File size: 12,268 Bytes
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

from .modeling_bert import BertModel
import torch
import torch.nn as nn
import torch.nn.functional as F



class MultiModalBert(BertModel):
    def __init__(self, config, embed_dim, pwam_idx=[3,6,9,12], num_heads_fusion=[1,1,1,1], fusion_drop=0.0):
        super().__init__(config)
        self.pwam_idx = pwam_idx
        self.num_heads_fusion = num_heads_fusion
        self.fusion_drop = fusion_drop

        pwam_dims=[embed_dim * 2** i for i in range(len(pwam_idx))] 
        #print(pwam_dims)
        self.pwams = nn.ModuleList()
        self.res_gates = nn.ModuleList()
        self.norms = nn.ModuleList()
        for i in range(0, len(pwam_idx)):
            dim = pwam_dims[i]
            fusion = PWAM(768,  # both the visual input and for combining, num of channels
                          dim,  # v_in
                          768,  # l_in
                          768,  # key
                          768,  # value
                          num_heads=num_heads_fusion[i],
                          dropout=fusion_drop)
            self.pwams.append(fusion)

            res_gate = nn.Sequential(
                nn.Linear(768, 768, bias=False),
                nn.ReLU(),
                nn.Linear(768, 768, bias=False),
                nn.Tanh()
            )
            nn.init.zeros_(res_gate[0].weight)
            nn.init.zeros_(res_gate[2].weight)
            self.res_gates.append(res_gate)

            self.norms.append(nn.LayerNorm(768))

    def forward_stem(self, input_ids, attention_mask):
        input_shape = input_ids.size()
        token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=input_ids.device)

        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, input_ids.device)

        embedding_output = self.embeddings(
            input_ids=input_ids, token_type_ids=token_type_ids
        )
        #print(embedding_output.shape, extended_attention_mask.shape, "?>>>")
        return embedding_output, extended_attention_mask

    def forward_stage1(self, hidden_states, attention_mask):
        for i in range(0, self.pwam_idx[0]):
            layer_module = self.encoder.layer[i]
            layer_outputs = layer_module(
                hidden_states,
                attention_mask,
            )
            hidden_states = layer_outputs[0]

        return layer_outputs[0]

    def forward_stage2(self, hidden_states, attention_mask):
        for i in range(self.pwam_idx[0], self.pwam_idx[1]):
            layer_module = self.encoder.layer[i]
            layer_outputs = layer_module(
                hidden_states,
                attention_mask,
            )
            hidden_states = layer_outputs[0]

        return layer_outputs[0]

    def forward_stage3(self, hidden_states, attention_mask):
        for i in range(self.pwam_idx[1], self.pwam_idx[2]):
            layer_module = self.encoder.layer[i]
            layer_outputs = layer_module(
                hidden_states,
                attention_mask,
            )
            hidden_states = layer_outputs[0]

        return layer_outputs[0]

    def forward_stage4(self, hidden_states, attention_mask):
        for i in range(self.pwam_idx[2], self.pwam_idx[3]):
            layer_module = self.encoder.layer[i]
            layer_outputs = layer_module(
                hidden_states,
                attention_mask,
            )
            hidden_states = layer_outputs[0]

        return layer_outputs[0]

    def forward_pwam1(self, x, l, l_mask):
        l_residual = self.pwams[0](x, l, l_mask)
        l = l + (self.res_gates[0](l_residual) * l_residual)
        return self.norms[0](l_residual), l

    def forward_pwam2(self, x, l, l_mask):
        l_residual = self.pwams[1](x, l, l_mask)
        l = l + (self.res_gates[1](l_residual) * l_residual)
        return self.norms[1](l_residual), l

    def forward_pwam3(self, x, l, l_mask):
        l_residual = self.pwams[2](x, l, l_mask)
        l = l + (self.res_gates[2](l_residual) * l_residual)
        return self.norms[2](l_residual), l

    def forward_pwam4(self, x, l, l_mask):
        l_residual = self.pwams[3](x, l, l_mask)
        l = l + (self.res_gates[3](l_residual) * l_residual)
        return self.norms[3](l_residual), l

