File size: 17,499 Bytes
c2a24ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import haienv
haienv.set_env('lavt2')
import torch.multiprocessing as mp
import torch.distributed as dist
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from functools import reduce
import operator
from bert.modeling_bert import BertModel
import torchvision
from lib import segmentation
import transforms as T
import utils
import numpy as np
import torch.nn.functional as F
import gc
from collections import OrderedDict
import torch.backends.cudnn as cudnn
from ffrecord.torch import DataLoader,Dataset
def get_dataset(image_set, transform, args):
from data.dataset_refer_bert import ReferDataset
ds = ReferDataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None
)
num_classes = 2
return ds, num_classes
# IoU calculation for validation
def IoU(pred, gt):
pred = pred.argmax(1)
intersection = torch.sum(torch.mul(pred, gt))
union = torch.sum(torch.add(pred, gt)) - intersection
if intersection == 0 or union == 0:
iou = 0
else:
iou = float(intersection) / float(union)
return iou, intersection, union
def get_transform(args):
transforms = [T.Resize(args.img_size, args.img_size),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
return T.Compose(transforms)
def criterion(input, target):
weight = torch.FloatTensor([0.9, 1.1]).cuda()
return nn.functional.cross_entropy(input, target, weight=weight)
def evaluate(model, data_loader, bert_model):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
total_its = 0
acc_ious = 0
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
with torch.no_grad():
for data in metric_logger.log_every(data_loader, 100, header):
total_its += 1
image, target, sentences, attentions = data
image, target, sentences, attentions = image.cuda(non_blocking=True),\
target.cuda(non_blocking=True),\
sentences.cuda(non_blocking=True),\
attentions.cuda(non_blocking=True)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
#print("sentences", sentences.shape)
#print("attentions", attentions.shape)
if bert_model is not None:
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]
#print("last hidden states", last_hidden_states.shape)
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
attentions = attentions.unsqueeze(dim=-1) # (B, N_l, 1)
output = model(image, embedding, l_mask=attentions)
else:
output = model(image, sentences, l_mask=attentions)
iou, I, U = IoU(output, target)
acc_ious += iou
mean_IoU.append(iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (iou >= eval_seg_iou)
seg_total += 1
iou = acc_ious / total_its
mean_IoU = np.array(mean_IoU)
mIoU = np.mean(mean_IoU)
print('Final results:')
print('Mean IoU is %.2f\n' % (mIoU * 100.))
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
print(results_str)
return 100 * iou, 100 * cum_I / cum_U
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
iterations, bert_model):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
train_loss = 0
total_its = 0
for data in metric_logger.log_every(data_loader, print_freq, header):
total_its += 1
image, target, sentences, attentions = data
image, target, sentences, attentions = image.cuda(non_blocking=True),\
target.cuda(non_blocking=True),\
sentences.cuda(non_blocking=True),\
attentions.cuda(non_blocking=True)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
#print(sentences.shape, attentions.shape, target.shape)
#print(sentences)
#print('a', sentences.shape)
#print('b', attentions.shape)
if bert_model is not None:
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0] # (6, 10, 768)
#print('c', last_hidden_states.shape)
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
#print('e', embedding.shape)
attentions = attentions.unsqueeze(dim=-1) # (batch, N_l, 1)
#print('f', attentions.shape)
output = model(image, embedding, l_mask=attentions)
else:
output = model(image, sentences, l_mask=attentions)
loss = criterion(output, target)
optimizer.zero_grad() # set_to_none=True is only available in pytorch 1.6+
loss.backward()
optimizer.step()
lr_scheduler.step()
torch.cuda.synchronize()
train_loss += loss.item()
iterations += 1
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
del image, target, sentences, attentions, loss, output, data
if bert_model is not None:
del last_hidden_states, embedding
#gc.collect()
#torch.cuda.empty_cache()
torch.cuda.synchronize()
#def main(args):
def main(local_rank, args):
ip = os.environ['MASTER_IP']
port = os.environ['MASTER_PORT']
hosts = int(os.environ['WORLD_SIZE']) # 机器个数 1
rank = int(os.environ['RANK']) # 当前机器编号
gpus = torch.cuda.device_count() # 每台机器的GPU个数
print(local_rank, rank, gpus) #3 0 8
dist.init_process_group(backend='nccl', init_method=f'tcp://{ip}:{port}', world_size=hosts*gpus, rank=rank*gpus+local_rank)
torch.cuda.set_device(local_rank)
dist.barrier()
#utils.init_distributed_mode(args)
args.distributed=True
args.gpu = local_rank
print(args)
#misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
#cudnn.benchmark = True
dataset, num_classes = get_dataset("train",
get_transform(args=args),
args=args)
dataset_test, _ = get_dataset("val",
get_transform(args=args),
args=args)
# batch sampler
print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
#num_tasks = utils.get_world_size()
#global_rank = utils.get_rank()
num_tasks = hosts*gpus
global_rank = rank*gpus+local_rank
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
shuffle=True)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
