params': mlm_transformer.parameters(), 'weight_decay': 0.0},
        #{'params': mlm_pos_embeds.parameters(), 'weight_decay': 0.0},
        #{'params': mlm_modal_embeds.parameters(), 'weight_decay': 0.0},
        #{'params': mlm_mask_embed.parameters(), 'weight_decay': 0.0},
        #{'params': mlm_pos_mlp.parameters(), 'weight_decay': 0.0},
    ]


    # optimizer
    optimizer = torch.optim.AdamW(params_to_optimize,
                                  lr=args.lr,
                                  weight_decay=args.weight_decay,
                                  amsgrad=args.amsgrad
                                  )

    # learning rate scheduler
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                     lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)

    # housekeeping
    start_time = time.time()
    iterations = 0
    best_oIoU = -0.1

    # resume training (optimizer, lr scheduler, and the epoch)
    if args.resume:
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        resume_epoch = checkpoint['epoch']
    else:
        resume_epoch = -999

    # training loops
    for epoch in range(max(0, resume_epoch+1), args.epochs):
        data_loader.sampler.set_epoch(epoch)
        train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
                        iterations, args)
        iou, overallIoU = evaluate(model, data_loader_test)

        print('Average object IoU {}'.format(iou))
        print('Overall IoU {}'.format(overallIoU))


        dict_to_save = {'model': single_model.state_dict(),
                        'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
                        'lr_scheduler': lr_scheduler.state_dict()}

        checkpoint_path = os.path.join(args.output_dir, 'checkpoint-{}.pth'.format(epoch))
        utils.save_on_master(dict_to_save, str(checkpoint_path) + '_TEMP')
        if utils.is_main_process():
            os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))

        if utils.is_main_process():
            ckpt_paths = []
            for e in range(args.epochs):
                ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
                print(ckpt_path)
                if os.path.exists(ckpt_path):
                    ckpt_paths.append(ckpt_path)
            print(ckpt_paths)
            for ckpt_path in ckpt_paths[:-args.max_ckpt]:
                os.remove(ckpt_path)
                print("remove {:s}".format(ckpt_path))


        save_checkpoint = (best_oIoU < overallIoU)
        if save_checkpoint:
            print('Better epoch: {}\n'.format(epoch))
            dict_to_save = {'model': single_model.state_dict(),
                            'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
                            'lr_scheduler': lr_scheduler.state_dict()}

            checkpoint_path = os.path.join(args.output_dir, 'model_best_{}.pth'.format(args.model_id))
            utils.save_on_master(dict_to_save, checkpoint_path + '_TEMP')
            if utils.is_main_process():
                os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))
            best_oIoU = overallIoU
        torch.cuda.empty_cache()

    # summarize
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
    from args import get_parser
    parser = get_parser()
    args = parser.parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
    # set up distributed learning
    utils.init_distributed_mode(args)
    print('Image size: {}'.format(str(args.img_size)))
    main(args)
    #mp.spawn(main, args=(args,), nprocs=torch.cuda.device_count())