class PWAM(nn.Module):
    def __init__(self, dim, v_in_channels, l_in_channels, key_channels, value_channels, num_heads=0, dropout=0.0):
        super(PWAM, self).__init__()
        # input x shape: (B, H*W, dim)
        #self.vis_project = nn.Sequential(nn.Conv1d(dim, dim, 1, 1),  # the init function sets bias to 0 if bias is True
        #                                 nn.GELU(),
        #                                 nn.Dropout(dropout)
        #                                )
        #self.vis_project = nn.Sequential(nn.Conv1d(dim, dim, 1, 1),  # the init function sets bias to 0 if bias is True
        self.vis_project = nn.Sequential(nn.Linear(dim, dim),  # the init function sets bias to 0 if bias is True
                                         nn.GELU(),
                                         nn.Dropout(dropout)
                                        )

        self.image_lang_att = SpatialImageLanguageAttention(v_in_channels,  # v_in
                                                            l_in_channels,  # l_in
                                                            key_channels,  # key
                                                            value_channels,  # value
                                                            out_channels=value_channels,  # out
                                                            num_heads=num_heads)

        self.project_mm = nn.Sequential(nn.Conv1d(value_channels, value_channels, 1, 1),
                                        nn.GELU(),
                                        nn.Dropout(dropout)
                                        )

    def forward(self, x, l, l_mask):
        # input x shape: (B, H*W, dim)
        #print("???", x.shape, l.shape, l_mask.shape)
        #print(self.vis_project)
        #vis = self.vis_project(x.permute(0, 2, 1))  # (B, dim, H*W)
        vis = self.vis_project(l)  # (B, dim, H*W)

        lang = self.image_lang_att(x, l, l_mask)  # (B, H*W, dim)

        lang = lang.permute(0, 2, 1)  # (B, dim, H*W)

        #print("vis", vis.shape, "lang", lang.shape)
        mm = torch.mul(vis.permute(0,2,1), lang)
        #print(mm.shape)
        mm = self.project_mm(mm)  # (B, dim, H*W)

        mm = mm.permute(0, 2, 1)  # (B, H*W, dim)

        return mm

        #self.fusion = PWAM(dim,  # both the visual input and for combining, num of channels
        #                   dim,  # v_in
        #                   768,  # l_in
        #                   dim,  # key
        #                   dim,  # value
        #                   num_heads=num_heads_fusion,
        #                   dropout=fusion_drop)

class SpatialImageLanguageAttention(nn.Module):
    def __init__(self, v_in_channels, l_in_channels, key_channels, value_channels, out_channels=None, num_heads=1):
        super(SpatialImageLanguageAttention, self).__init__()
        # x shape: (B, H*W, v_in_channels)
        # l input shape: (B, l_in_channels, N_l)
        # l_mask shape: (B, N_l, 1)
        self.v_in_channels = v_in_channels
        self.l_in_channels = l_in_channels
        self.out_channels = out_channels
        self.key_channels = key_channels
        self.value_channels = value_channels
        self.num_heads = num_heads
        if out_channels is None:
            self.out_channels = self.value_channels

        # Keys: language features: (B, l_in_channels, #words)
        # avoid any form of spatial normalization because a sentence contains many padding 0s
        self.f_query = nn.Sequential(
            nn.Conv1d(self.l_in_channels, self.key_channels, kernel_size=1, stride=1),
        )

        # Queries: visual features: (B, H*W, v_in_channels)
        self.f_key = nn.Sequential(
            nn.Conv1d(self.v_in_channels, self.key_channels, kernel_size=1, stride=1),
            nn.InstanceNorm1d(self.key_channels),
        )

        # Values: language features: (B, l_in_channels, #words)
        #self.f_value = nn.Sequential(
        #    nn.Conv1d(self.l_in_channels, self.value_channels, kernel_size=1, stride=1),
        #)
        self.f_value = nn.Sequential(
            nn.Conv1d(self.v_in_channels, self.key_channels, kernel_size=1, stride=1),
            nn.InstanceNorm1d(self.key_channels),
        )