# data loader
data_loader = DataLoader(
dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers, pin_memory=True, drop_last=True)
data_loader_test = DataLoader(
dataset_test, batch_size=1, sampler=test_sampler, pin_memory=True, num_workers=args.workers)
# model initialization
print(args.model)
model = segmentation.__dict__[args.model](pretrained=args.pretrained_swin_weights,
args=args)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=False)
single_model = model.module
if args.model != 'lavt_one':
model_class = BertModel
bert_model = model_class.from_pretrained(args.ck_bert)
bert_model.pooler = None # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
bert_model.cuda()
bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[args.local_rank])
single_bert_model = bert_model.module
else:
bert_model = None
single_bert_model = None
input_shape = dict()
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
cfg = Dict()
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
cfg.MODEL.MASK_FORMER.NHEADS = 8
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
cfg.MODEL.MASK_FORMER.PRE_NORM = False
maskformer_head = MaskFormerHead(cfg, input_shape)
maskformer_head = torch.nn.SyncBatchNorm.convert_sync_batchnorm(maskformer_head)
maskformer_head.cuda()
maskformer_head = torch.nn.parallel.DistributedDataParallel(maskformer_head, device_ids=[args.local_rank], find_unused_parameters=False)
single_head = maskformer_head.module
print(single_head)
if args.resume == "auto":
last_ckpt = ""
for e in range(args.epochs):
ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
if os.path.exists(ckpt_path):
last_ckpt = ckpt_path
args.resume = last_ckpt
# resume training
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
single_model.load_state_dict(checkpoint['model'])
single_head.load_state_dict(checkpoint['head_model'])
if args.model != 'lavt_one':
single_bert_model.load_state_dict(checkpoint['bert_model'])
# parameters to optimize
backbone_no_decay = list()
backbone_decay = list()
for name, m in single_model.backbone.named_parameters():
if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
backbone_no_decay.append(m)
else:
backbone_decay.append(m)
if args.model != 'lavt_one':
params_to_optimize = [
{'params': backbone_no_decay, 'weight_decay': 0.0},
{'params': backbone_decay},
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
# the following are the parameters of bert
{"params": reduce(operator.concat,
[[p for p in single_bert_model.encoder.layer[i].parameters()
if p.requires_grad] for i in range(10)])},
{"params": single_head.parameters()}
]
else:
params_to_optimize = [
{'params': backbone_no_decay, 'weight_decay': 0.0},
{'params': backbone_decay},
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
# the following are the parameters of bert
{"params": reduce(operator.concat,
[[p for p in single_model.text_encoder.encoder.layer[i].parameters()
if p.requires_grad] for i in range(10)])},
]
# optimizer
optimizer = torch.optim.AdamW(params_to_optimize,
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=args.amsgrad
)
# learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)
# housekeeping
start_time = time.time()
iterations = 0
best_oIoU = -0.1
# resume training (optimizer, lr scheduler, and the epoch)
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
resume_epoch = checkpoint['epoch']
else:
resume_epoch = -999
# training loops
for epoch in range(max(0, resume_epoch+1), args.epochs):
data_loader.sampler.set_epoch(epoch)
train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
iterations, bert_model, single_head)
iou, overallIoU = evaluate(model, data_loader_test, bert_model, single_head)
print('Average object IoU {}'.format(iou))
print('Overall IoU {}'.format(overallIoU))
if single_bert_model is not None:
dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict(), 'head_model': single_head.state_dict()}
else:
dict_to_save = {'model': single_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict()}
checkpoint_path = os.path.join(args.output_dir, 'checkpoint-{}.pth'.format(epoch))
utils.save_on_master(dict_to_save, str(checkpoint_path) + '_TEMP')
if utils.is_main_process():
os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))
if utils.is_main_process():
ckpt_paths = []
for e in range(args.epochs):
ckpt_path = os.path.join(args.output_dir, f'checkpoint-{e}.pth')
print(ckpt_path)
if os.path.exists(ckpt_path):
ckpt_paths.append(ckpt_path)
print(ckpt_paths)
for ckpt_path in ckpt_paths[:-args.max_ckpt]:
os.remove(ckpt_path)
print("remove {:s}".format(ckpt_path))
save_checkpoint = (best_oIoU < overallIoU)
if save_checkpoint:
print('Better epoch: {}\n'.format(epoch))
if single_bert_model is not None:
dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict()}
else:
dict_to_save = {'model': single_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict()}
checkpoint_path = os.path.join(args.output_dir, 'model_best_{}.pth'.format(args.model_id))
utils.save_on_master(dict_to_save, checkpoint_path + '_TEMP')
if utils.is_main_process():
os.rename(str(checkpoint_path) + '_TEMP', str(checkpoint_path))
best_oIoU = overallIoU
# summarize
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# set up distributed learning
#utils.init_distributed_mode(args)
print('Image size: {}'.format(str(args.img_size)))
#main(args)
mp.spawn(main, args=(args,), nprocs=torch.cuda.device_count())
|