        # Out projection
        self.W = nn.Sequential(
            nn.Conv1d(self.value_channels, self.out_channels, kernel_size=1, stride=1),
            nn.InstanceNorm1d(self.out_channels),
        )

    def forward(self, x, l, l_mask):
        #print('input shape', x.shape, l.shape, l_mask.shape)
        l_mask = l_mask.squeeze(1)
        # x shape: (B, H*W, v_in_channels)
        # l input shape: (B, l_in_channels, N_l)
        # l_mask shape: (B, N_l, 1)
        B, HW = x.size(0), x.size(1)
        x = x.permute(0, 2, 1)  # (B, key_channels, H*W)
        l = l.permute(0,2,1)
        #l_mask = l_mask.permute(0, 2, 1)  # (B, N_l, 1) -> (B, 1, N_l)
        l_mask = l_mask  # (B, N_l, 1) -> (B, 1, N_l)

        #query = self.f_query(x)  # (B, key_channels, H*W) if Conv1D
        #query = query.permute(0, 2, 1)  # (B, H*W, key_channels)
        #key = self.f_key(l)  # (B, key_channels, N_l)
        #value = self.f_value(l)  # (B, self.value_channels, N_l)
        #key = key * l_mask  # (B, key_channels, N_l)
        #value = value * l_mask  # (B, self.value_channels, N_l)

        #print(l.shape, self.f_query)
        query = self.f_query(l)  # (B, key_channels, H*W) if Conv1D
        query = query * l_mask  # (B, key_channels, N_l)
        query = query.permute(0, 2, 1)  # (B, N_l, key_channels)

        key = self.f_key(x)  # (B, key_channels, H*W) if Conv1D
        value = self.f_value(x)  # (B, key_channels, H*W) if Conv1D

        n_l = query.size(1)
        #print(query.shape, key.shape, value.shape)

        #query = query.reshape(B, HW, self.num_heads, self.key_channels//self.num_heads).permute(0, 2, 1, 3)
        # (b, num_heads, H*W, self.key_channels//self.num_heads)
        #key = key.reshape(B, self.num_heads, self.key_channels//self.num_heads, n_l)
        # (b, num_heads, self.key_channels//self.num_heads, n_l)
        #value = value.reshape(B, self.num_heads, self.value_channels//self.num_heads, n_l)
        # # (b, num_heads, self.value_channels//self.num_heads, n_l)
        key = key.reshape(B, self.num_heads, self.key_channels//self.num_heads, HW)
        value = value.reshape(B, self.num_heads, self.key_channels//self.num_heads, HW)
        # (b, num_heads, H*W, self.key_channels//self.num_heads)
        #query = query.reshape(B, self.num_heads, self.key_channels//self.num_heads, n_l)
        query = query.reshape(B, n_l, self.num_heads, self.key_channels//self.num_heads).permute(0, 2, 1, 3)
        # (b, num_heads, self.key_channels//self.num_heads, n_l)
        #value = value.reshape(B, self.num_heads, self.value_channels//self.num_heads, n_l)
        #print('after reshape', query.shape, key.shape, value.shape)

        l_mask = l_mask.unsqueeze(-1)  # (b, 1, 1, n_l)

        #sim_map = torch.matmul(query, key)  # (B, self.num_heads, H*W, N_l)
        sim_map = torch.matmul(query, key)  # (B, self.num_heads, N_l, H*W)
        sim_map = (self.key_channels ** -.5) * sim_map  # scaled dot product

        sim_map = sim_map + (1e4*l_mask - 1e4)  # assign a very small number to padding positions
        sim_map = F.softmax(sim_map, dim=-1)  # (B, num_heads, h*w, N_l)
        out = torch.matmul(sim_map, value.permute(0, 1, 3, 2))  # (B, num_heads, H*W, self.value_channels//num_heads)
        #print('out', out.shape)
        #out = out.permute(0, 2, 1, 3).contiguous().reshape(B, HW, self.value_channels)  # (B, H*W, value_channels)
        out = out.permute(0, 2, 1, 3).contiguous().reshape(B, n_l, self.value_channels)  # (B, H*W, value_channels)
        out = out.permute(0, 2, 1)  # (B, value_channels, HW)
        out = self.W(out)  # (B, value_channels, HW)
        out = out.permute(0, 2, 1)  # (B, HW, value_channels)

        return out